Estimation of above- and belowground carbon stocks in the floodplain forest ecosystem of

Timo Hartmann, Hans Dieter Kasperidus, Mathias Scholz Helmholtz Centre For Environmental Research – UFZ, Department Conservation Biology Content

Aims

Study Area

Methods and Measuring

Results

Outlook

SEITE 2 Aims

C-distribution of the different environmental compartments Differences among the management units and floodplain sites Dependencies of environmental parameters Compilation of total C-stock relating to the entire urban forest of Leipzig Comparison of results

SEITE 3 Study Area

Floodplain forest of Leipzig (protection areas) - Interior delta of the rivers White Elster, Pleiße, and - 5.900 ha floodplains and landscape protection area - about 1100 ha wooded urban forest - 2.800 ha FFH area - 983 ha nature protection area:

• Luppeaue • Burgaue • Elster-Pleiße-Auwald • Lehmlache Lauer

Source: Homepage City of Leipzig

SEITE 4 Methods and Measuring

Urban forest of Leipzig (study area) Stratified random design (according to Cierjacks et al. 2010):

Dominant tree species Ash (Fraxinus excelsior), Maple (Acer pseudoplatanus), Oak (Quercus robur)

Stand age young, medium, old and very old trees (DRACHENFELS et al. 2004)

Floodplain site (wet, moist)

data based on forest management plan 2008

SEITE 5 Methods and Measuring

Field work

Vegetation

• living biomass (all trees, ≥ 15 cm, shrubs), height and circumference • deadwood(≥ 30 cm), length and circumference • vegetation survey of tree, shrub and herb layer, species and cover ratio (Braun-Blanquet)

T. Hartmann Soil

• pedological drill sampling of 1 m with soil identification (KA 5) • 6 referenced soil pits of 1 or 2 m with soil identification and sampling to measure bulk density

SEITE 6 Methods and Measuring

Lab analyses

CN-analysis

Total organic, inorganic carbon and nitrogene content (TOC, TIC, TN) of all sample plots and soil horizons

Pycnometer bulk density and pore volume for reference plots

SEITE 7 Methods and Measuring

Calculation of Carbon stocks

Aboveground biomass by empirical formula (ZIANIS et al. 2005, LEHTONEN et al. 2004)

Soil carbon by multiplication of carbon contents, thickness of soil horizons and bulk density (CIERJACKS et al. 2010)

Descriptive statistics plots, boxplots, arithmetic means, medians and standard deviations

Proof of statistical relationship Pearson‘s correlation

SEITE 8 Results

C-contents according to floodplain site Carbon stocks in tons per hectare (mean values)

800

700

600

500 moist (n=25) wet (n=12) 400

300

200 moist wet 100 living biomass 258 301 deadwood 6 57 0 soil 257 327 total 513 680

living biomass deadwood soil total

SEITE 9 Results

Variation and distribution of carbon data according to floodplain site

Carbon stocks in tons per hectare

living biomass deadwood soil total

moist wet living biomass 258 301 deadwood 6 57 soil 257 327 total 513 680 moist wet (n=25) (n=12) floodplain site

SEITE 10 Results

Variation and distribution of carbon data according to stand age

Carbon stocks in tons per hectare

living biomass deadwood soil total

young medium old living biomass 81 211 428 deadwood 2,5 11,5 46 soil 231 291 303 total 310 501 772

young (n=9) medium (n=12) old (n=16)

stand age

SEITE 11 Results

Variation and distribution of carbon in aboveground biomass depending on dominant tree species

C-stocks of young and medium moist stands in tons per hectare

Living biomass shrub layer woody debris total

ash oak maple total 332 331 103 complete 297 315 112 canopy 283 295 97 living biomass understory 7 9 11 shrubs 7 11 5 deadwood 34 16 7

maple ash oak (n=6) (n=6) (n=6) dominant tree species

SEITE 12 Results

Variation and distribution of SOC according to floodplain site

soil C-stocks in tons per hectare Ah OH MH GH total

wet moist (n=12) (n=25) floodplain site

SEITE 13 Results

Variation and distribution of soil organic carbon according to soil type

soil C-stocks in tons per hectare n mean median

total 239 230 Ah 58 49 M+fAh 75 69 Vega 9 OH 119 125 d MH 66 57 GH 41 43 d Total 262 269 Ah 61 56 Gley- M+fAh 91 94 d 19 Vega OH 137 158 d MH 89 73 GH 36 35 335 321 d soil horizon Total Ah 84 74 Vega- M+fAh 131 126 d 8 Gley OH 144 141 d MH 83 88 GH 118 141 d d

SEITE 14 Results

Variation and distribution of SOC according to groundwater influence

C-stocks in groundwater horizons in t ha-1 Pearson’s correlation coefficient d total Ah M+fAh OH MH GH d -0.42 -0.48 -0.14 -0.05 -0.07 -0.73 d d d d d reach of groundwater influence in cm d d

SEITE 15 Results

Total C-stocks of the urban floodplain forest of Leipzig (accounted for forest stand types) Prediction for Querco-Fraxino- C total aboveground biomass Ulmetum minoris of 299 old stands (333.737) the lowlands, 488 52,8 % (222.673) old stands swamps and medium stands 65,9 % 459 floodplains: 204 (12.583) joung (61.662) medium 3,1 % C-stocks of 142 t afforestation 17,6 % stands 85 279 ha-1 in plant (24.407) (12.412) 7,3 % 3,5 % biomass and 322 t ha-1 total (Hoffmann

226 259 & Anders 1996) (64.777) (78.232) 283 387 21,7 % 26,2 % (129.160) (17.214) 43,3 % 5,8 % 322 Soil organic C (depth of 1 m) (8.836) 267 3,0 % (298.218) 47,2 % total C-storage: 566 t ha-1 (632.000 tons)

SEITE 16 Results

Summary

- markedly higher carbon stocks in soil and aboveground biomass on wet sites compared to moist sites of the floodplain forest explications:

SEITE 17 Results

Summary

- markedly higher carbon stocks in soil and aboveground biomass on wet sites compared to moist sites of the floodplain forest explications:

• higher groundwater and flooding dynamics (waterlogging of soils), stronger gleization, reduced mineralisation

SEITE 18 Results

Summary

- markedly higher carbon stocks in soil and aboveground biomass on wet sites compared to moist sites of the floodplain forest explications:

• higher groundwater and flooding dynamics (waterlogging of soils), stronger gleization, reduced mineralisation

- carbon stocks vary conditionally with the forestal vegetation types explications:

SEITE 19 Results

Summary

- markedly higher carbon stocks in soil and aboveground biomass on wet sites compared to moist sites of the floodplain forest explications:

• higher groundwater and flooding dynamics (waterlogging of soils), stronger gleization, reduced mineralisation

- carbon stocks vary conditionally with the forestal vegetation types explications:

• strong dependence on stand age • soil organic carbon depends predominantly on soil properties

SEITE 20 Results

Summary

- markedly higher carbon stocks in soil and aboveground biomass on wet sites compared to moist sites of the floodplain forest explications:

• higher groundwater and flooding dynamics (waterlogging of soils), stronger gleization, reduced mineralisation

- carbon stocks vary conditionally with the forestal vegetation types explications:

• strong dependence on stand age • soil organic carbon depends more on soil properties

- soil organic carbon correlates clearly with groundwater influence and soil type respectively level of gleization

SEITE 21 Results

Comparison with near to nature floodplain areas of the Danube and the Middle River C-stocks on hardwood forest stands in t ha-1 (mean & standard deviation) Elbe Danube White Elster living biomass 241 223 273 151 251 171 deadwood 6,4 9,3 24 9,8 16,7 60 soil 256 183 277 117 56 77 Ah-horizon 90 64 67 34 87 37 total 504 415 572 187 261 223 conclusions:

• a lot of old forest stands in Leipzig condition an enormous carbon storage • higher tillering in Leipzig • thicker humic layers in the floodplain forest of river Elbe • higher soil density and clay contents on White Elster • numerous flood channels and wet depressions in Leipzig contribute an important part to the function as a C-sink

SEITE 22 Outlook

Extention of statistical analyses (linear modelling, multivariate statistics) Completion of C balance (measuring roots and litter biomass and outputs) Examinations of carbon compositions and origins („black carbon“) Increase of C-sequestration by redynamization of hydrological regime Higher C storages by reforestation

SEITE 23 References

- Cierjacks, A., Kleinschmit, B., Babinsky, M., Kleinschroth, F., Markert, A., Menzel, M., Ziechmann, U., Schiller, T., Graf, M., Lang, F. (2010): Carbon stocks of soil and vegetation on Danubian floodplains. Journal of Plant Nutrition and Soil Science, 173: 644 - 653. - Drachenfels, O. v. (2004a): Kartierschlüssel für Biotoptypen in Niedersachsen unter besonderer Berücksichtigung der nach § 28a und § 28b NNatG geschützten Biotope sowie der Lebensraumtypen von Anhang I der FFH-Richtlinie, Stand März 2004. Naturschutz und Landschaftspflege in Niedersachsen. 4: 1 - 240. - Döring, J. (2011): Kohlenstoffspeicherung und Biodiversität in Auwäldern des Biosphärenreservats Mittlere Elbe. Diplomarbeit. Institut für Ökologie. Technische Universität Berlin. (unveröffentlicht). - Haase, D. (1999): Beiträge zur Geosystemanalyse in Auenlandschaften. Säurestatus und Pufferfunktion der Waldböden in den Leipziger Flussauen. Dissertation. UFZ-Bericht 19/99. Leipzig. - Lehtonen, A., Mäkipää, R., Heikkienen, J., Sievänen, R., Liski, J. (2004): Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management, 188: 211 - 224. - Zianis, D., Muukkonen, P., Mäkipää, R., Mencuccini, M. (2005): Biomass and stem volume equations for tree species in . Silva Fennica Monographs, 4: 1–63. - Environmental Education and Science – Verein zur Förderung der Umweltbildung und Umweltforschung e.V. (ENEDAS). Homepage Leipziger Auwald. Wissenswertes. - Stadt Leipzig. Homepage. Home: Bürger: Sport + Freizeit: Leipzigs Stadtgrün: Stadtwald/Auwald: Geschichte. http://www.leipzig.de/de/buerger/freizeit/leipzig/stadtwald/geschichte/02961.shtml. 29.01.2012

pictures: - http://www.leco.com/products/organic/truspec/images/TruSpec-CHN-Micro.jpg - http://www.eijkelkamp.com/images/articles/1498/c94b0935d3968b86d5afcf7b81cbd2d8.jpg

SEITE 24 Thank you!

SEITE 25