Functional Brain Activity in Alzheimer Patients As
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wo 2010/117727 A2
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 14 October 2010 (14.10.2010) WO 2010/117727 A2 (51) International Patent Classification: TECHNOLOGY TRANSFER, NATIONAL INSTI¬ A61K 31/407 (2006.01) A61K 31/7105 (2006.01) TUTES OF HEALTH [US/US]; 601 1 Executive Boule A61K 31/40 (2006.01) A61K 31/711 (2006.01) vard, Ste 325, MSC 7660, Bethesda, Maryland A61K 38/16 (2006.01) A61P 25/00 (2006.01) 20892-7660 (US). (21) International Application Number: (72) Inventors; and PCT/US2010/029056 (75) Inventors/Applicants (for US only): ROGERS, Jack [USAJS]; 63 Sunnyside Ave., Arlington, Massachusetts (22) International Filing Date: 02474 (US). TANZI, Rudolph E. [US/US]; 3 Oceanside 29 March 2010 (29.03.2010) Drive, Hull, Massachusetts 02045 (US). MOIR, Robert (25) Filing Language: English [US/US]; 6 1 Tilden Rd, Scituate, Massachusetts 02066 (US). GREIG, Nigel [US/US]; 11 Anne Brent Garth, (26) Publication Language: English Phoenix, Maryland 2 113 1 (US). FRIEDLICH, Avi L. (30) Priority Data: [US/US]; 8 Dwyer Circle, Medford, Massachusetts 02155 61/164,729 30 March 2009 (30.03.2009) US (US). (71) Applicants (for all designated States except US): THE (74) Agents: KUGLER DEYOUNG, Janice et al; Fish & GENERAL HOSPITAL CORPORATION [US/US]; Richardson P.C , P.O. Box 1022, Minneapolis, Minnesota 55 Fruit Street, Boston, Massachusetts 021 14 (US). NA¬ 55440-1022 (US). TIONAL INSTITUTE OF AGING OFFICE OF [Continued on next page] (54) Title: PHENSERINE AND POSIPHEN FOR TREATING NEUROP SYCHIATRIC AND NEURODEGENERATIVE CON DITIONS Figure IA (57) Abstract: Described are methods for treating synucle- inopathy in a subject, by administering to the subject a ther 453 Abha-Syn apeutically effective dose of one or both of POSIPHEN and phenserine. -
Prosaic Foods and the Brain–Heart Connection in Alzheimer Disease
microorganisms Communication The Microbiota–Gut–Brain Axis–Heart Shunt Part II: Prosaic Foods and the Brain–Heart Connection in Alzheimer Disease Mark Obrenovich 1,2,3,4,5,*, Shams Tabrez 6,7, Bushra Siddiqui 8, Benjamin McCloskey 3 and George Perry 9 1 Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA 2 Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA 3 The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA; [email protected] 4 Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA 5 Departments of Chemistry and Biological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA 6 King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; [email protected] 7 Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia 8 North East Ohio College of Medicine, Rootstown, OH 44272, USA; [email protected] 9 Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; [email protected] * Correspondence: [email protected] Received: 31 December 2019; Accepted: 26 March 2020; Published: 31 March 2020 Abstract: There is a strong cerebrovascular component to brain aging, Alzheimer disease, and vascular dementia. Foods, common drugs, and the polyphenolic compounds contained in wine modulate health both directly and through the gut microbiota. This observation and novel findings centered on nutrition, biochemistry, and metabolism, as well as the newer insights we gain into the microbiota-gut-brain axis, now lead us to propose a shunt to this classic triad, which involves the heart and cerebrovascular systems. -
Pharmacodynamics of Cholinesterase Inhibitors Suggests Add-On
Journal of Alzheimer’s Disease 39 (2014) 423–440 423 DOI 10.3233/JAD-130845 IOS Press Pharmacodynamics of Cholinesterase Inhibitors Suggests Add-on Therapy with a Low-Dose Carbamylating Inhibitor in Patients on Long-Term Treatment with Rapidly Reversible Inhibitors Taher Darreh-Shoria,∗, Sharokh Makvand Hosseinia,c and Agneta Nordberga,b aDepartment of Neurobiology, Care Sciences and Society, Division of Alzheimer Neurobiology, Karolinska Institute, Stockholm, Sweden bDepartment of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden cFaculty of Psychology and Educational Sciences, Semnan University, Semnan, Iran Accepted 18 September 2013 Abstract. Despite three decades of intensive research in the field of Alzheimer’s disease (AD) and numerous clinical trials of new therapeutic agents, cholinesterase inhibitors (ChEIs) are still the mainstay of therapeutics for AD and dementia with Lewy bodies. Pharmacodynamic analyses of ChEIs provide paradoxical observations. Treatment with the rapidly reversible, non- carbamylating ChEIs (donepezil, galantamine, and tacrine) increases acetylcholinesterase (AChE) protein expression, whereas the carbamylating agent, rivastigmine, produces sustained inhibition with no significant change in AChE protein expression. Still, the symptomatic clinical efficacies of all these agents are similar. We report here for the first time that treatment with phenserine, another carbamylating ChEI, produces a sustained but mild inhibition of AChE in cerebrospinal fluid (CSF) of AD patients. We also -
PK of Medcm Against Nerve Agents, Which Have Been Integrated with PK and PD Data for the Nerve Agents Sarin and VX
UNIVERSITY OF SOUTHAMPTON FACULTY OF MEDICINE Institute of Developmental Sciences The Pharmacokinetics of Medical Countermeasures Against Nerve Agents by Stuart Jon Armstrong Thesis for the degree of Doctor of Philosophy November 2014 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF MEDICINE Institute of Developmental Sciences Thesis for the degree of Doctor of Philosophy THE PHARMACOKINETICS OF MEDICAL COUNTERMEASURES AGAINST NERVE AGENTS Stuart Jon Armstrong Nerve agents are organophosphorus compounds that irreversibly inhibit acetylcholinesterase, causing accumulation of the neurotransmitter acetylcholine and this excess leads to an overstimulation of acetylcholine receptors. Inhalation exposure to nerve agent can be lethal in minutes and conversely, skin exposure may be lethal over longer durations. Medical Countermeasures (MedCM) are fielded in response to the threat posed by nerve agents. MedCM with improved efficacy are being developed but the efficacy of these cannot be tested in humans, so their effectiveness is proven in animals. It is UK Government policy that all MedCM are licensed for human use. The aim of this study was to test the hypothesis that the efficacy of MedCM against nerve agent exposure by different routes could be better understood and rationalised through knowledge of the MedCM pharmacokinetics (PK). The PK of MedCM was determined in naïve and nerve agent poisoned guinea pigs. PK interactions between individual MedCM drugs when administered in combination were also investigated. In silico simulations to predict the concentration-time profiles of different administration regimens of the MedCM were completed using the PK parameters determined in vivo. These simulations were used to design subsequent in vivo PK studies and to explain or predict the efficacy or lack thereof for the MedCM. -
A Comprehensive Map of Disease Networks and Molecular Drug Discoveries for Glaucoma Haixin Wang1,2,3, Yanhui Deng1, Ling Wan4 & Lulin Huang1,2,3 ✉
www.nature.com/scientificreports OPEN A comprehensive map of disease networks and molecular drug discoveries for glaucoma Haixin Wang1,2,3, Yanhui Deng1, Ling Wan4 & Lulin Huang1,2,3 ✉ Glaucoma is the leading cause of irreversible blindness worldwide. The molecular etiology of glaucoma is complex and unclear. At present, there are few drugs available for glaucoma treatment. The aim of the present study was to perform a systematic analysis of glaucoma candidate drugs/chemicals based on glaucoma genes, including genetic factors and diferentially expressed (DE) genes. In total, 401 genes from the genetic databases and 1656 genes from the DE gene analysis were included in further analyses. In terms of glaucoma-related genetic factors, 54 pathways were signifcantly enriched (FDR < 0.05), and 96 pathways for DE genes were signifcantly enriched (FDR < 0.05). A search of the PheWAS database for diseases associated with glaucoma-related genes returned 1,289 diseases, and a search for diseases associated with DE glaucoma-related genes returned 1,356 diseases. Cardiovascular diseases, neurodegenerative diseases, cancer, and ophthalmic diseases were highly related to glaucoma genes. A search of the DGIdb, KEGG, and CLUE databases revealed a set of drugs/chemicals targeting glaucoma genes. A subsequent analysis of the electronic medical records (EMRs) of 136,128 patients treated in Sichuan Provincial People’s Hospital for candidate drug usage and the onset of glaucoma revealed nine candidate drugs. Among these drugs, individuals treated with nicardipine had the lowest incidence of glaucoma. Taken together with the information from the drug databases, the 40 most likely candidate drugs for glaucoma treatment were highlighted. -
=UDK 010 10.1515.SJECR-2016-0047.3.Indd
REVIEW PAPER REVIJALNI RAD REVIEW PAPER REVIJALNI RAD REVIEW PAPER MECHANISM AND CLINICAL IMPORTANCE OF RESPIRATORY FAILURE INDUCED BY ANTICHOLINESTERASES Anita Ivosevic1, Natasa Miletic2, Maja Vulovic3*, Zoran Vujkovic4, Snjezana Novakovic Bursac5, Slavko S. Cetkovic6, Ranko Skrbic7, and Milos P. Stojiljkovic2,7 1Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia 2Medical Faculty, University of East Sarajevo, Foča, Republic of Srpska, Bosnia & Herzegovina 3Department of Anatomy and Forensic Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia 4Neurology Clinic, University Clinical Centre of Republic of Srpska, Medical Faculty, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia & Herzegovina 5Institute for Physical Medicine and Rehabilitation „Dr Miroslav Zotovic“, Banja Luka, Republic of Srpska, Bosnia & Herzegovina 6Military Medical Academy, Belgrade, Serbia 7Department of Pharmacology, Toxicology & Clinical Pharmacology, Medical Faculty, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia & Herzegovina MEHANIZAM I KLINIČKA VAŽNOST RESPIRATORNE INSUFICIJENCIJE IZAZVANE ANTIHOLINESTERAZAMA Anita Ivošević1, Nataša Miletić2, Maja Vulović3*, Zoran Vujković4, Snježana Novaković Bursać5, Slavko S. Ćetković6, Ranko Škrbić7, and Miloš P. Stojiljković2,7 1Katedra za internu medicinu, Fakultet medicinskih nauka, Univerzitet u Kragujevcu, Kragujevac, Srbija 2Medicinski fakultet, Univerzitet u Istočnom Sarajevu, Foča, Republika Srpska, -
A Low Repeated Dose of Δ9-Tetrahydrocannabinol Affects Memory Performance Through Serotonergic Signalling in Mice
bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.446448; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A low repeated dose of Δ9-tetrahydrocannabinol affects memory performance through serotonergic signalling in mice Lorena Galera-López1, Victòria Salgado-Mendialdúa1, Estefanía Moreno2, Araceli Bergadà- Martínez1, Alexander F. Hoffman3, Irene Manzanares-Sierra1, Arnau Busquets-Garcia4, Vicent Casadó2, Carl R. Lupica3, Rafael Maldonado1,5, #, Andrés Ozaita1,5,# 1Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain. 2 Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, and Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain. 3 Electrophysiology Research Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States 4 Cell-type mechanisms in normal and pathological behaviour Laboratory. IMIM-Hospital del Mar Research Institute, PRBB, Barcelona, Spain. 5 IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain #Corresponding author: Andrés Ozaita, Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, C/ Doctor Aiguader 88, 08003 Barcelona, Spain. Phone: +34-93-3160823; Fax: + 34-93-3160901; e-mail: [email protected]. Rafael Maldonado, Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, C/ Doctor Aiguader 88, 08003 Barcelona, Spain. Phone: +34-93-3160824; Fax: + 34-93-3160901; e- mail: [email protected]. -
Anticholinesterases Zeynep Özdemir and Mehmet Abdullah Alagöz
Chapter Anticholinesterases Zeynep Özdemir and Mehmet Abdullah Alagöz Abstract Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are known serine hydrolase enzymes responsible for the hydrolysis of acetylcholine (ACh). Although the role of AChE in cholinergic transmission is well known, the role of BChE has not been elucidated sufficiently. The hydrolysis of acetylcholine in the synaptic healthy brain cells is mainly carried out by AChE; it is accepted that the contribution to the hydrolysis of BChE is very low, but both AChE and BChE are known to play an active role in neuronal development and cholinergic transmission. Myasthenia gravis (MG) is a muscle disease characterized by weakness in skeletal muscles and rapid fatigue. Anticholinesterases, which are not only related to the immune origin of the disease but also have only symp- tomatic benefit, have an indispensable role in the treatment of MG. Pyridostigmine, distigmine, neostigmine, and ambenonium are the standard anticholinesterase drugs used in the symptomatic treatment of MG. All of these compounds may increase the response of the myasthenic muscle to recurrent nerve impulses, primarily by protecting the endogenous ACh. Keywords: acetylcholine, acetylcholinesterase, butyrylcholinesterase, anticholinesterases, neostigmine, pyridostigmine, distigmine, ambenonium, myasthenia gravis 1. Introduction The autonomic nervous system (ANS) works out of our request, and it differs from the somatic system with this feature. Autonomic afferent and efferent fibers enter and exit the central nervous system through the spinal and cranial nerves. It connects with the medulla spinalis and intermediate neurons, which mediate autonomic reflexes in the brain stem [1, 2]. Changes in the internal and external environment and emotional factors affect autonomic activity through fibers, which descend from the hypothalamus. -
Ethnobotany: Chemistry and Medicinal Properties of Plants
Ethnobotany: Chemistry and Medicinal Properties of Plants Paclitaxel Pacific Yew (Taxus brevifolia) Aflatoxins and Epoxides: Explains Carcinogenicity Potency O O O O O Mixed Function O Oxidases O O O O O Aflatoxin B1 DNA . Produced by aspergillus fungi bases O (mycotoxins) O .Mutate p53 DNA which is involved in apoptosis and tumor suppression O HO DNA O O Glutathione Reacts Instead of DNA SH O O O H N HO N OH H O HN2 . SH group acts as a nucleophile vs bases of DNA to react with the epoxide ring of aflatoxin Ergots: Alkaloid Natural Source and Many Pharmaceutical Application Ergots belong to a large family of naturally occurring compounds known as alkaloids ( contain a nitrogen atom) Worldwide ~20,000 Kg of Ergot based drugs are used which is ~44,000 lbs Drugs used to treat a variety of conditions and illnesses 1) Parkinson’s Disease 2) Migraine Headaches 3) Uterotonic effects-stop bleeding following childbirth 4) Prolactin Inhibition-stop production of milk Constricts Blood vessels is a side effect of these compounds but is why is works to treat migraine headaches but can lead to gangrene Bromocriptine Ergotamine Ergometrine Ergots: Alkaloid Natural Source and Many Pharmaceutical Application LSD: Lysergic Acid Diethylamide Synthesized from Ergotamine and Ergotamine type of compounds by Albert Hoffman (Swiss chemist working for Sandoz Pharmaceuticals) ~1938 and resynthesized in 1943 when he discovered hallucinogenic properties Trying to stimulate respiratory system with constriction of blood vessels in uterous Initially discovered -