Momentum in Music: Musical Succession As Physical Motion

Total Page:16

File Type:pdf, Size:1020Kb

Momentum in Music: Musical Succession As Physical Motion Psychomusicology: Music, Mind, and Brain © 2017 American Psychological Association 2017, Vol. 27, No. 1, 14–30 0275-3987/17/$12.00 http://dx.doi.org/10.1037/pmu0000171 Momentum in Music: Musical Succession as Physical Motion Timothy L. Hubbard Arizona State University A melodic line involves a note of a given pitch and duration, followed by another note of a given pitch and duration, and so on, but we often perceive such musical succession in time as movement in space (e.g., melodic contours ascend or descend, etc.), and concepts related to motion have been used to describe and understand musical experience. Johnson and Larson (2003) suggested musical motion is analogous to motion of physical objects, and Larson (2012) discussed musical forces analogous to the forces that operate on physical objects. In this review, one such musical force, musical inertia, is compared with momentum-like effects that occur in other (nonmusical) domains. Although musical inertia was previously suggested to be analogous to representational momentum, these two effects operate on different time-scales, and it is proposed that musical representation might exhibit behavioral momentum or psychological momentum or might exhibit a unique form of musical momentum. Such a musical momentum would reflect dynamic mental representation and properties of the functional architecture of music representation; be related to auditory stream segregation, perceptual grouping, and auditory kappa and tau effects; and reflect naive beliefs regarding force. Possible musical analogues of the components of momentum (mass, velocity) are considered. Keywords: momentum-like effect, musical forces, musical inertia, musical motion, representational momentum Metaphors involving motion have shaped discussion and hard to imagine a term that describes physical motion that has understanding of music for millennia. Rothfarb (2001, p. 927) not been, or could not be, applied to music,” and he provided points out that “ever since ancient times authors have identified many examples of spatial and motion metaphors in music (e.g., motion as a functional aspect of music.” Perhaps the most melodies moving by steps or leaps, melodic contours ascending famous example is the so-called “music of the spheres” in or descending, presence of passing and leading tones; see also which Kepler in Harmonices Mundi attempted to connect plan- Johnson & Larson, 2003). etary motion with numerical ratios of musical intervals (Balbi, The purpose here is to review data and theories regarding 2008). St. Augustine in Da Musica defined music as “scientia whether the mental representation of music embodies a dynamic of bene modulani,” which translates as “knowledge of correct motion. Production of music typically requires motion of some sort movement” (MacInnis, 2015), and Rameau’s Treatise on Har- (e.g., vibration of a string, reed, or drumhead; changing configu- mony refers to “collisions” of sounds (Christiansen, 2004). rations of open [not pressed] and closed [pressed] keys on a More recently, Shove and Repp (1995) concluded music can musical instrument, etc.), and so in a trivial sense, music arises represent natural forms of motion, Clarke (2001, 2005) con- from motion. However, music and motion are complex concepts, cluded the relationship between music and motion provides an and not every type of motion is necessarily a potential source of important part of music’s impact and meaning, Eitan and Gra- music. Rather than reviewing the relationship between music and not (2006) considered how music was associated with bodily motion in general, the goal here is simpler: to consider the rela- movement, and Phillips-Silver (2009) concluded a link between tionship between music and a single consequence of motion, music and movement was pervasive in human experience. Con- momentum. It is suggested that the mental representation of music This document is copyrighted by the American Psychological Association or one of its alliedsistent publishers. with this, Larson (2012) suggested an important meta- exhibits momentum-like effects that share many properties with This article is intended solely for the personal use ofphor the individual user and is not toin be disseminated broadly. our conceptualization of music is “Musical Succession momentum-like effects in other domains of perception, cognition, is Physical Motion.” Indeed, Larson (2012, p. 50) noted “it is and behavior. Part 1 explores the notion of musical motion and considers Larson’s discussion of musical forces in general and musical inertia in particular. Part 2 reviews information on differ- ent (nonmusical) momentum-like effects and considers whether Portions of the ideas presented here were presented at the 2015 Auditory musical inertia is consistent with these effects. Part 3 examines Perception, Cognition, and Action Meeting in Chicago, Illinois, and the implications and consequences of musical momentum, and con- 2016 Annual Meeting of the International Society for Psychophysics, siders dynamic representation and functional architecture, an em- Moscow, Russia. phasis on extrapolation across time, auditory streaming and per- The author thanks Justin London for helpful comments on a previous version of the manuscript. ceptual grouping, auditory kappa and tau effects, naive physics of Correspondence concerning this article should be addressed to Timothy forces, and which aspects of music might map on to different L. Hubbard, Department of Psychology, Arizona State University, Tempe components of momentum. Part 4 provides a brief summary and AZ 8528. E-mail: [email protected] conclusions. 14 MOMENTUM IN MUSIC 15 Part 1: Music and Motion Table 2 Comparison of Physical Motion and Musical Succession It has long been thought that music is related to motion (for reviews, see Eitan & Granot, 2006; Phillips-Silver, 2009; Roth- Physical motion Musical succession farb, 2001; Shove & Repp, 1995). Motion of a physical object results from physical forces, and the existence of analogous mu- Physical object Musical event Physical motion Musical motion sical forces associated with musical succession in Western tonal Velocity Tempo music was proposed by Larson (2004, 2012; Larson & van Handel, Location of the observer Present musical event 2005). In Part 1, the idea of musical forces, and the properties of Objects in front of the observer Future musical event a specific musical force—musical inertia—are considered. Objects behind the observer Past musical event Path of motion Musical passage Beginning/ending of physical motion Beginning/ending of musical Musical Succession and Physical Motion passage Temporary cessation of motion Rest, caesura What is it that “moves” in music? Indeed, the idea of musical Repeated motion along a path Recapitulation, repeat motion is something of a puzzle, in that unless the source of the Physical forces Musical forces music (e.g., performer, loudspeaker) is physically moving, the Note. Adapted from “‘Something in the way she moves’ - Metaphors of music per se does not actually physically move (see Larson, 2012; musical motion” by M. Johnson and S. Larson, 2003, Metaphor and Zuckerkandl, 1956). A melodic line typically consists of the pre- Symbol, 18, 63–84. Copyright 2003 by Taylor & Francis. Adapted with sentation of a (stationary) tone of a given pitch and duration permission. followed by the presentation of another (stationary) tone of a given pitch and duration, and so on, and yet we often perceive such musical succession in time as a type of motion in space (e.g., are analogous to physical objects, and musical succession is anal- melodic lines rise or fall, intervals move by steps or leaps, etc.). ogous to physical motion. Both physical motion and musical Johnson and Larson (2003; Larson, 2012) suggest that an observer succession are defined by the rate of change (e.g., velocity, tempo). can be conceptualized as moving through time (a “moving ob- Both physical motion and musical succession take place within a server” or “time’s landscape” metaphor) or that time can be larger spatiotemporal framework in which past and future are conceptualized as moving past an observer (a “moving time” viewed as behind and in front of, respectively, the observer, and in metaphor), and these mappings of space to time are listed in Table which physical motion and musical succession can be viewed as a 1. Furthermore, Johnson and Larson suggest that we seem to passage or trajectory through that spatiotemporal framework. Both spatialize movement through or by time as movement through physical motion and musical succession have a starting point and space (and this spatialization of time is especially relevant in an ending point; along the trajectory between these points there music, see Morgan, 1980). Thus, our concept of musical succes- can be a temporary cessation or rest, and portions of that trajectory sion is influenced by our experience of the movement of physical can be repeated. The most important similarity for current pur- objects through space. Motion of physical objects provides a poses, and the one focused on in the remainder of this article, is the metaphor for understanding, representing, and experiencing music, last one, between musical forces and physical forces. Physical and musical succession is perceived to exhibit or be susceptible to motion is influenced by physical forces, and by analogy, musical forces analogous to those that operate on the movement of physical motion is influenced by musical forces. Indeed, for Larson,
Recommended publications
  • A Test of an Auditory Motion Hypothesis for Continuous and Discrete Sounds Moving in Pitch Space
    A TEST OF AN AUDITORY MOTION HYPOTHESIS FOR CONTINUOUS AND DISCRETE SOUNDS MOVING IN PITCH SPACE Molly J. Henry A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2011 Committee: J. Devin McAuley, Advisor Rodney M. Gabel Graduate Faculty Representative Jennifer Z. Gillespie Dale S. Klopfer ii ABSTRACT J. Devin McAuley, Advisor Ten experiments tested an auditory motion hypothesis, which proposes that regular pitch- time trajectories facilitate perception of and attention to auditory stimuli; on this view, listeners are assumed to use velocity information (pitch change per unit time) to generate expectations about the future time course of continuous and discrete sounds moving in pitch space. Toward this end, two sets of experiments were conducted. In six experiments reported in Part I of this dissertation, listeners judged the duration or pitch change of a continuous or discrete comparison stimulus relative to a standard, where the comparison’s velocity varied on each trial relative to the fixed standard velocity. Results indicate that expectations generated based on velocity information led to distortions in perceived duration and pitch change of continuous stimuli that were consistent with the auditory motion hypothesis; specifically, when comparison velocity was relatively fast, duration was overestimated and pitch change was underestimated. Moreover, when comparison velocity was relatively slow, duration was underestimated and pitch change was overestimated. On the other hand, no perceptual distortions were observed for discrete stimuli, consistent with the idea that velocity information is less clearly conveyed, or easier to ignore, for discrete auditory stimuli.
    [Show full text]
  • An Investigation of Tactile Localization and Skin-Based Maps
    Where was I touched? – An investigation of tactile localization and skin-based maps Jack Brooks Doctor of Philosophy Neuroscience Research Australia School of Medical Sciences, Faculty of Medicine University of New South Wales November 2017 ii Preface The coding of the position of touch on the skin and of the size and shape of the body are both fundamental for interacting with our surrounds. The aim of this thesis was to learn more about the mechanisms of tactile localization and to characterize the principles by which skin-based representations of the body update. It is commonly accepted that skin-based representations of the body are generated from the statistics of touch and other inputs. My studies required skin stimulation customised to account for inter-individual differences in touch sensitivity and forearm shape. Within the constraints of these methodological challenges, the central questions of this thesis were addressed by performing multiple behavioural experiments. In my first study, I tested how touch intensity and history influence touch localization. The study showed that reducing touch intensity increases the variability of pointing responses to touch and results in spatial biases to the middle of the recent history of touch. Thus, I showed that when uncertain about perceived touch location, a strategy is used that minimises localization errors over time. This error minimisation mechanism stabilises our perception of events on the skin and their sensory features. Next, I investigated uncertainty in a motion stimulus by fragmenting it. Studies in vision suggest that missing sensory inputs are filled-in from the surrounds, while previous tactile studies suggest fragmented motion could influence skin-based representations.
    [Show full text]
  • Space and Time in Perception and Action Edited by Romi Nijhawan and Beena Khurana Index More Information
    Cambridge University Press 978-0-521-86318-6 - Space and Time in Perception and Action Edited by Romi Nijhawan and Beena Khurana Index More information Index absolute time, 1, 232 effect on perceived speed, 233 acceleration, 99, 118, 124, 133, 177, 287, 342, 366, 449, effect on time perception, 269, 272 545 endogenous, 269–271, 532, 543 acuity, visual, 102, 105, 449 exogenous, 269–271 adaptation, 43, 44, 48, 63, 64, 68, 78, 97, 124, 128, 202, 209, in flash-lag effect, 396–403, 414, 423, 479, 487, 493–495 212, 236, 243, 245, 248, 284, 288, 295, 345, 351, 352, in Frohlich¨ effect, 321, 328–331, 334 359, 489, 531, 532 and motion information, 521, 524–526, 528–532 Adelson, E. H., 126, 137, 281, 392, 418, 525, 530 and perceptual asynchrony, 269–271, 516, 517 afference, 13, 57, 95, 97, 211, 423–428, 431, 435, 436, 438, in representational momentum, 343, 348, 358, 367 543–545, 548, 551 and salience, 284, 294 after-image, 13, 33, 95–97, 100 shifts in, 203, 243, 256 aim, target, 109, 110, 113, 118 in temporal order, 170, 174, 272, 286 Alais, D., 233, 240, 272, 273, 402, 479, 481, 482, 493, 546 audiovisual interaction, 236, 243, 245, 247, 278, 279, 284, algorithm, 278, 282, 284, 295, 350, 357, 358 286, 293–295, 303, 546 aliasing. See temporal aliasing audition, 3, 73, 74, 80, 152, 159, 160, 166, 169, 182, 217, 228, allocentric location. See also exocentric location 247, 254, 271, 278, 283, 288, 290, 303, 342, 397, 479, amodal 481, 550 representation, 284 and simultaneity, 232–235, 238, 240, 241, 243, 245, 279, tokens, 278, 279 284, 286, 293–295 Andersen, R.
    [Show full text]
  • TRF1: It Was the Best of Time(S)…
    Timing & Time Perception 6 (2018) 231–414 brill.com/time TRF1: It Was the Best of Time(s)… Anne Giersch1 and Jennifer T. Coull2 1INSERM, France 2Laboratoire des Neurosciences Cognitives (UMR 7291), Aix-Marseille University & CNRS, Marseille, France The Timing Research Forum (TRF; http://timingforum.org/) is an interna- tional (Fig. 1), gender-inclusive, and open academic society for timing re- search, founded in 2016 by Argiro Vatakis and Sundeep Teki (Teki, 2016). Following a call to its Committee members in May 2016, we agreed to host the 1st Conference of the Timing Research Forum in Strasbourg, France (TRF1; http://trf-strasbourg.sciencesconf.org). First on the agenda was to decide on eminent keynote speakers to lend credibility to this very first TRF conference. We wanted one talk from the field of psychology and the other from the neurosciences, and so were delighted that both Lera Boro- ditsky and Warren Meck accepted our invitations immediately. Lera kicked off the conference for us, with an extremely entertaining talk about the spatial representation of time in different societies and cultures and how the linguistic metaphors we use to describe time influence our conception of time. Warren highlighted the key role of the striatal dopaminergic sys- tem for timing, illustrating his talk with data from an impressive variety of methodological techniques from the clinical level (performance in patients with Parkinson’s Disease) right down to the cellular (optogenetic studies in mice). Coincidentally, the role of dopamine in timing was also the subject of our third keynote talk. One of the mission statements of TRF is to pro- mote the work of young researchers, and Argiro and Sundeep had the great idea to invite an early-career researcher to give a keynote talk.
    [Show full text]
  • The Kappa Effect in Pitch/Time Context Dissertation
    THE KAPPA EFFECT IN PITCH/TIME CONTEXT DISSERTATION Presented in Partial Fulfillment of the Requirements for the degree Doctor of Philosophy in the Graduate School of The Ohio State University By Noah MacKenzie, M.A. ***** The Ohio State University 2007 Dissertation Committee: Professor Mari Jones, Adviser Professor Mark Pitt Approved by Professor James Todd Adviser Psychology Graduate Program ABSTRACT The kappa effect, an effect of spatial extent on the perception of time, is, relatively speaking, poorly understood, especially in the auditory domain. Five experiments demonstrate the kappa effect in the auditory domain by instructing listeners to judge the timing of a tone (Tone X) in relation to a tone immediately preceding it (Tone A) and immediately following it (Tone B). These three tones, together, are referred to as a kappa cell. Experiments 3, 4, and 5 illustrate how the serial context of kappa judgments can influence the strength of the effect. Experiment 1 served as a control experiment to demonstrate the effectiveness of the independent variables. Experiment 2 replicated Shigeno (1986), perhaps the clearest presentation to date of the auditory kappa effect, yet used pitch (frequency on a logarithmic scale) rather than frequency (on a linear scale) as an independent variable. Experiment 3 added a three-tone serial context to the kappa cell. Experiment 4 added a serial context to the kappa cell that strongly conflicted with its pitch trajectory. Experiment 5 examined kappa cells with larger pitch motion (or change in pitch per unit time). Results are discussed in terms of auditory motion and the assumption of constant velocity.
    [Show full text]
  • UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society
    UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society Title Does spatiotemporal integration occur with single empty time intervals instead of two neighboring intervals in the visual modality? Permalink https://escholarship.org/uc/item/3705r7j0 Journal Proceedings of the Annual Meeting of the Cognitive Science Society, 36(36) ISSN 1069-7977 Authors Kuroda, Tsuyoshi Grondin, Simon Tobimatsu, Shozo Publication Date 2014 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Does spatiotemporal integration occur with single empty time intervals instead of two neighboring intervals in the visual modality? Tsuyoshi Kuroda ([email protected]) Department of Clinical Neurophysiology, Neurological Institute, Graduate School of Medical Sciences Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan Simon Grondin ([email protected]) École de psychologie, Université Laval, 2325 rue des Bibliothèques Québec, G1V 0A6 Canada Shozo Tobimatsu ([email protected]) Department of Clinical Neurophysiology, Neurological Institute, Graduate School of Medical Sciences Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan Abstract interpreted as indicating a perceptual tendency to overestimate duration when spatial distance is increased. The kappa effect is an illusion involving spatiotemporal integration in the cognitive process and is demonstrated with The kappa effect is explained by the imputed-velocity three successive signals delimiting two neighboring empty model, positing the constancy of motional speed or velocity time intervals. The present experiment was conducted with (Alards-Tomalin, Leboe-McGowan, & Mondor, 2013; single time intervals delimited by two signals, instead of three, Henry & McAuley, 2009; Jones, & Huang, 1982; ten to examine whether perceived duration would be modulated Hoopen, Miyauchi, & Nakajima, 2008).
    [Show full text]
  • Processing Time Between Visual Events
    Processing time between visual events Processamento temporal entre eventos visuais Simon Grondin ABSTRACT Visual perception is closely related to and associated with the processing of space. Nevertheless, all events occur at some moment in time, and time needs to be processed in the visual mode. After briefly reviewing the many research avenues in which time and vision are linked, this article focuses on the discrimination of visually marked time intervals, emphasizing work from my own laboratory. It presents a theoretical position, that of a single- clock hypothesis, as well as issues and data that show how visual temporal processing can be approached. These issues are partly related to the fact that time is marked by signals from a single source or by signals provided by distanced sources. In the latter case, different questions arise depending on the signals’ exact location. It is known that more distance between flashes can result in longer perceived duration (kappa effect). However, the data reported here, involving signals placed on the same vertical plane, show the opposite effect: briefer perceived duration with more distance between flashes. When flashes are located on the same horizontal plane in different hemi-fields, there is also a lateral effect that may influence time judgments. Keywords: Time perception; Perceived duration; Time markers; Kappa effect From the electrophysiology of retinal or cortical cells to the Gestalt law of organization of visual stimuli, there are a variety of levels for understanding vision and visual perception. In many cases, the visual phenomena to be understood consist of color, form, depth or movement. As can readily be grasped when considering depth or movement, space is often crucial information for the visual system.
    [Show full text]
  • What Drives the Kappa Effect
    RESEARCH ARTICLE Speed Constancy or Only Slowness: What Drives the Kappa Effect Youguo Chen1*, Bangwu Zhang1, Konrad Paul Kording2 1 Key Laboratory of Cognition and Personality (Ministry of Education), Center of Studies for Psychology and Social Development, Faculty of psychology, Southwest University, Chongqing, China, 2 Department of Physical Medicine and Rehabilitation, Rehabilitation Institute of Chicago, Northwestern University, Chicago, Illinois, United States of America * [email protected] a11111 Abstract In the Kappa effect, two visual stimuli are given, and their spatial distance affects their per- ceived temporal interval. The classical model assumes constant speed while a competing Bayesian model assumes a slow speed prior. The two models are based on different OPEN ACCESS assumptions about the statistical structure of the environment. Here we introduce a new Citation: Chen Y, Zhang B, Kording KP (2016) visual experiment to distinguish between these models. When fit to the data, both the two Speed Constancy or Only Slowness: What Drives the models replicated human response, but the slowness model makes better behavioral pre- Kappa Effect. PLoS ONE 11(4): e0154013. dictions than the speed constancy model, and the estimated constant speed is close to the doi:10.1371/journal.pone.0154013 absolute threshold of speed. Our findings suggest that the Kappa effect appears to be due Editor: Wenbo Luo, Liaoning Normal University, to slow speeds, and also modulated by spatial variance. CHINA Received: July 18, 2015 Accepted: April 7, 2016 Published: April 21, 2016 Introduction Copyright: © 2016 Chen et al. This is an open access article distributed under the terms of the The Kappa effect is a spatiotemporal illusion where the perception of elapsed time between the Creative Commons Attribution License, which permits sensory stimuli is systematically distorted by the irrelevant distance between the stimuli [1, 2].
    [Show full text]
  • A Bayesian Perceptual Model Replicates the Cutaneous Rabbit and Other Tactile Spatiotemporal Illusions Daniel Goldreich*
    A Bayesian Perceptual Model Replicates the Cutaneous Rabbit and Other Tactile Spatiotemporal Illusions Daniel Goldreich* Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada Background. When brief stimuli contact the skin in rapid succession at two or more locations, perception strikingly shrinks the intervening distance, and expands the elapsed time, between consecutive events. The origins of these perceptual space-time distortions are unknown. Methodology/Principal Findings. Here I show that these illusory effects, which I term perceptual length contraction and time dilation, are emergent properties of a Bayesian observer model that incorporates prior expectation for speed. Rapidly moving stimuli violate expectation, provoking perceptual length contraction and time dilation. The Bayesian observer replicates the cutaneous rabbit illusion, the tau effect, the kappa effect, and other spatiotemporal illusions. Additionally, it shows realistic tactile temporal order judgment and spatial attention effects. Conclusions/ Significance. The remarkable explanatory power of this simple model supports the hypothesis, first proposed by Helmholtz, that the brain biases perception in favor of expectation. Specifically, the results suggest that the brain automatically incorporates prior expectation for speed in order to overcome spatial and temporal imprecision inherent in the sensorineural signal. Citation: Goldreich D (2007) A Bayesian Perceptual Model Replicates the Cutaneous Rabbit and Other Tactile Spatiotemporal Illusions. PLoS ONE 2(3): e333. doi:10.1371/journal.pone.0000333 INTRODUCTION mechanics. Apparently related to the rabbit is the classic tau effect, How does the brain interpret information from the senses? This in which the more rapidly traversed of two equal distances (defined unresolved question carries fundamental importance for neurosci- by three stimuli) is perceived as shorter [15,16] (Fig.
    [Show full text]
  • Evaluation of an Imputed Pitch Velocity Model of the Auditory Tau Effect
    Attention, Perception, & Psychophysics 2009, 71 (6), 1399-1413 doi:10.3758/APP.71.6.1399 Evaluation of an imputed pitch velocity model of the auditory tau effect MOLLY J. HENRY Bowling Green State University, Bowling Green, Ohio J. DEVIN MCAULEY Michigan State University, East Lansing, Michigan A N D MA RT A ZA LE ha Bowling Green State University, Bowling Green, Ohio This article extends an imputed pitch velocity model of the auditory kappa effect proposed by Henry and McAuley (2009a) to the auditory tau effect. Two experiments were conducted using an AXB design in which listeners judged the relative pitch of a middle target tone (X) in ascending and descending three-tone sequences. In Experiment 1, sequences were isochronous, establishing constant fast, medium, and slow velocity conditions. No systematic distortions in perceived target pitch were observed, and thresholds were similar across velocity conditions. Experiment 2 introduced to-be-ignored variations in target timing. Variations in target timing that deviated from constant velocity conditions introduced systematic distortions in perceived target pitch, indicative of a robust auditory tau effect. Consistent with an auditory motion hypothesis, the magnitude of the tau effect was larger at faster velocities. In addition, the tau effect was generally stronger for descending sequences than for ascending sequences. Combined with previous work on the auditory kappa effect, the imputed velocity model and associated auditory motion hypothesis provide a unified quantitative account of both auditory tau and kappa effects. In broader terms, these findings add support to the view that pitch and time relations in auditory patterns are fundamentally interdependent.
    [Show full text]
  • The Perception of Timescales in Electroacoustic Music
    Pasoulas, Aki (2011). The perception of timescales in electroacoustic music. (Unpublished Doctoral thesis, City University London) City Research Online Original citation: Pasoulas, Aki (2011). The perception of timescales in electroacoustic music. (Unpublished Doctoral thesis, City University London) Permanent City Research Online URL: http://openaccess.city.ac.uk/1155/ Copyright & reuse City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this paper are retained by the individual author(s) and/ or other copyright holders. Users may download and/ or print one copy of any article(s) in City Research Online to facilitate their private study or for non- commercial research. Users may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. All material in City Research Online is checked for eligibility for copyright before being made available in the live archive. URLs from City Research Online may be freely distributed and linked to from other web pages. Versions of research The version in City Research Online may differ from the final published version. Users are advised to check the Permanent City Research Online URL above for the status of the paper. Enquiries If you have any enquiries about any aspect of City Research Online, or if you wish to make contact with the author(s) of this paper, please email the team at [email protected]. THE PERCEPTION
    [Show full text]
  • University of Bradford Ethesis
    University of Bradford eThesis This thesis is hosted in Bradford Scholars – The University of Bradford Open Access repository. Visit the repository for full metadata or to contact the repository team © University of Bradford. This work is licenced for reuse under a Creative Commons Licence. The role of sensory history and stimulus context in human time perception Adaptive and integrative distortions of perceived duration Corinne FULCHER Submitted for the Degree of Doctor of Philosophy Faculty of Life Sciences University of Bradford 2017 Abstract Corinne Fulcher The Role of Sensory History and Stimulus Context in Human Time Perception Adaptive and Integrative Distortions of Perceived Duration Keywords: Time perception, Duration, Human, Adaptation, Integration, Subsecond, Vision, Audition, Psychophysics, Modelling This thesis documents a series of experiments designed to investigate the mechanisms subserving sub-second duration processing in humans. Firstly, duration aftereffects were generated by adapting to consistent duration information. If duration aftereffects represent encoding by neurons selective for both stimulus duration and non-temporal stimulus features, adapt-test changes in these features should prevent duration aftereffect generation. Stimulus characteristics were chosen which selectively target differing stages of the visual processing hierarchy. The duration aftereffect showed robust interocular transfer and could be generated using a stimulus whose duration was defined by stimuli invisible to monocular mechanisms, ruling out a pre- cortical locus. The aftereffects transferred across luminance-defined visual orientation and facial identity. Conversely, the duration encoding mechanism was selective for changes in the contrast-defined envelope size of a Gabor and showed broad spatial selectivity which scaled proportionally with adapting stimulus size. These findings are consistent with a second stage visual spatial mechanism that pools input across proportionally smaller, i spatially abutting filters.
    [Show full text]