<<

Today’s plan: – Finish “Why study ” – mass balance (accumulation, ablation, equilibrium line) – flow – Glaciers and recent climate change

Announcements: - Xhour tomorrow (5/16) – NOVA video – “Extreme ice” and exercise - Friday – Last quiz Why study glaciers?

• Respond/indicate climate change: • Respond to climate and record climate • Some glaciers (ice sheets) influence climate – How?

• Shaper/creator of landscapes: • Important for understanding deposits, underlying bedrock, groundwater

• Storage of : • Influence global sea level Glaciers shape the landscape through glacial erosion and deposition The Laurentide Ice Sheet ~21,000 yrs ago in North America

Dyke et al., 2002 Hanover, NH

https://www.treehugger.com/climate-change/xkcd-webcomic-shows-how-thick-ice-was-over- north-american-cities-21000-years-ago.html Shaper/creator of landscapes: Manhattan – glaciated bedrock Shaper/creator of landscapes: Long Island

Long Island was the terminus of Laurentide Ice Sheet

Made of SEDIMENT! Storage of water: Present day ice volume – potential sea level rise

Geographic region Volume % Sea level (km3) equivalent (m) Ice caps, valley glaciers, 180,000 0.55 0.45 ect.

Greenland Ice Sheet 2,600,000 7.9 6.50

Antarctica: 30,109,800 91.49 73.44 East Antarctica 26,039,200 64.80 West Antarctica 3,262,000 8.06 Ross Ice Shelf 229,600 0.01 Total 32,909,800 100.00 80.44

For interactive sea-level rise map see: https://coast.noaa.gov/slr/# What is Causing Sea Level to Rise Today?

5 1993-2010 Average Rates

4 Total SL Rise Rate Today: ~12 in/century 3

2

1 (Inches per 100 yrs) (Inches per Sea Level Rise Rate Sea Level

0 Thermal Small Water Greenland Expansion Glaciers Use Antarctica Data from IPCC, 2013, Figure from E. Osterberg Compare Sea Level Rise Today to 2100

8 1993-2010 Average Rates 7 2081-2100 Average Rates 6 Total SL Rise Rates Today: ~12 in/century 5 2100: ~21 in/century 4 3 2 (Inches per 100 yrs) (Inches per Sea Level Rise Rate Sea Level 1

0 Thermal Small Water Greenland Expansion Glaciers Use Antarctica Data from IPCC, 2013, Figure from E. Osterberg Range, including uncertainty, by 2100 is:

~0.3-1.0 meters

~1-3.3 feet

IPCC, AR5, WG1, SPM, 2013 Glacier mass balance (bank account): Difference between ice gain (Accumulation) and loss (Ablation)

• Climate – summer and winter precipitation • Local topography – shading by , debris from rock falls Glacier mass balance Accumulation • Precipitation: , rain • : freezing of super-cooled water vapor or drops • drift: blown snow • Avalanches

Rime ice on Mt. Washington, NH (MOUNTWASHINGTON.COM ) Ablation • Melting: at glacier surface, within pore spaces, in other voids below surface • Sublimation • calving (80% of ablation in Antarctica occurs by calving!) Why/how do glaciers flow? • Glaciers flow in the direction in which their top surface slopes – The driving stress of a glacier is a result of its thickness and its surface slope – Ice sheets spread outward from the thickest point – Don’t care what is at the bed (Will flow “up hill”!) Why/how do glaciers flow?

• Glaciers flow by two processes: – Internal (plastic) deformation – Basal sliding (if water/saturated sediment at base) Time-lapse glacier flow – Aletsch Glacier, Swiss Alps

http://www.swisseduc.ch/glaciers/aletsch- livecam/index-en.html?id=0 Crevasses form where ice breaks (brittle deformation) Below at depth of ~50 m, ice deforms plastically

Crevasses in Greenland glacier