Ring Theory and Its Applications

Total Page:16

File Type:pdf, Size:1020Kb

Ring Theory and Its Applications 609 Ring Theory and Its Applications Ring Theory Session in Honor of T. Y. Lam on his 70th Birthday 31st Ohio State-Denison Mathematics Conference May 25–27, 2012 The Ohio State University, Columbus, OH Dinh Van Huynh S. K. Jain Sergio R. López-Permouth S. Tariq Rizvi Cosmin S. Roman Editors American Mathematical Society Ring Theory and Its Applications Ring Theory Session in Honor of T. Y. Lam on his 70th Birthday 31st Ohio State-Denison Mathematics Conference May 25–27, 2012 The Ohio State University, Columbus, OH Dinh Van Huynh S. K. Jain Sergio R. López-Permouth S. Tariq Rizvi Cosmin S. Roman Editors 609 Ring Theory and Its Applications Ring Theory Session in Honor of T. Y. Lam on his 70th Birthday 31st Ohio State-Denison Mathematics Conference May 25–27, 2012 The Ohio State University, Columbus, OH Dinh Van Huynh S. K. Jain Sergio R. López-Permouth S. Tariq Rizvi Cosmin S. Roman Editors American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Dennis DeTurck, Managing Editor Michael Loss Kailash Misra Martin J. Strauss 2010 Mathematics Subject Classification. Primary 16-XX, 13A25, 13C10, 13E10, 14A22, 18B25, 18F20, 20G07. Library of Congress Cataloging-in-Publication Data Ring Theory Session (2012 : Columbus, Ohio) Ring theory and its applications : Ring Theory Session in honor of T. Y. Lam on his 70th birthday at the 31st Ohio State-Denison Mathematics Conference, May 25–27, 2012, The Ohio State University, Columbus, OH / Dinh Van Huynh, S. K. Jain, Sergio R. L´opez-Permouth, S. Tariq Rizvi, Cosmin S. Roman, editors. pages cm. – (Contemporary mathematics ; volume 609) Includes bibliographical references. ISBN 978-0-8218-8797-4 (alk. paper) 1. Rings (Algebra)–Congresses. I. Lam, T. Y. (Tsit-Yuen), 1942– honouree. II. Huynh, Dinh Van, 1947– editor of compilation. III. Ohio State-Denison Mathematics Conference (2012 : Columbus, Ohio) IV. Title. QA247.R57516 2012 2013032319 512.44–dc23 Contemporary Mathematics ISSN: 0271-4132 (print); ISSN: 1098-3627 (online) DOI: http://dx.doi.org/10.1090/conm/609 Copying and reprinting. Material in this book may be reproduced by any means for edu- cational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledg- ment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Math- ematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.) c 2014 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Copyright of individual articles may revert to the public domain 28 years after publication. Contact the AMS for copyright status of individual articles. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 191817161514 Contents Preface vii List of Participants ix Thoughts On Eggert’s Conjecture George M. Bergman 1 p-Extensions Papiya Bhattacharjee, Michelle L. Knox, and Warren Wm. McGovern 19 Strongly J-Clean Rings With Involutions Huanyin Chen, Abdullah Harmancı, and A. C¸igdem˘ Ozcan¨ 33 QF Rings Characterized by Injectivities: A Survey Jianlong Chen, Wenxi Li, and Liang Shen 45 Repeated-Root Cyclic and Negacyclic Codes of Length 6ps Hai Q. Dinh 69 Cyclically Presented Modules, Projective Covers and Factorizations Alberto Facchini, Daniel Smertnig, and Nguyen Khanh Tung 89 Isomorphisms of Some Quantum Spaces Jason Gaddis 107 Additive Unit Representations in Endomorphism Rings and an Extension of a Result of Dickson and Fuller Pedro A. Guil Asensio and Ashish K. Srivastava 117 On a Class of ⊕-Supplemented Modules Burcu Ungor, Sait Halicioglu, and Abdullah Harmancı 123 Definable Classes and Mittag-Leffler Conditions Dolors Herbera 137 A Note on Clean Group Algebras Kanchan Joshi, Pramod Kanwar, and J. B. Srivastava 167 On Dual Baer Modules Derya Keskin Tutunc¨ u,¨ Patrick F. Smith, and Sultan Eylem Toksoy 173 Jacobson’s Lemma for Drazin Inverses T. Y. Lam and Pace P. Nielsen 185 v vi CONTENTS Transfer of Certain Properties from Modules to their Endomorphism Rings Gangyong Lee, S. Tariq Rizvi, and Cosmin S. Roman 197 From Boolean Rings to Clean Rings Tsiu-Kwen Lee and Yiquiang Zhou 223 On Right Strongly McCoy Rings AndreLeroy´ and Jerzy Matczuk 233 Compatible Ring Structures on Injective Hulls of Finitely Embedded Rings Barbara L. Osofsky 245 Good Matrix Gradings from Directed Graphs Kenneth L. Price and Stephen Szydlik 267 Leavitt Path Algebras Which Are Zorn Rings Kulumani M. Rangaswamy 277 Sheaves That Fail to Represent Matrix Rings Manuel L. Reyes 285 Rings of Invariant Module Type and Automorphism-Invariant Modules Surjeet Singh and Ashish K. Srivastava 299 Preface The 31st Ohio State-Denison Mathematics Conference was held May 25–27, 2012 in Columbus, Ohio. That installment of the conference served as a commem- oration of Professor Hans Zassenhaus’ Centennial in 2012, a fitting tribute as the conference was initiated by Zassenhaus in the early sixties. At the same time, the Ring Theory Session of that conference was dedicated to a celebration of Univer- sity of California-Berkeley Professor T.Y. Lam on his 70th Birthday. This volume collects the proceedings of the Ring Theory session and, just like the session itself, is dedicated to Professor Lam. T.Y. Lam is a prolific researcher and a magnificent writer. His books are trea- sured by students and researchers alike because of their thoroughness and brilliant exposition. He is an inspiring mentor to his PhD students and an excellent role model to his post-doctoral visitors. We consider ourselves lucky to have a profes- sional relationship with him and are honored to count him as a friend. It has been a tremendous pleasure to do our small part to celebrate his life and accomplishments. The Ring Theory session of the Ohio State-Denison Mathematics Conference is part of a longstanding tradition of collaboration between the Department of Mathematics of the Ohio State University and the Ohio University Center of Ring Theory and its Applications and has become a mainstay for the worldwide ring theory community. We are thankful to the Mathematics Research institute of The Ohio State University, The Center of Ring Theory and its Applications of Ohio University and The Ohio State University at Lima for their generous support of the conference. For the most part, contributors to this volume delivered related talks at the conference. All papers were subject to a strict process of refereeing. We would like to use this opportunity to thank all the anonymous referees who delivered their recommendations about the submissions under a very tight schedule. In many cases, their recommendations and feedback enriched and improved the final version of the manuscripts you will find here. We also want to express our deep appreciation to Christine Thivierge and Michael Saitas, who very efficiently handled this publication on behalf of the American Mathematical Society. vii List of Participants Jawad ABUHLAIL George BERGMAN KFUPM University of California, Berkeley Lulwah AL-ESSA Papiya BHATTACHARJEE Ohio University Penn State Erie, The Behrend College Adel ALAHMADI Gary F. BIRKENMEIER King Abdulaziz University University of Louisiana at Lafayette Mustafa ALKAN Victor BOVDI Akdeniz University University of Debrecen Yousef ALKHAMEES Walter BURGESS King Saud University University of Ottawa Hamed ALSULAMI Victor CAMILLO King Abdulaziz University University of Iowa K.T. ARASU Mikhail CHEBOTAR Wright State University Kent State University Mar´ıa Jos´e ARROYO-PANIAGUA Jianlong CHEN Universidad Autonoma Metropolitana, Southeast University Mexico William CHIN Nuh AYDIN DePaul University Kenyon College Kathi CROW Salem State University Pinar AYDOGDU˘ Hacettepe University Alexander J. DIESL Wellesley College Pradeep BANSAL Indian Institute Of Technology Radoslav DIMITRIC Guwahati CUNY Mamadou BARRY Nanqing DING Cheikh Anta Diop University Dakar Nanjing University Hyman BASS Hai Q. DINH University of Michigan Kent State University Allen D. BELL Thomas J. DORSEY University of Wisconsin-Milwaukee CCR-La Jolla ix x PARTICIPANTS Kevin Michael DREES Garrett JOHNSON Edinboro University of Pennsylvania North Carolina State University Nguyen Viet DUNG Martin JURAS Ohio University, Zanesville Qatar University Noyan F. ER Pramod KANWAR University of Rio Grande Ohio University - Zanesville Sergio ESTRADA Sudesh Kaur KHANDUJA Universidad de Murcia Indian Institute of Science Education and Research Alberto FACCHINI University of Padova Dinesh KHURANA Panjab University Mary FLAGG Ekaterina Igorevna KOMPANTSEVA University of Houston Moscow State Pedagogical University Xianhui FU Achlesh KUMARI School of Mathematics and Statistics, S. V. College Northeast Normal University
Recommended publications
  • Factorization Theory in Commutative Monoids 11
    FACTORIZATION THEORY IN COMMUTATIVE MONOIDS ALFRED GEROLDINGER AND QINGHAI ZHONG Abstract. This is a survey on factorization theory. We discuss finitely generated monoids (including affine monoids), primary monoids (including numerical monoids), power sets with set addition, Krull monoids and their various generalizations, and the multiplicative monoids of domains (including Krull domains, rings of integer-valued polynomials, orders in algebraic number fields) and of their ideals. We offer examples for all these classes of monoids and discuss their main arithmetical finiteness properties. These describe the structure of their sets of lengths, of the unions of sets of lengths, and their catenary degrees. We also provide examples where these finiteness properties do not hold. 1. Introduction Factorization theory emerged from algebraic number theory. The ring of integers of an algebraic number field is factorial if and only if it has class number one, and the class group was always considered as a measure for the non-uniqueness of factorizations. Factorization theory has turned this idea into concrete results. In 1960 Carlitz proved (and this is a starting point of the area) that the ring of integers is half-factorial (i.e., all sets of lengths are singletons) if and only if the class number is at most two. In the 1960s Narkiewicz started a systematic study of counting functions associated with arithmetical properties in rings of integers. Starting in the late 1980s, theoretical properties of factorizations were studied in commutative semigroups and in commutative integral domains, with a focus on Noetherian and Krull domains (see [40, 45, 62]; [3] is the first in a series of papers by Anderson, Anderson, Zafrullah, and [1] is a conference volume from the 1990s).
    [Show full text]
  • A Review of Commutative Ring Theory Mathematics Undergraduate Seminar: Toric Varieties
    A REVIEW OF COMMUTATIVE RING THEORY MATHEMATICS UNDERGRADUATE SEMINAR: TORIC VARIETIES ADRIANO FERNANDES Contents 1. Basic Definitions and Examples 1 2. Ideals and Quotient Rings 3 3. Properties and Types of Ideals 5 4. C-algebras 7 References 7 1. Basic Definitions and Examples In this first section, I define a ring and give some relevant examples of rings we have encountered before (and might have not thought of as abstract algebraic structures.) I will not cover many of the intermediate structures arising between rings and fields (e.g. integral domains, unique factorization domains, etc.) The interested reader is referred to Dummit and Foote. Definition 1.1 (Rings). The algebraic structure “ring” R is a set with two binary opera- tions + and , respectively named addition and multiplication, satisfying · (R, +) is an abelian group (i.e. a group with commutative addition), • is associative (i.e. a, b, c R, (a b) c = a (b c)) , • and the distributive8 law holds2 (i.e.· a,· b, c ·R, (·a + b) c = a c + b c, a (b + c)= • a b + a c.) 8 2 · · · · · · Moreover, the ring is commutative if multiplication is commutative. The ring has an identity, conventionally denoted 1, if there exists an element 1 R s.t. a R, 1 a = a 1=a. 2 8 2 · ·From now on, all rings considered will be commutative rings (after all, this is a review of commutative ring theory...) Since we will be talking substantially about the complex field C, let us recall the definition of such structure. Definition 1.2 (Fields).
    [Show full text]
  • Notes on Ring Theory
    Notes on Ring Theory by Avinash Sathaye, Professor of Mathematics February 1, 2007 Contents 1 1 Ring axioms and definitions. Definition: Ring We define a ring to be a non empty set R together with two binary operations f,g : R × R ⇒ R such that: 1. R is an abelian group under the operation f. 2. The operation g is associative, i.e. g(g(x, y),z)=g(x, g(y,z)) for all x, y, z ∈ R. 3. The operation g is distributive over f. This means: g(f(x, y),z)=f(g(x, z),g(y,z)) and g(x, f(y,z)) = f(g(x, y),g(x, z)) for all x, y, z ∈ R. Further we define the following natural concepts. 1. Definition: Commutative ring. If the operation g is also commu- tative, then we say that R is a commutative ring. 2. Definition: Ring with identity. If the operation g has a two sided identity then we call it the identity of the ring. If it exists, the ring is said to have an identity. 3. The zero ring. A trivial example of a ring consists of a single element x with both operations trivial. Such a ring leads to pathologies in many of the concepts discussed below and it is prudent to assume that our ring is not such a singleton ring. It is called the “zero ring”, since the unique element is denoted by 0 as per convention below. Warning: We shall always assume that our ring under discussion is not a zero ring.
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • A Brief History of Ring Theory
    A Brief History of Ring Theory by Kristen Pollock Abstract Algebra II, Math 442 Loyola College, Spring 2005 A Brief History of Ring Theory Kristen Pollock 2 1. Introduction In order to fully define and examine an abstract ring, this essay will follow a procedure that is unlike a typical algebra textbook. That is, rather than initially offering just definitions, relevant examples will first be supplied so that the origins of a ring and its components can be better understood. Of course, this is the path that history has taken so what better way to proceed? First, it is important to understand that the abstract ring concept emerged from not one, but two theories: commutative ring theory and noncommutative ring the- ory. These two theories originated in different problems, were developed by different people and flourished in different directions. Still, these theories have much in com- mon and together form the foundation of today's ring theory. Specifically, modern commutative ring theory has its roots in problems of algebraic number theory and algebraic geometry. On the other hand, noncommutative ring theory originated from an attempt to expand the complex numbers to a variety of hypercomplex number systems. 2. Noncommutative Rings We will begin with noncommutative ring theory and its main originating ex- ample: the quaternions. According to Israel Kleiner's article \The Genesis of the Abstract Ring Concept," [2]. these numbers, created by Hamilton in 1843, are of the form a + bi + cj + dk (a; b; c; d 2 R) where addition is through its components 2 2 2 and multiplication is subject to the relations i =pj = k = ijk = −1.
    [Show full text]
  • Invertible Ideals and Gaussian Semirings
    ARCHIVUM MATHEMATICUM (BRNO) Tomus 53 (2017), 179–192 INVERTIBLE IDEALS AND GAUSSIAN SEMIRINGS Shaban Ghalandarzadeh, Peyman Nasehpour, and Rafieh Razavi Abstract. In the first section, we introduce the notions of fractional and invertible ideals of semirings and characterize invertible ideals of a semidomain. In section two, we define Prüfer semirings and characterize them in terms of valuation semirings. In this section, we also characterize Prüfer semirings in terms of some identities over its ideals such as (I + J)(I ∩J) = IJ for all ideals I, J of S. In the third section, we give a semiring version for the Gilmer-Tsang Theorem, which states that for a suitable family of semirings, the concepts of Prüfer and Gaussian semirings are equivalent. At last, we end this paper by giving a plenty of examples for proper Gaussian and Prüfer semirings. 0. Introduction Vandiver introduced the term “semi-ring” and its structure in 1934 [27], though the early examples of semirings had appeared in the works of Dedekind in 1894, when he had been working on the algebra of the ideals of commutative rings [5]. Despite the great efforts of some mathematicians on semiring theory in 1940s, 1950s, and early 1960s, they were apparently not successful to draw the attention of mathematical society to consider the semiring theory as a serious line of ma- thematical research. Actually, it was in the late 1960s that semiring theory was considered a more important topic for research when real applications were found for semirings. Eilenberg and a couple of other mathematicians started developing formal languages and automata theory systematically [6], which have strong connec- tions to semirings.
    [Show full text]
  • RING THEORY 1. Ring Theory a Ring Is a Set a with Two Binary Operations
    CHAPTER IV RING THEORY 1. Ring Theory A ring is a set A with two binary operations satisfying the rules given below. Usually one binary operation is denoted `+' and called \addition," and the other is denoted by juxtaposition and is called \multiplication." The rules required of these operations are: 1) A is an abelian group under the operation + (identity denoted 0 and inverse of x denoted x); 2) A is a monoid under the operation of multiplication (i.e., multiplication is associative and there− is a two-sided identity usually denoted 1); 3) the distributive laws (x + y)z = xy + xz x(y + z)=xy + xz hold for all x, y,andz A. Sometimes one does∈ not require that a ring have a multiplicative identity. The word ring may also be used for a system satisfying just conditions (1) and (3) (i.e., where the associative law for multiplication may fail and for which there is no multiplicative identity.) Lie rings are examples of non-associative rings without identities. Almost all interesting associative rings do have identities. If 1 = 0, then the ring consists of one element 0; otherwise 1 = 0. In many theorems, it is necessary to specify that rings under consideration are not trivial, i.e. that 1 6= 0, but often that hypothesis will not be stated explicitly. 6 If the multiplicative operation is commutative, we call the ring commutative. Commutative Algebra is the study of commutative rings and related structures. It is closely related to algebraic number theory and algebraic geometry. If A is a ring, an element x A is called a unit if it has a two-sided inverse y, i.e.
    [Show full text]
  • Studying Monoids Is Not Enough to Study Multiplicative Properties of Rings: an Elementary Approach
    Arab. J. Math. (2015) 4:29–34 DOI 10.1007/s40065-014-0118-1 Arabian Journal of Mathematics Marco Fontana · Muhammad Zafrullah Studying monoids is not enough to study multiplicative properties of rings: an elementary approach Received: 15 April 2014 / Accepted: 27 August 2014 / Published online: 25 September 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract The aim of these notes is to indicate, using very simple examples, that not all results in ring theory can be derived from monoids and that there are results that deeply depend on the interplay between “+”and “·”. Mathematics Subject Classification 20M14 · 20M12 · 20M25 · 13A15 · 13G05 In a commutative unitary ring (R, +, ·), with 0 = 1, there are two binary operations, denoted by “+”, addition, and by “·”, multiplication, at work. So, in particular, we can consider R as an algebraic system closed under one of the binary operations, that is (R, +) or (R, ·). In both cases, R is at least a monoid. This state of affairs could lead one to think that perhaps it is sufficient to study monoids to get a handle on ring theory. The aim of these notes is to indicate, using elementary and easily accessible results available in literature, that not all results in ring theory can be derived separately from semigroups or monoids and that there are results that deeply depend on the interplay between “+”and“·”. Following the custom, we choose to use the simplest examples that can be developed with a minimum of jargon to establish our thesis. We shall restrict our attention to integral domains and to results of multiplicative nature, as that is our area of interest.
    [Show full text]
  • Monoid Rings and Strongly Two-Generated Ideals
    California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 6-2014 MONOID RINGS AND STRONGLY TWO-GENERATED IDEALS Brittney M. Salt California State University - San Bernardino Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Algebra Commons, and the Other Mathematics Commons Recommended Citation Salt, Brittney M., "MONOID RINGS AND STRONGLY TWO-GENERATED IDEALS" (2014). Electronic Theses, Projects, and Dissertations. 31. https://scholarworks.lib.csusb.edu/etd/31 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. Monoid Rings and Strongly Two-Generated Ideals A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Brittney Salt June, 2014 Monoid Rings and Strongly Two-Generated Ideals A Thesis Presented to the Faculty of California State University, San Bernardino by Brittney Salt June, 2014 Approved by: J. Paul Vicknair, Committee Chair Date Zahid Hasan, Committee Member Jim Okon, Committee Member Peter Williams, Chair, Charles Stanton Department of Mathematics Graduate Coordinator, Department of Mathematics iii Abstract This paper determines whether monoid rings with the two-generator property have the strong two-generator property. Dedekind domains have both the two-generator and strong two-generator properties. How common is this? Two cases are considered here: the zero-dimensional case and the one-dimensional case for monoid rings.
    [Show full text]
  • Some Aspects of Semirings
    Appendix A Some Aspects of Semirings Semirings considered as a common generalization of associative rings and dis- tributive lattices provide important tools in different branches of computer science. Hence structural results on semirings are interesting and are a basic concept. Semi- rings appear in different mathematical areas, such as ideals of a ring, as positive cones of partially ordered rings and fields, vector bundles, in the context of topolog- ical considerations and in the foundation of arithmetic etc. In this appendix some algebraic concepts are introduced in order to generalize the corresponding concepts of semirings N of non-negative integers and their algebraic theory is discussed. A.1 Introductory Concepts H.S. Vandiver gave the first formal definition of a semiring and developed the the- ory of a special class of semirings in 1934. A semiring S is defined as an algebra (S, +, ·) such that (S, +) and (S, ·) are semigroups connected by a(b+c) = ab+ac and (b+c)a = ba+ca for all a,b,c ∈ S.ThesetN of all non-negative integers with usual addition and multiplication of integers is an example of a semiring, called the semiring of non-negative integers. A semiring S may have an additive zero ◦ defined by ◦+a = a +◦=a for all a ∈ S or a multiplicative zero 0 defined by 0a = a0 = 0 for all a ∈ S. S may contain both ◦ and 0 but they may not coincide. Consider the semiring (N, +, ·), where N is the set of all non-negative integers; a + b ={lcm of a and b, when a = 0,b= 0}; = 0, otherwise; and a · b = usual product of a and b.
    [Show full text]
  • Some Remarks on Semirings and Their Ideals
    SOME REMARKS ON SEMIRINGS AND THEIR IDEALS PEYMAN NASEHPOUR Abstract. In this paper, we give semiring version of some classical results in commutative algebra related to Euclidean rings, PIDs, UFDs, G-domains, and GCD and integrally closed domains. 0. Introduction The ideal theoretic method for studying commutative rings has a long and fruitful history [20]. The subject of multiplicative ideal theory is, roughly speaking, the description of multiplicative structure of a ring by means of ideals or certain systems of ideals of that ring [17]. Multiplicative ideal theory, originated in the works of Dedekind [5], Pr¨ufer [33] and Krull [24], is a powerful tool both in commutative algebra [9,27] and in a more general context, in commutative monoid theory [1,17]. Semirings are ring-like algebraic structures that subtraction is either impossible or disallowed, interesting generalizations of rings and distributive lattices, and have important applications in many different branches of science and engineering [14]. For general books on semiring theory, one may refer to the resources [10–13,16,19]. Since different authors define semirings differently, it is very important to clarify, from the beginning, what we mean by a semiring in this paper. By a semiring, we understand an algebraic structure, consisting of a nonempty set S with two operations of addition and multiplication such that the following conditions are satisfied: (1) (S, +) is a commutative monoid with identity element 0; (2) (S, ·) is a commutative monoid with identity element 1 6= 0; (3) Multiplication distributes over addition, i.e., a · (b + c)= a · b + a · c for all a,b,c ∈ S; (4) The element 0 is the absorbing element of the multiplication, i.e., s · 0=0 for all s ∈ S.
    [Show full text]
  • MATH 228: COMMUTATIVE RING THEORY James D. Lewis TABLE
    MATH 228: COMMUTATIVE RING THEORY James D. Lewis TABLE OF CONTENTS Properties of the real numbers. • Definition of commutative rings and fields. • Examples: includes finite fields, Gaussian integers and complex numbers. • Mathematical induction: direct and indirect approaches. • Division and factoring: Euclid's algorithm for the integers. • Greatest common divisors (GCD) and the integers as an example of a Principal Ideal • Domain (PID). Primes and irreducibles, and the Fundamental Theorem of Arithmetic. • Least common multiples (LCM). • Equivalence relations and examples. • The ring of integers mod n, Zn, zero-divisors, units, integral domains, the Euler-Phi • function, Chinese remainder theorem. Solutions of equations over rings and fields, the characteristic of a field, quadratic • extensions of fields. Polynomial rings, factorization and Euclid's algorithm, Q roots of polynomials in Z[x], • Fundamental Theorem of Algebra, polynomial rings over a field as an example of a PID and a UFD (Unique Factorization Domain); the Noetherian property and A a PID A a UFD. Appendix:) Gauss's Lemma and applications: Z[x] a UFD, Polynomial rings are • UFD's. Ring homomorphisms, ideals and quotient rings, prime and maximal ideals. • Geometric applications: Ruler and compass constructions; impossibility of trisection • of an angle and duplication of the cube. Appendix: Some set theory with regard to countability/uncountability results. • Appendix: Ordered fields. • Sample assignments, exams, and solutions. • c James Dominic Lewis, December, 2000. Cover page computer artistic work courtesy of Dale R. Lewis. 1 MATH 228 A Course on Commutative Rings James D. Lewis + R = Real numbers: Picture : − − ◦ −! Z = Integers = 0; 1; 2; : : : f g a a a Q = Rational numbers = a; b Z; b = 0 & 1 = 2 a b = b a b 2 6 b b , 1 2 1 2 1 2 There are inclusions Z Q R; ⊂ ⊂ where the inclusion Z Q is given by n Z n Q.
    [Show full text]