Radiolaria: Keindahan Mahluk Laut Renik Dan Maknanya Dalam Kajian Lingkungan Purba

Total Page:16

File Type:pdf, Size:1020Kb

Radiolaria: Keindahan Mahluk Laut Renik Dan Maknanya Dalam Kajian Lingkungan Purba RADIOLARIA: KEINDAHAN MAHLUK LAUT RENIK DAN MAKNANYA DALAM KAJIAN LINGKUNGAN PURBA adiolaria merupakan zooplankton yang tergolong dalam Kelas Sarcodina, Filum Protozoa. Hewan ini pada umumnya mempunyai bentuk cangkang Ryang bulat, dengan berbagai variasi struktur simetri radial, atau memencar. Itu sebabnya kelompok ini dinamai Radiolaria. Cangkangnya membentuk pola geometri yang simetris yang menampilkan bentuk yang sangat indah. Apalagi bahan pembentuk cangkangnya itu terbuat dari opal berbasis bahan silika yang di kalangan umum banyak dikenal sebagai bahan pembentuk gelas atau batu mulia. Jalinan kerangka gelas opal ini berbentuk rangkaian yang rumit (delicate), yang menyebabkan tampilannya bagaikan karya artistik yang sangat mempesona. Namun tampilannya yang indah menawan itu tak mudah diamati karena ukurannya yang mikrosopis, tak dapat terlihat dengan mata telanjang. Sel radiolaria umumnya berkisar sekitar 0,1 – 0,2 mm tetapi permukaan selnya dapat mempunyai perlanjutan bagai duri-duri yang memanjang dan memencar yang kompleks. Dengan morfologi seperti itu, total luas permukaan selnya menjadi sangat luas hingga akan sangat membantu daya apungnya (buoyancy) Gambar 1. Berbagai ragam bentuk radiolaria dari ordo untuk hidup sebagai plankton yang Ascidiae. Petikan dari karya Ernst Haeckel (1904) 1 mengambang atau melayang dalam laut. Sebagaimana umumnya hewan protozoa, radiolaria juga mempunyai kaki semu (pseudopodia) yang merupakan bagian protoplasma yang dapat dijulurkan keluar dari cangkangnya untuk bergerak dan mencari makan. Makanan radiolaria sangat beragam, bisa mencakup berbagai grup zooplankton seperti kopepoda, larva krustasea, diatom, dinoflagelata, bakteri dan juga detritus organik. Radiolaria mempunyai sebaran yang meluas di laut, tetapi lebih banyak di perairan tropis, biasanya di perairan lepas pantai dengan salinitas di atas 30 psu. Hewan laut ini terbanyak dijumpai hidup di laut lapisan teratas hingga kedalaman beberapa ratus meter, meskipun ada juga dilaporkan hidup di lapisan yang lebih dalam. Sebaran geografinya, baik di permukaan maupun di bawah permukaan, banyak dipengaruhi oleh berbagai faktor lingkungan oseanografi setempat, seperti suhu, salinitas dan arus. Karena umumnya radiolaria mempunyai kerangka dari bahan silika yang tidak mudah terurai, maka peninggalannya berupa fossil yang Gambar 2. Radiolaria, ordo Stephoidea. Petikan banyak ditemukan pada sedimen di dari karya Ernst Haeckel (1904) dasar laut, dapat merekam dengan sangat baik kondisi lingkungan bumi dari jutaan tahun lampau. Oleh sebab itu jejak fossil radiolaria banyak dimanfaatkan dalam kajian-kajian lingkungan purba (palaeo-environment). Adalah Ernst Haeckel yang pertama kali mengungkapkan ragam seni dalam alam yang sangat indah yang dituangkannya dalam karya agungnya Kunstformen der Natur (Ragam Seni dalam Alam) yang terbit tahun 1904. Ernst Haeckel adalah seorang ilmuwan Jerman yang banyak kontribusinya dalam biologi dan seni. Ia pendukung teori evolusinya Charles Darwin 2 dan mempopulerkannya di Jerman. Disamping itu Haeckel juga seorang seniman pelukis yang mampu menggambarkan berbagai ragam seni yang ternyata bisa banyak ditemui dalam alam di sekitar kita. Deskripsinya tentang radiolaria yang berukuran renik itu disertai lukisannya yang mengagumkan menyadarkan kita bahwa banyak ragam keindahan dalam alam yang luput dari perhatian kita karena ukurannya yang mikroslopis, tak kasat mata. Di kalangan sebagian masyarakat kita, kerajinan seni dari bahan gelas kristal sangat dihargai tinggi dan telah dikenal sejak lama. Perabot dan hiasan berbahan gelas kristal tergolong benda seni yang sangat indah dan mahal yang dihasilkan dari tangan-tangan para seniman. Tetapi, Gambar 3. Radiolaria ordo Spumellaria, petikan dari karya Ernst hewan renik radiolaria yang tak mempunyai otak Haeckel (1904) setelah dengan sentuhan itu, dapat menghasilkan juga ragam seni kristal komputer (computer enhanced) yang rumit dan sangat halus yang tak mungkin ditiru oleh seniman perupa kita karena reniknya. Informasi mengenai radiolaria di Indonesia relatif masih terbatas, lebih banyak dikaji dari aspek sedimentologinya dari pada kehidupannya sebagai plankton. Paverd & Bjørklund (1989) dalam penelitiannya di Laut Banda misalnya, menemukan kerangka radiolaria terbanyak pada sedimen di kedalaman laut 950-4800 m, sedangkan penelitian oleh Adisaputra (1989) di perairan Samudra Hindia sebelah selatan Nusa Tenggara yang dikenal sebagai Palung Jawa (Java Trench) menunjukkan bahwa sedimennya didominasi oleh radiolaria. Gambar 4. Radiolaria Ordo Cyrtoidea, petikan dari karya Ernst Haeckel (1904) 3 Gambar 5. Salah satu singkapan batulumpur sepanjang Sungai Noil Kolbano, Timor, yang banyak mengandung radiolaria. (Foto: Munasri) Karena tidak mudah terurai, radiolaria yang mengendap sebagai sedimen di dasar laut dapat terpendam sebagai fossil hingga jutaan tahun. Dasar laut itu sendiri tidaklah statis tetapi mengikuti dinamika gerakan kulit bumi seiring aktivitas lempeng tektonik setempat yang bisa menyebabkannya terangkat naik hingga menjadi bagian dari daratan. Oleh sebab itu fossil radiolaria dapat ditemukan dalam berbagai formasi daratan yang berusia tua. Di Pulau Timor (Gambar 5) misalnya terdapat singkapan geologi yang banyak mengandung fossil radiolaria yang dapat dimanfaatkan untuk mengkaji lingkungan purba di kawasan itu. Penemuan paling awal tentang adanya radiolaria di Indonesia adalah seperti yang dilaporkan oleh G. J. Hinde. Laporan radiolaria berumur Mesozoikum (selang waktu geologi dari sekitar 252 sampai 66 juta tahun yang lalu) ditemukan di Pulau Buton (1897), di Kalimantan Barat (1900), dan di Sulawesi Tengah (1917). Namun ulasan yang lebih komprehensif dilakukan oleh Tan Sin Hok (1927) atas Gambar 6. Citra SEM (Scanning deskripsi radiolaria dari Pulau Rote. Nama- Electron Microscopy) radiolaria dari batuan dasar berumur Mesozoikum dari nama spesies radiolaria beserta sketsa hasil kawasan Barru, Sulawesi Selatan karya Tan Sin Hok turut menjadi referensi bagi (Munasri, 2013) 4 peneliti radiolaria di dunia. Nama Tan Sin Hok pun menjadi identik dengan radiolaria di Indonesia, namun banyak di antara kita tak mengenalnya. PUSTAKA Adisaputra, M. K. 1989. Plankton foraminifera in recent bottom sediments of the Flores, Lombok and Savu Sea basins, Eastern Indonesia. Neth. J. Sea Res. 24 (4): 465-475. Frazer, J. 2012. Proteus: How radiolarians saved Ernst Haeckel. Scientific American, Jan. 31, 2012. Munasri. 2013. Early Cretaceus radiolarians in manganese carbonate nodule from the Barru Area, South Sulawesi, Indonesia. Ris. Geo. Tam. Vol. 23, No. 2: 79-88. Munasri. 2014. Radiolaria perunut batuan bancuh. GeoMagz. Majalah Geologi Populer 16/04/2014. Nontji, A. 2008. Plankton Laut. LIPI Press: 331 hlm. Paverd, F. J. van & K. R. Bjørklund. 1989. Frequency distribution of polycystine radiolarian in surface sediments of the Banda Sea, Eastern Indonesia. Neth. J. Sea Res. 24 (4): 511- 521. ----- Anugerah Nontji 07/08/2017 5.
Recommended publications
  • Molecular Phylogenetic Position of Hexacontium Pachydermum Jørgensen (Radiolaria)
    Marine Micropaleontology 73 (2009) 129–134 Contents lists available at ScienceDirect Marine Micropaleontology journal homepage: www.elsevier.com/locate/marmicro Molecular phylogenetic position of Hexacontium pachydermum Jørgensen (Radiolaria) Tomoko Yuasa a,⁎, Jane K. Dolven b, Kjell R. Bjørklund b, Shigeki Mayama c, Osamu Takahashi a a Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan b Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, 0318 Oslo, Norway c Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan article info abstract Article history: The taxonomic affiliation of Hexacontium pachydermum Jørgensen, specifically whether it belongs to the Received 9 April 2009 order Spumellarida or the order Entactinarida, is a subject of ongoing debate. In this study, we sequenced the Received in revised form 3 August 2009 18S rRNA gene of H. pachydermum and of three spherical spumellarians of Cladococcus viminalis Haeckel, Accepted 7 August 2009 Arachnosphaera myriacantha Haeckel, and Astrosphaera hexagonalis Haeckel. Our molecular phylogenetic analysis revealed that the spumellarian species of C. viminalis, A. myriacantha, and A. hexagonalis form a Keywords: monophyletic group. Moreover, this clade occupies a sister position to the clade comprising the spongodiscid Radiolaria fi Entactinarida spumellarians, coccodiscid spumellarians, and H. pachydermum. This nding is contrary to the results of Spumellarida morphological studies based on internal spicular morphology, placing H. pachydermum in the order Nassellarida Entactinarida, which had been considered to have a common ancestor shared with the nassellarians. 18S rRNA gene © 2009 Elsevier B.V. All rights reserved. Molecular phylogeny. 1. Introduction the order Entactinarida has an inner spicular system homologenous with that of the order Nassellarida.
    [Show full text]
  • First Application of PDMPO to Examine Silicification in Polycystine Radiolaria
    Plankton Benthos Res 4(3): 89–94, 2009 Plankton & Benthos Research © The Plankton Society of Japan First application of PDMPO to examine silicification in polycystine Radiolaria KAORU OGANE1,*, AKIHIRO TUJI2, NORITOSHI SUZUKI1, TOSHIYUKI KURIHARA3 & ATSUSHI MATSUOKA4 1 Institute of Geology and Paleontology, Graduate School of Science, Tohoku University, Sendai, 980–8578, Japan 2 Department of Botany, National Museum of Nature and Science, Tsukuba, 305–0005, Japan 3 Graduate School of Science and Technology, Niigata University, Niigata 950–2181, Japan 4 Department of Geology, Faculty of Science, Niigata University, Niigata 950–2181, Japan Received 4 February 2009; Accepted 10 April 2009 Abstract: 2-(4-pyridyl)-5-[(4-(2-dimethylaminoethylaminocarbamoyl)methoxy)-phenyl] oxazole (PDMPO) is a fluo- rescent compound that accumulates in acidic cell compartments. PDMPO is accumulated with silica under acidic con- ditions, and the newly developed silica skeletons show green fluorescent light. This study is the first to use PDMPO in polycystine radiolarians, which are unicellular planktonic protists. We tested Acanthodesmia sp., Rhizosphaera trigo- nacantha, and Spirocyrtis scalaris for emission of green fluorescence. Entire skeletons of Acanthodesmia sp. and Sr. scalaris emitted green fluorescent light, whereas only the outermost shell and radial spines of Rz. trigonacantha showed fluorescence. Two additional species, Spongaster tetras tetras and Rhopalastrum elegans did not show fluorescence. Green fluorescence of the entire skeleton is more like the “skeletal thickening growth” defined by silica deposition throughout the surface of the existing skeleton. The brightness of the fluorescence varied with each cell. This difference in fluorescence may reflect the rate of growth in these cells. Green fluorescence in PDMPO-treated polycystines sug- gests the presence of similar metabolic systems with controlled pH.
    [Show full text]
  • Rhizaria, Cercozoa)
    Protist, Vol. 166, 363–373, July 2015 http://www.elsevier.de/protis Published online date 28 May 2015 ORIGINAL PAPER Molecular Phylogeny of the Widely Distributed Marine Protists, Phaeodaria (Rhizaria, Cercozoa) a,1 a a b Yasuhide Nakamura , Ichiro Imai , Atsushi Yamaguchi , Akihiro Tuji , c d Fabrice Not , and Noritoshi Suzuki a Plankton Laboratory, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041–8611, Japan b Department of Botany, National Museum of Nature and Science, Tsukuba 305–0005, Japan c CNRS, UMR 7144 & Université Pierre et Marie Curie, Station Biologique de Roscoff, Equipe EPPO - Evolution du Plancton et PaléoOcéans, Place Georges Teissier, 29682 Roscoff, France d Institute of Geology and Paleontology, Graduate School of Science, Tohoku University, Sendai 980–8578, Japan Submitted January 1, 2015; Accepted May 19, 2015 Monitoring Editor: David Moreira Phaeodarians are a group of widely distributed marine cercozoans. These plankton organisms can exhibit a large biomass in the environment and are supposed to play an important role in marine ecosystems and in material cycles in the ocean. Accurate knowledge of phaeodarian classification is thus necessary to better understand marine biology, however, phylogenetic information on Phaeodaria is limited. The present study analyzed 18S rDNA sequences encompassing all existing phaeodarian orders, to clarify their phylogenetic relationships and improve their taxonomic classification. The mono- phyly of Phaeodaria was confirmed and strongly supported by phylogenetic analysis with a larger data set than in previous studies. The phaeodarian clade contained 11 subclades which generally did not correspond to the families and orders of the current classification system. Two families (Challengeri- idae and Aulosphaeridae) and two orders (Phaeogromida and Phaeocalpida) are possibly polyphyletic or paraphyletic, and consequently the classification needs to be revised at both the family and order levels by integrative taxonomy approaches.
    [Show full text]
  • An Evaluated List of Cenozic-Recent Radiolarian Species Names (Polycystinea), Based on Those Used in the DSDP, ODP and IODP Deep-Sea Drilling Programs
    Zootaxa 3999 (3): 301–333 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3999.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:69B048D3-7189-4DC0-80C0-983565F41C83 An evaluated list of Cenozic-Recent radiolarian species names (Polycystinea), based on those used in the DSDP, ODP and IODP deep-sea drilling programs DAVID LAZARUS1, NORITOSHI SUZUKI2, JEAN-PIERRE CAULET3, CATHERINE NIGRINI4†, IRINA GOLL5, ROBERT GOLL5, JANE K. DOLVEN6, PATRICK DIVER7 & ANNIKA SANFILIPPO8 1Museum für Naturkunde, Invalidenstrasse 43, 10115 Berlin, Germany. E-mail: [email protected] 2Institute of Geology and Paleontology, Tohoku University, Sendai 980-8578 Japan. E-mail: [email protected] 3242 rue de la Fure, Charavines, 38850 France. E-mail: [email protected] 4deceased 5Natural Science Dept, Blinn College, 2423 Blinn Blvd, Bryan, Texas 77805, USA. E-mail: [email protected] 6Minnehallveien 27b, 3290 Stavern, Norway. E-mail: [email protected] 7Divdat Consulting, 1392 Madison 6200, Wesley, Arkansas 72773, USA. E-mail: [email protected] 8Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA. E-mail: [email protected] Abstract A first reasonably comprehensive evaluated list of radiolarian names in current use is presented, covering Cenozoic fossil to Recent species of the primary fossilising subgroup Polycystinea. It is based on those species names that have appeared in the literature of the Deep Sea Drilling Project and its successor programs, the Ocean Drilling Program and Integrated Ocean Drilling Program, plus additional information from the published literature, and several unpublished taxonomic da- tabase projects.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Vita: OR Anderson
    CURRICULUM VITA O. Roger Anderson [Updated May 2020] BIRTH DATE: August 4, 1937 OCCUPATION: Microbial Physiological Ecologist, Biologist, and Educator PROFESSIONAL RANK: Professor of Natural Sciences, Columbia University T. C., 1964-present Teachers College ; Department Chairman, 1974-1980, 1993-1996, 2000-2017 Senior Research Scientist (Adj.), Biology, 1967-present Lamont-Doherty Earth Observatory of Columbia University Faculty Member at Large, Columbia University Graduate School of Arts and Sciences. 1993-present DEGREES: Bachelor of Arts (Botany) Washington University, St. Louis 1959 Master of Arts (Biological Education) Washington University 1961 Doctorate (Biology and Education) Washington University 1964 PROFESSIONAL EXPERIENCE (TEACHING): 1963-64 Washington University, St. Louis 1964-67 Assistant Professor of Natural Sciences Columbia University, Teachers College 1968-70 Associate Professor of Natural Sciences Columbia University, Teachers College 1971- Professor of Natural Sciences Columbia University, Teachers College 1992-1993 College Research Coordinator, Teachers College. 1993-1996 Associate Director, Division of Instruction, T. C. OFFICES IN NATIONAL AND INTERNATIONAL ORGANIZATIONS: 1976 President, National Association for Res. Science Teaching (International) 1993-95 President, Columbia University Chapter Sigma Xi Honorary Scientific Society (National) 1995 President, International Society of Protistology (International) ----------------------------------------------------------------------------------------------------
    [Show full text]
  • PCR Primers for the Amplification of the Nuclear Small Subunit Ribosomal DNA Sequences from Polycystine Radiolarians Original
    Jpn. J. Protozool. Vol. 37, No. 2. (2004) 133 Original PCR primers for the amplification of the nuclear small subunit ribosomal DNA sequences from polycystine radiolarians Tomoko YUASA,1, * Osamu TAKAHASHI 2 and Shigeki MAYAMA3 1Division of Mathematics and Natural Science Education, United Graduate School of Education, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan,2Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan,3Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan SUMMARY INTRODUCTION Polycystinea (Radiolaria) is a class of planktonic Polycystinea (Radiolaria) is a class of plank- protists widely distributed in tropical, subtropical, tonic protists widely distributed in tropical, sub- and even polar marine environments. Various tropical, and even polar marine environments. types of algae occur as intracellular symbionts in (Currently, many researchers use “Radiolaria” as a the cells of the polycystines (e.g., Anderson, 1976) conventional name, which comprehensively indi- which causes significant cross-contamination in cates the Acantharea, the Polycystinea, and the polycystine DNA extractions, complicating DNA- Phaeodarea (Table 1)). The first determination of based molecular analyses. We designed potential small-subunit ribosomal DNA (18S rDNA) se- primers; Spu 191F and Spu 1731R, specifically for quences in the Polycystinea was reported by spumellarian polycystines, which are solitary and Amaral Zettler et al. (1997). As templates for poly- have spongy or latticed siliceous shells. These merase chain reaction (PCR) amplification, they primers amplified 18S rDNA sequences directly used the genomes of the swarmer cells of the colo- from the specimens containing symbiotic algae. nial and skeletonless spumellarians that endoge- They will be used to accelerate phylogenetic nously formed in individual vegetative cells.
    [Show full text]
  • The Evolution of Silicon Transport in Eukaryotes Article Open Access
    The Evolution of Silicon Transport in Eukaryotes Alan O. Marron,*1,2 Sarah Ratcliffe,3 Glen L. Wheeler,4 Raymond E. Goldstein,1 Nicole King,5 Fabrice Not,6,7 Colomban de Vargas,6,7 and Daniel J. Richter5,6,7 1Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom 2Department of Zoology, University of Cambridge, Cambridge, United Kingdom 3School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom 4Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, United Kingdom 5Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 6CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France 7Sorbonne Universite´s, Universite´ Pierre et Marie Curie (UPMC) Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France *Corresponding author: E-mail: [email protected]. Associate editor: Lars S. Jermiin Abstract Biosilicification (the formation of biological structures from silica) occurs in diverse eukaryotic lineages, plays a major role in global biogeochemical cycles, and has significant biotechnological applications. Silicon (Si) uptake is crucial for biosilicification, yet the evolutionary history of the transporters involved remains poorly known. Recent evidence suggests that the SIT family of Si transporters, initially identified in diatoms, may be widely distributed, with an extended family of related transporters (SIT-Ls) present in some nonsilicified organisms. Here, we identify SITs and SIT-Ls in a range of eukaryotes, including major silicified lineages (radiolarians and chrysophytes) and also bacterial SIT-Ls. Our evidence suggests that the symmetrical 10-transmembrane-domain SIT structure has independently evolved multiple times via duplication and fusion of 5-transmembrane-domain SIT-Ls.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Unveiling the Role of Rhizaria in the Silicon Cycle Natalia Llopis Monferrer
    Unveiling the role of Rhizaria in the silicon cycle Natalia Llopis Monferrer To cite this version: Natalia Llopis Monferrer. Unveiling the role of Rhizaria in the silicon cycle. Other. Université de Bretagne occidentale - Brest, 2020. English. NNT : 2020BRES0041. tel-03259625 HAL Id: tel-03259625 https://tel.archives-ouvertes.fr/tel-03259625 Submitted on 14 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L'UNIVERSITE DE BRETAGNE OCCIDENTALE ECOLE DOCTORALE N° 598 Sciences de la Mer et du littoral Spécialité : Chimie Marine Par Natalia LLOPIS MONFERRER Unveiling the role of Rhizaria in the silicon cycle (Rôle des Rhizaria dans le cycle du silicium) Thèse présentée et soutenue à PLouzané, le 18 septembre 2020 Unité de recherche : Laboratoire de Sciences de l’Environnement Marin Rapporteurs avant soutenance : Diana VARELA Professor, Université de Victoria, Canada Giuseppe CORTESE Senior Scientist, GNS Science, Nouvelle Zélande Composition du Jury : Président : Géraldine SARTHOU Directrice de recherche, CNRS, LEMAR, Brest, France Examinateurs : Diana VARELA Professor, Université de Victoria, Canada Giuseppe CORTESE Senior Scientist, GNS Science, Nouvelle Zélande Colleen DURKIN Research Faculty, Moss Landing Marine Laboratories, Etats Unis Tristan BIARD Maître de Conférences, Université du Littoral Côte d’Opale, France Dir.
    [Show full text]
  • Amoebae and Amoeboid Protists Form a Large and Diverse Assemblage of Eukaryotes Characterized by Various Types of Pseudopodia
    J. Eukaryot. Microbiol., 56(1), 2009 pp. 16–25 r 2009 The Author(s) Journal compilation r 2009 by the International Society of Protistologists DOI: 10.1111/j.1550-7408.2008.00379.x Untangling the Phylogeny of Amoeboid Protists1 JAN PAWLOWSKI and FABIEN BURKI Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland ABSTRACT. The amoebae and amoeboid protists form a large and diverse assemblage of eukaryotes characterized by various types of pseudopodia. For convenience, the traditional morphology-based classification grouped them together in a macrotaxon named Sarcodina. Molecular phylogenies contributed to the dismantlement of this assemblage, placing the majority of sarcodinids into two new supergroups: Amoebozoa and Rhizaria. In this review, we describe the taxonomic composition of both supergroups and present their small subunit rDNA-based phylogeny. We comment on the advantages and weaknesses of these phylogenies and emphasize the necessity of taxon-rich multigene datasets to resolve phylogenetic relationships within Amoebozoa and Rhizaria. We show the importance of environmental sequencing as a way of increasing taxon sampling in these supergroups. Finally, we highlight the interest of Amoebozoa and Rhizaria for understanding eukaryotic evolution and suggest that resolving their phylogenies will be among the main challenges for future phylogenomic analyses. Key Words. Amoebae, Amoebozoa, eukaryote, evolution, Foraminifera, Radiolaria, Rhizaria, SSU, rDNA. FROM SARCODINA TO AMOEBOZOA AND RHIZARIA ribosomal genes. The most spectacular fast-evolving lineages, HE amoebae and amoeboid protists form an important part of such as foraminiferans (Pawlowski et al. 1996), polycystines Teukaryotic diversity, amounting for about 15,000 described (Amaral Zettler, Sogin, and Caron 1997), pelobionts (Hinkle species (Adl et al.
    [Show full text]
  • The Evolution of Silicon Transport in Eukaryotes Article Open Access
    The Evolution of Silicon Transport in Eukaryotes Alan O. Marron,*1,2 Sarah Ratcliffe,3 Glen L. Wheeler,4 Raymond E. Goldstein,1 Nicole King,5 Fabrice Not,6,7 Colomban de Vargas,6,7 and Daniel J. Richter5,6,7 1Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom 2Department of Zoology, University of Cambridge, Cambridge, United Kingdom 3School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom 4Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, United Kingdom 5Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 6CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France 7Sorbonne Universite´s, Universite´ Pierre et Marie Curie (UPMC) Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France Downloaded from *Corresponding author: E-mail: [email protected]. Associate editor: Lars S. Jermiin Abstract http://mbe.oxfordjournals.org/ Biosilicification (the formation of biological structures from silica) occurs in diverse eukaryotic lineages, plays a major role in global biogeochemical cycles, and has significant biotechnological applications. Silicon (Si) uptake is crucial for biosilicification, yet the evolutionary history of the transporters involved remains poorly known. Recent evidence suggests that the SIT family of Si transporters, initially identified in diatoms, may be widely distributed, with an extended family of related transporters (SIT-Ls) present in some nonsilicified organisms. Here, we identify SITs and SIT-Ls in a range of eukaryotes, including major silicified lineages (radiolarians and chrysophytes) and also bacterial SIT-Ls.
    [Show full text]