Math 154. Algebraic Number Theory 11

Total Page:16

File Type:pdf, Size:1020Kb

Math 154. Algebraic Number Theory 11 MATH 154. ALGEBRAIC NUMBER THEORY LECTURES BY BRIAN CONRAD, NOTES BY AARON LANDESMAN CONTENTS 1. Fermat’s factorization method 2 2. Quadratic norms 8 3. Quadratic factorization 14 4. Integrality 20 5. Finiteness properties of OK 26 6. Irreducible elements and prime ideals 31 7. Primes in OK 38 8. Discriminants of number fields 41 9. Some monogenic integer rings 48 10. Prime-power cyclotomic rings 54 11. General cyclotomic integer rings 59 12. Noetherian rings and modules 64 13. Dedekind domains 69 14. Prime ideal factorization 74 15. Norms of ideals 79 16. Factoring pOK: the quadratic case 85 17. Factoring pOK: the general case 88 18. Ramification 93 19. Relative factorization and rings of fractions 96 20. Localization and prime ideals 101 21. Applications of localization 105 22. Discriminant ideals 110 23. Decomposition and inertia groups 116 24. Class groups and units 122 25. Computing some class groups 128 26. Norms and volumes 134 27. Volume calculations 138 28. Minkowski’s theorem and applications 144 29. The Unit Theorem 148 References 153 Thanks to Nitya Mani for note-taking on two days when Aaron Landesman was away. 1 2 BRIAN CONRAD AND AARON LANDESMAN 1. FERMAT’S FACTORIZATION METHOD Today we will discuss the proof of the following result, and highlight some of its main ideas that will be important themes in the course: Theorem 1.1 (Fermat). For x, y 2 Z, the only solutions of y2 = x3 − 2 are (3, ±5). Remark 1.2. This is an elliptic curve (a notion we shall not define, essentially the set of solutions to a certain type of cubic equation in two variables) with infinitely many Q-points, a contrast with finiteness of its set of Z-points. Fermat’s equation can be rearranged into the form x3 = y2 + 2. Lemma 1.3. For any Z-solution (x, y) to x3 = y2 + 2, the value of y must be odd. Proof. Indeed, if y is even then x is even, so x3 is divisible by 8. But y2 + 2 = 4k + 2 is not divisible by 8. Fermat’s first great idea is to introduce considerations in the ring p p Z[ −2] := fm + n −2 j m, n 2 Zg. The point is that over this ring, the equation x3 = y2 + 2 can be expressed as p p x3 = (y + −2)(y − −2). To find solutions to this, we ask the following two questions: p p Question 1.4. Do y + −2 and y − −2 have “gcd = 1” (meaning no non- trivial factor in common, where “nontrivial” means “not a unit”)? Question 1.5. If we knowp the answer to thep above question is “yes,” can we conclude that both y ± −2 are cubes in Z[ −2]? Recall the definition of unit: Definition 1.6. For R a commutative ring, an element u 2 R is a unit if there exists u0 2 R, so that uu0 = 1. We let R× := f units in Rg; this is an abelian group. Example 1.7. (1) Z× = f±1g. (2) For F a field, F× = F − f0g by the definition of a field. MATH 154. ALGEBRAIC NUMBER THEORY 3 p p (3) We have that 1 + 2 is a unit in Z[ 2] because p p (1 + 2)(−1 + 2) = 1. p p Thus, likewise (1 + 2)n 2 Z[ 2]× for all n 2 Z. Note that if u 2 R× then for any x 2 R we have x = (xu−1)u. Hence, for any consideration of “unique” factorization we must allow for adjust- ing factors by unit multiples (absorbing the inverse unit elsewhere in the factorization). Definition 1.8. A domain (sometimes also called an integral domain) is a nonzero commutative ring R such that if ab = 0 with a, b 2 R then either a = 0 or b = 0. For a domain R, if a, b 2 R − f0g and a j b and b j a then a = bu for u 2 R×. (Indeed, if a = bs and b = at then a = a(ts), so ts = 1 since a 6= 0 and hence s, t 2 R×.) Away from Z+,“ajb, bja ) a = b” is very rare. Example 1.9. Later, we’ll see p p Z[ 2]× = f±1g × (1 + 2)Z. This is non-obvious! p Question 1.10. What is Z[ −2]×? In fact, we’ll answer this more generally: Lemma 1.11. Let d be any non-square integer > 1. We have p Z[ −d]× = f±1g. Proof. Consider p a := u + v −d for u, v 2 Z. Let p a := u − v −d, so 2 2 aa = u + dv 2 Z≥0. Since ab = ab, if ab = 1 then ab = 1 = 1, which implies (aa)(bb) = 1, 4 BRIAN CONRAD AND AARON LANDESMAN so aa = 1 2 2 2 2 because aa = u + dv 2 Z≥0. The equality u + dv = 1 with d > 1 forces v = 0 and then u = ±1. p Remark 1.12. If we try the same argument for Z[ d], we get u2 − dv2 = ±1 with u, v 2 Z (and v 6= 0 for units distinct from ±1). The question of finding such non-trivial units then becomes Pell’s equation, which is u2 − dv2 = 1 and its variant with −1 on the right side. For the case d = 2, Pell’s equation has infinitely many Z-solutions with u, v > 0 (as we will recover later in the course from a more sophisticated point of view), beginning with: (3, 2), (17, 12),... p p by considering powers (1 + 2)2n = (3 + 2 2)n for n > 0. 2 2 The variant equation u − 2v =p−1 also has infinitely many Z-solutions with u, v > 0 by considering (1 + 2)2n+1 with n ≥ 0, such as: (1, 1), (7, 5),... 3 2 We’ll now resume ourp goal of finding the Z-solutions to x = y + 2, first addressing if y ± −2 have a non-unit common factor. The answer is negative: p Lemma 1.13. If d 2 Z[ −2] satisfies p p d j (y + −2) and d j (y − −2) then d is a unit. Proof. First, recall from Lemma 1.3 that y is odd. Observe that p p d j (y + −2) − (y − −2) p = 2 −2 p = ( −2)3. Then, we claim the following sublemma: p p Lemma 1.14. The element −2 2 Z[ −2] is irreducible (i.e., it is a nonzero non-unit such that any factorization as ab must have a or b a unit). p p Proof. Assuming −2 = ab, we have − −2 = ab by conjugating both sides. Multiplying these relations, 2 = (aa)(bb) 2 Z≥0, so aa = 1 or bb = 1. This implies either a or b is a unit, as desired. MATH 154. ALGEBRAIC NUMBER THEORY 5 p In HW1 it will be shown that Z[ −2] is a UFD, so the irreducibility of p p e p −2 forces d = u −2 for somep 0 ≤ e ≤ 3 and some unit u 2 Z[ −2]. Thus, if d is not a unit then −2 j d. Hence,p to getp a contradictionp (and conclude d is a unit) it is enough to show −2 - (y + −2) in Z[ −2]. Suppose for some u, v 2 Z that p p p y + −2 = −2(u + v −2) p = 2v + u −2. This forces y = 2v to be even, but y is odd by Lemma 1.3. This concludes the proof that d is a unit. p We conclude that in the UFD Z[ −2] we have p p gcd(y + −2, y − −2) = 1. This completes the preparations for: Proof of Theorem 1.1. In any UFD, any nonzero element is a finite product of irreducibles, and by lumping together any irreducibles that agree up to unit multiple we can rewrite such a product as ei u · ∏ pi i with pi pairwise non-associate irreducible elements (non-associate means one is not a unit times another; by irreducibility of the pi’s, this amounts to saying pi - pj for any i 6= j). Since p p (y + −2)(y − −2) = x3 with p p gcd(y + −2, y − −2) = 1, it follows from expressing each of p y ± −2 as a unit multiple of a productp of pairwise non-associate irreducibles that all irreduciblep factors of y ± −2 occur with multiplicity divisible by 3. Therefore, y ± −2 is the productp of a unit and a cube. But now a miracle occurs: we know the units of Z[ −2] by Lemma 1.11, and from this we see that all units are themselves cubes (as −1 = (−1)3)! Hence, p p y + −2 = (a + b −2)3 for some a, b 2 Z. 6 BRIAN CONRAD AND AARON LANDESMAN Therefore, p p y + −2 = (a + b −2)3 p = a(a2 − 6b2) + b(3a2 − 2b2) −2, so 1 = b(3a2 − 2b2), from which we see that b = ±1, so b2 = 1. This implies ±1 = 3a2 − 2 so 3a2 = 2 ± 1. Then 3a2 equals either 3 or 1. The latter is impossible because we cannot have 3a2 = 1 with a 2 Z. Thus, 3a2 = 3, so a = ±1. This implies b = 1, so y = a(a2 − 6b2) = ±(1 − 6) = ±5 and x3 = y2 + 2 = 27, so x = 3, concluding the proof. The above considerations yield the following lessons: (1) For studying Z-solutions to polynomial equations, it’s useful to con- sider arithmetic in larger numberp systems. For example, in this case, it was useful to work in Z[ −2].
Recommended publications
  • Dirichlet Series Associated to Cubic Fields with Given Quadratic Resolvent 3
    DIRICHLET SERIES ASSOCIATED TO CUBIC FIELDS WITH GIVEN QUADRATIC RESOLVENT HENRI COHEN AND FRANK THORNE s Abstract. Let k be a quadratic field. We give an explicit formula for the Dirichlet series P Disc(K) − , K | | where the sum is over isomorphism classes of all cubic fields whose quadratic resolvent field is iso- morphic to k. Our work is a sequel to [11] (see also [15]), where such formulas are proved in a more general setting, in terms of sums over characters of certain groups related to ray class groups. In the present paper we carry the analysis further and prove explicit formulas for these Dirichlet series over Q, and in a companion paper we do the same for quartic fields having a given cubic resolvent. As an application, we compute tables of the number of S3-sextic fields E with Disc(E) < X, | | for X ranging up to 1023. An accompanying PARI/GP implementation is available from the second author’s website. 1. Introduction A classical problem in algebraic number theory is that of enumerating number fields by discrim- inant. Let Nd±(X) denote the number of isomorphism classes of number fields K with deg(K)= d and 0 < Disc(K) < X. The quantity Nd±(X) has seen a great deal of study; see (for example) [10, 7, 23]± for surveys of classical and more recent work. It is widely believed that Nd±(X)= Cd±X +o(X) for all d 2. For d = 2 this is classical, and the case d = 3 was proved in 1971 work of Davenport and Heilbronn≥ [13].
    [Show full text]
  • The Fundamental System of Units for Cubic Number Fields
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations May 2020 The Fundamental System of Units for Cubic Number Fields Janik Huth University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Other Mathematics Commons Recommended Citation Huth, Janik, "The Fundamental System of Units for Cubic Number Fields" (2020). Theses and Dissertations. 2385. https://dc.uwm.edu/etd/2385 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. THE FUNDAMENTAL SYSTEM OF UNITS FOR CUBIC NUMBER FIELDS by Janik Huth A Thesis Submitted in Partial Fulllment of the Requirements for the Degree of Master of Science in Mathematics at The University of Wisconsin-Milwaukee May 2020 ABSTRACT THE FUNDAMENTAL SYSTEM OF UNITS FOR CUBIC NUMBER FIELDS by Janik Huth The University of Wisconsin-Milwaukee, 2020 Under the Supervision of Professor Allen D. Bell Let K be a number eld of degree n. An element α 2 K is called integral, if the minimal polynomial of α has integer coecients. The set of all integral elements of K is denoted by OK . We will prove several properties of this set, e.g. that OK is a ring and that it has an integral basis. By using a fundamental theorem from algebraic number theory, Dirichlet's Unit Theorem, we can study the unit group × , dened as the set of all invertible elements OK of OK .
    [Show full text]
  • On Field Γ-Semiring and Complemented Γ-Semiring with Identity
    BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 8(2018), 189-202 DOI: 10.7251/BIMVI1801189RA Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p) ON FIELD Γ-SEMIRING AND COMPLEMENTED Γ-SEMIRING WITH IDENTITY Marapureddy Murali Krishna Rao Abstract. In this paper we study the properties of structures of the semi- group (M; +) and the Γ−semigroup M of field Γ−semiring M, totally ordered Γ−semiring M and totally ordered field Γ−semiring M satisfying the identity a + aαb = a for all a; b 2 M; α 2 Γand we also introduce the notion of com- plemented Γ−semiring and totally ordered complemented Γ−semiring. We prove that, if semigroup (M; +) is positively ordered of totally ordered field Γ−semiring satisfying the identity a + aαb = a for all a; b 2 M; α 2 Γ, then Γ-semigroup M is positively ordered and study their properties. 1. Introduction In 1995, Murali Krishna Rao [5, 6, 7] introduced the notion of a Γ-semiring as a generalization of Γ-ring, ring, ternary semiring and semiring. The set of all negative integers Z− is not a semiring with respect to usual addition and multiplication but Z− forms a Γ-semiring where Γ = Z: Historically semirings first appear implicitly in Dedekind and later in Macaulay, Neither and Lorenzen in connection with the study of a ring. However semirings first appear explicitly in Vandiver, also in connection with the axiomatization of Arithmetic of natural numbers.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • An Introduction to Skolem's P-Adic Method for Solving Diophantine
    An introduction to Skolem's p-adic method for solving Diophantine equations Josha Box July 3, 2014 Bachelor thesis Supervisor: dr. Sander Dahmen Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica Universiteit van Amsterdam Abstract In this thesis, an introduction to Skolem's p-adic method for solving Diophantine equa- tions is given. The main theorems that are proven give explicit algorithms for computing bounds for the amount of integer solutions of special Diophantine equations of the kind f(x; y) = 1, where f 2 Z[x; y] is an irreducible form of degree 3 or 4 such that the ring of integers of the associated number field has one fundamental unit. In the first chapter, an introduction to algebraic number theory is presented, which includes Minkovski's theorem and Dirichlet's unit theorem. An introduction to p-adic numbers is given in the second chapter, ending with the proof of the p-adic Weierstrass preparation theorem. The theory of the first two chapters is then used to apply Skolem's method in Chapter 3. Title: An introduction to Skolem's p-adic method for solving Diophantine equations Author: Josha Box, [email protected], 10206140 Supervisor: dr. Sander Dahmen Second grader: Prof. dr. Jan de Boer Date: July 3, 2014 Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam Science Park 904, 1098 XH Amsterdam http://www.science.uva.nl/math 3 Contents Introduction 6 Motivations . .7 1 Number theory 8 1.1 Prerequisite knowledge . .8 1.2 Algebraic numbers . 10 1.3 Unique factorization . 15 1.4 A geometrical approach to number theory .
    [Show full text]
  • Introduction to the P-Adic Space
    Introduction to the p-adic Space Joel P. Abraham October 25, 2017 1 Introduction From a young age, students learn fundamental operations with the real numbers: addition, subtraction, multiplication, division, etc. We intuitively understand that distance under the reals as the absolute value function, even though we never have had a fundamental introduction to set theory or number theory. As such, I found this topic to be extremely captivating, since it almost entirely reverses the intuitive notion of distance in the reals. Such a small modification to the definition of distance gives rise to a completely different set of numbers under which the typical axioms are false. Furthermore, this is particularly interesting since the p-adic system commonly appears in natural phenomena. Due to the versatility of this metric space, and its interesting uniqueness, I find the p-adic space a truly fascinating development in algebraic number theory, and thus chose to explore it further. 2 The p-adic Metric Space 2.1 p-adic Norm Definition 2.1. A metric space is a set with a distance function or metric, d(p, q) defined over the elements of the set and mapping them to a real number, satisfying: arXiv:1710.08835v1 [math.HO] 22 Oct 2017 (a) d(p, q) > 0 if p = q 6 (b) d(p,p)=0 (c) d(p, q)= d(q,p) (d) d(p, q) d(p, r)+ d(r, q) ≤ The real numbers clearly form a metric space with the absolute value function as the norm such that for p, q R ∈ d(p, q)= p q .
    [Show full text]
  • Algorithmic Factorization of Polynomials Over Number Fields
    Rose-Hulman Institute of Technology Rose-Hulman Scholar Mathematical Sciences Technical Reports (MSTR) Mathematics 5-18-2017 Algorithmic Factorization of Polynomials over Number Fields Christian Schulz Rose-Hulman Institute of Technology Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr Part of the Number Theory Commons, and the Theory and Algorithms Commons Recommended Citation Schulz, Christian, "Algorithmic Factorization of Polynomials over Number Fields" (2017). Mathematical Sciences Technical Reports (MSTR). 163. https://scholar.rose-hulman.edu/math_mstr/163 This Dissertation is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of Rose-Hulman Scholar. For more information, please contact [email protected]. Algorithmic Factorization of Polynomials over Number Fields Christian Schulz May 18, 2017 Abstract The problem of exact polynomial factorization, in other words expressing a poly- nomial as a product of irreducible polynomials over some field, has applications in algebraic number theory. Although some algorithms for factorization over algebraic number fields are known, few are taught such general algorithms, as their use is mainly as part of the code of various computer algebra systems. This thesis provides a summary of one such algorithm, which the author has also fully implemented at https://github.com/Whirligig231/number-field-factorization, along with an analysis of the runtime of this algorithm. Let k be the product of the degrees of the adjoined elements used to form the algebraic number field in question, let s be the sum of the squares of these degrees, and let d be the degree of the polynomial to be factored; then the runtime of this algorithm is found to be O(d4sk2 + 2dd3).
    [Show full text]
  • Second-Order Algebraic Theories (Extended Abstract)
    Second-Order Algebraic Theories (Extended Abstract) Marcelo Fiore and Ola Mahmoud University of Cambridge, Computer Laboratory Abstract. Fiore and Hur [10] recently introduced a conservative exten- sion of universal algebra and equational logic from first to second order. Second-order universal algebra and second-order equational logic respec- tively provide a model theory and a formal deductive system for lan- guages with variable binding and parameterised metavariables. This work completes the foundations of the subject from the viewpoint of categori- cal algebra. Specifically, the paper introduces the notion of second-order algebraic theory and develops its basic theory. Two categorical equiva- lences are established: at the syntactic level, that of second-order equa- tional presentations and second-order algebraic theories; at the semantic level, that of second-order algebras and second-order functorial models. Our development includes a mathematical definition of syntactic trans- lation between second-order equational presentations. This gives the first formalisation of notions such as encodings and transforms in the context of languages with variable binding. 1 Introduction Algebra started with the study of a few sample algebraic structures: groups, rings, lattices, etc. Based on these, Birkhoff [3] laid out the foundations of a general unifying theory, now known as universal algebra. Birkhoff's formalisation of the notion of algebra starts with the introduction of equational presentations. These constitute the syntactic foundations of the subject. Algebras are then the semantics or model theory, and play a crucial role in establishing the logical foundations. Indeed, Birkhoff introduced equational logic as a sound and complete formal deductive system for reasoning about algebraic structure.
    [Show full text]
  • Algebraic Number Theory
    Algebraic Number Theory William B. Hart Warwick Mathematics Institute Abstract. We give a short introduction to algebraic number theory. Algebraic number theory is the study of extension fields Q(α1; α2; : : : ; αn) of the rational numbers, known as algebraic number fields (sometimes number fields for short), in which each of the adjoined complex numbers αi is algebraic, i.e. the root of a polynomial with rational coefficients. Throughout this set of notes we use the notation Z[α1; α2; : : : ; αn] to denote the ring generated by the values αi. It is the smallest ring containing the integers Z and each of the αi. It can be described as the ring of all polynomial expressions in the αi with integer coefficients, i.e. the ring of all expressions built up from elements of Z and the complex numbers αi by finitely many applications of the arithmetic operations of addition and multiplication. The notation Q(α1; α2; : : : ; αn) denotes the field of all quotients of elements of Z[α1; α2; : : : ; αn] with nonzero denominator, i.e. the field of rational functions in the αi, with rational coefficients. It is the smallest field containing the rational numbers Q and all of the αi. It can be thought of as the field of all expressions built up from elements of Z and the numbers αi by finitely many applications of the arithmetic operations of addition, multiplication and division (excepting of course, divide by zero). 1 Algebraic numbers and integers A number α 2 C is called algebraic if it is the root of a monic polynomial n n−1 n−2 f(x) = x + an−1x + an−2x + ::: + a1x + a0 = 0 with rational coefficients ai.
    [Show full text]
  • Kernel Methods for Knowledge Structures
    Kernel Methods for Knowledge Structures Zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften (Dr. rer. pol.) von der Fakultät für Wirtschaftswissenschaften der Universität Karlsruhe (TH) genehmigte DISSERTATION von Dipl.-Inform.-Wirt. Stephan Bloehdorn Tag der mündlichen Prüfung: 10. Juli 2008 Referent: Prof. Dr. Rudi Studer Koreferent: Prof. Dr. Dr. Lars Schmidt-Thieme 2008 Karlsruhe Abstract Kernel methods constitute a new and popular field of research in the area of machine learning. Kernel-based machine learning algorithms abandon the explicit represen- tation of data items in the vector space in which the sought-after patterns are to be detected. Instead, they implicitly mimic the geometry of the feature space by means of the kernel function, a similarity function which maintains a geometric interpreta- tion as the inner product of two vectors. Knowledge structures and ontologies allow to formally model domain knowledge which can constitute valuable complementary information for pattern discovery. For kernel-based machine learning algorithms, a good way to make such prior knowledge about the problem domain available to a machine learning technique is to incorporate it into the kernel function. This thesis studies the design of such kernel functions. First, this thesis provides a theoretical analysis of popular similarity functions for entities in taxonomic knowledge structures in terms of their suitability as kernel func- tions. It shows that, in a general setting, many taxonomic similarity functions can not be guaranteed to yield valid kernel functions and discusses the alternatives. Secondly, the thesis addresses the design of expressive kernel functions for text mining applications. A first group of kernel functions, Semantic Smoothing Kernels (SSKs) retain the Vector Space Models (VSMs) representation of textual data as vec- tors of term weights but employ linguistic background knowledge resources to bias the original inner product in such a way that cross-term similarities adequately con- tribute to the kernel result.
    [Show full text]
  • Super-Multiplicativity of Ideal Norms in Number Fields
    Super-multiplicativity of ideal norms in number fields Stefano Marseglia Abstract In this article we study inequalities of ideal norms. We prove that in a subring R of a number field every ideal can be generated by at most 3 elements if and only if the ideal norm satisfies N(IJ) ≥ N(I)N(J) for every pair of non-zero ideals I and J of every ring extension of R contained in the normalization R˜. 1 Introduction When we are studying a number ring R, that is a subring of a number field K, it can be useful to understand the size of its ideals compared to the whole ring. The main tool for this purpose is the norm map which associates to every non-zero ideal I of R its index as an abelian subgroup N(I) = [R : I]. If R is the maximal order, or ring of integers, of K then this map is multiplicative, that is, for every pair of non-zero ideals I,J ⊆ R we have N(I)N(J) = N(IJ). If the number ring is not the maximal order this equality may not hold for some pair of non-zero ideals. For example, arXiv:1810.02238v2 [math.NT] 1 Apr 2020 if we consider the quadratic order Z[2i] and the ideal I = (2, 2i), then we have that N(I)=2 and N(I2)=8, so we have the inequality N(I2) > N(I)2. Observe that if every maximal ideal p of a number ring R satisfies N(p2) ≤ N(p)2, then we can conclude that R is the maximal order of K (see Corollary 2.8).
    [Show full text]
  • Foundations of Algebraic Theories and Higher Dimensional Categories
    Foundations of Algebraic Theories and Higher Dimensional Categories Soichiro Fujii arXiv:1903.07030v1 [math.CT] 17 Mar 2019 A Doctor Thesis Submitted to the Graduate School of the University of Tokyo on December 7, 2018 in Partial Fulfillment of the Requirements for the Degree of Doctor of Information Science and Technology in Computer Science ii Abstract Universal algebra uniformly captures various algebraic structures, by expressing them as equational theories or abstract clones. The ubiquity of algebraic structures in math- ematics and related fields has given rise to several variants of universal algebra, such as symmetric operads, non-symmetric operads, generalised operads, and monads. These variants of universal algebra are called notions of algebraic theory. Although notions of algebraic theory share the basic aim of providing a background theory to describe alge- braic structures, they use various techniques to achieve this goal and, to the best of our knowledge, no general framework for notions of algebraic theory which includes all of the examples above was known. Such a framework would lead to a better understand- ing of notions of algebraic theory by revealing their essential structure, and provide a uniform way to compare different notions of algebraic theory. In the first part of this thesis, we develop a unified framework for notions of algebraic theory which includes all of the above examples. Our key observation is that each notion of algebraic theory can be identified with a monoidal category, in such a way that theories correspond to monoid objects therein. We introduce a categorical structure called metamodel, which underlies the definition of models of theories.
    [Show full text]