Assessment of Nuclear Energy Systems Based on a Closed Nuclear Fuel Cycle with Fast Reactors

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Nuclear Energy Systems Based on a Closed Nuclear Fuel Cycle with Fast Reactors IAEA-TECDOC-1639 Assessment of Nuclear Energy Systems Based on a Closed Nuclear Fuel Cycle with Fast Reactors A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) ASSESSMENT OF NUCLEAR ENERGY SYSTEMS BASED ON A CLOSED NUCLEAR FUEL CYCLE WITH FAST REACTORS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA NORWAY ALBANIA GREECE OMAN ALGERIA GUATEMALA PAKISTAN ANGOLA HAITI PALAU ARGENTINA HOLY SEE PANAMA ARMENIA HONDURAS PARAGUAY AUSTRALIA HUNGARY PERU AUSTRIA ICELAND PHILIPPINES AZERBAIJAN INDIA POLAND BAHRAIN INDONESIA PORTUGAL BANGLADESH IRAN, ISLAMIC REPUBLIC OF QATAR BELARUS IRAQ REPUBLIC OF MOLDOVA BELGIUM IRELAND ROMANIA BELIZE ISRAEL RUSSIAN FEDERATION BENIN ITALY SAUDI ARABIA BOLIVIA JAMAICA BOSNIA AND HERZEGOVINA JAPAN SENEGAL BOTSWANA JORDAN SERBIA BRAZIL KAZAKHSTAN SEYCHELLES BULGARIA KENYA SIERRA LEONE BURKINA FASO KOREA, REPUBLIC OF SINGAPORE BURUNDI KUWAIT SLOVAKIA CAMBODIA KYRGYZSTAN SLOVENIA CAMEROON LATVIA SOUTH AFRICA CANADA LEBANON SPAIN CENTRAL AFRICAN LESOTHO SRI LANKA REPUBLIC LIBERIA SUDAN CHAD LIBYAN ARAB JAMAHIRIYA SWEDEN CHILE LIECHTENSTEIN SWITZERLAND CHINA LITHUANIA SYRIAN ARAB REPUBLIC COLOMBIA LUXEMBOURG TAJIKISTAN CONGO MADAGASCAR THAILAND COSTA RICA MALAWI THE FORMER YUGOSLAV CÔTE D’IVOIRE MALAYSIA REPUBLIC OF MACEDONIA CROATIA MALI TUNISIA CUBA MALTA TURKEY CYPRUS MARSHALL ISLANDS UGANDA CZECH REPUBLIC MAURITANIA UKRAINE DEMOCRATIC REPUBLIC MAURITIUS UNITED ARAB EMIRATES OF THE CONGO MEXICO UNITED KINGDOM OF DENMARK MONACO GREAT BRITAIN AND DOMINICAN REPUBLIC MONGOLIA NORTHERN IRELAND ECUADOR MONTENEGRO EGYPT MOROCCO UNITED REPUBLIC EL SALVADOR MOZAMBIQUE OF TANZANIA ERITREA MYANMAR UNITED STATES OF AMERICA ESTONIA NAMIBIA URUGUAY ETHIOPIA NEPAL UZBEKISTAN FINLAND NETHERLANDS VENEZUELA FRANCE NEW ZEALAND VIETNAM GABON NICARAGUA YEMEN GEORGIA NIGER ZAMBIA GERMANY NIGERIA ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA-TECDOC-1639 ASSESSMENT OF NUCLEAR ENERGY SYSTEMS BASED ON A CLOSED NUCLEAR FUEL CYCLE WITH FAST REACTORS A REPORT OF THE INTERNATIONAL PROJECT ON INNOVATIVE NUCLEAR REACTORS AND FUEL CYCLES (INPRO) INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2010 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Sales and Promotion, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books For further information on this publication, please contact: Nuclear Power Technology Development Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria email: [email protected] ASSESSMENT OF NUCLEAR ENERGY SYSTEMS BASED ON A CLOSED NUCLEAR FUEL CYCLE WITH FAST REACTORS IAEA, VIENNA, 2010 IAEA-TECDOC-1639 ISBN 978-92-0-101410-8 ISSN 1011-4289 © IAEA, 2010 Printed by the IAEA in Austria January 2010 FOREWORD A Joint Study was started in 2005 and completed in 2007 within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Canada, China, France, India, Japan, the Republic of Korea, the Russian Federation, and Ukraine participated in this study. The objectives were to assess a nuclear energy system based on a closed fuel cycle (CNFC) with fast reactors (FR) regarding its sustainability, determine milestones for the nuclear energy system deployment, and establish frameworks for, and areas of, collaborative R&D work. The assessment was carried out in accordance with the requirements of INPRO methodology and guiding documents of the Joint Study developed and approved by the participating parties (Canada and Ukraine participated in the discussions during the Joint Study, but did not contribute to the assessments themselves). The Joint Study was implemented in steps. In its first step, nominated experts, during the course of extensive discussions, analyzed the country/region/world context data; discussed national and global scenarios of introduction of the CNFC-FR systems; identified technologies suitable for the INS; and arrived at a broad definition of a common CNFC-FR system. In the second step, the participants of the study examined characteristics of CNFC-FR systems for compliance with criteria of sustainability developed in the INPRO methodology in the area of economics, safety, environment, waste management, proliferation resistance, and infrastructure. The results of the study were submitted to and endorsed by the INPRO Steering Committee in meetings held in Vienna 2005 – 2007. The authors of the Joint Study report highly appreciate the valuable comments provided by delegates of the INPRO Steering Committee meetings as well as the advice and assistance of the other experts. Due to the length of the Joint Study report, a summary of the results was produced, which is the content of this publication. The full text of the Joint Study report is available as IAEA working material. The IAEA officer responsible for this publication was R. Beatty of the Division of Nuclear Power. EDITORIAL NOTE The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. CONTENTS SUMMARY...................................................................................................................... 1 1 INTRODUCTION ............................................................................................................ 6 2 NATIONAL NUCLEAR ENERGY SCENARIOS ......................................................... 7 2.1. National nuclear energy scenario of China ............................................................. 7 2.2. National nuclear energy scenario of France............................................................ 9 2.3. National nuclear energy scenario of India............................................................. 10 2.4. National nuclear energy scenario of Japan............................................................ 11 2.5. National nuclear energy scenario of the Republic of Korea ................................. 13 2.6. National nuclear energy scenario of the Russian Federation ................................ 15 3 COMPARISON OF NATIONAL ENERGY SCENARIOS.......................................... 17 3.1. Comparison of primary energy resources and structures of power supply ........... 17 3.2. Comparison of national approaches for development of CNFC-FR..................... 19 3.3. Comparison of global and national scenarios of nuclear power development...... 23 4 ASSESSMENT OF A CNFC-FR SYSTEM USING THE INPRO METHODOLOGY.................................................................................... 25 4.1. Definition of a reference model of a fast reactor system ...................................... 25 4.2. Assessment of a CNFC-FR system in the INPRO area of economics .................. 29 4.3. Assessment of CNFC-FR in the INPRO area of infrastructure............................. 31 4.4. Assessment of CNFC-FR in the INPRO area of proliferation resistance ............. 33 4.5. Assessment of CNFC-FR in the INPRO area of environment.............................. 34 4.6. Assessment of CNFC-FR in the INPRO area of waste management.................... 38 4.7. Assessment of CNFC-FR in the INPRO area of safety......................................... 42 5 EXAMPLES OF RESEARCH AND DEVELOPMENT FOR CNFC-FR..................... 45 REFERENCES......................................................................................................................... 49 ANNEX: FEEDBACK ON INPRO METHODOLOGY......................................................... 51 LIST OF ABBREVIATIONS .................................................................................................. 55 CONTRBUTORS TO THE JOINT STUDY........................................................................... 59 CONTRBUTORS TO DRAFTING AND REVIEW............................................................... 61 Summary The Joint Study was started in 2005 and completed in 2007. Canada, China, France, India, Japan, the Republic of Korea, the Russian Federation, and Ukraine participated. The objectives were to:
Recommended publications
  • Fast-Spectrum Reactors Technology Assessment
    Clean Power Quadrennial Technology Review 2015 Chapter 4: Advancing Clean Electric Power Technologies Technology Assessments Advanced Plant Technologies Biopower Clean Power Carbon Dioxide Capture and Storage Value- Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells U.S. DEPARTMENT OF Supercritical Carbon Dioxide Brayton Cycle ENERGY Wind Power Clean Power Quadrennial Technology Review 2015 Fast-spectrum Reactors Chapter 4: Technology Assessments Background and Current Status From the initial conception of nuclear energy, it was recognized that full realization of the energy content of uranium would require the development of fast reactors with associated nuclear fuel cycles.1 Thus, fast reactor technology was a key focus in early nuclear programs in the United States and abroad, with the first usable nuclear electricity generated by a fast reactor—Experimental Breeder Reactor I (EBR-I)—in 1951. Test and/or demonstration reactors were built and operated in the United States, France, Japan, United Kingdom, Russia, India, Germany, and China—totaling about 20 reactors with 400 operating years to date. These previous reactors and current projects are summarized in Table 4.H.1.2 Currently operating test reactors include BOR-60 (Russia), Fast Breeder Test Reactor (FBTR) (India), and China Experimental Fast Reactor (CEFR) (China). The Russian BN-600 demonstration reactor has been operating as a power reactor since 1980.
    [Show full text]
  • Advanced Nuclear Power and Fuel Cycle Technologies: Outlook and Policy Options
    Order Code RL34579 Advanced Nuclear Power and Fuel Cycle Technologies: Outlook and Policy Options July 11, 2008 Mark Holt Specialist in Energy Policy Resources, Science, and Industry Division Advanced Nuclear Power and Fuel Cycle Technologies: Outlook and Policy Options Summary Current U.S. nuclear energy policy focuses on the near-term construction of improved versions of existing nuclear power plants. All of today’s U.S. nuclear plants are light water reactors (LWRs), which are cooled by ordinary water. Under current policy, the highly radioactive spent nuclear fuel from LWRs is to be permanently disposed of in a deep underground repository. The Bush Administration is also promoting an aggressive U.S. effort to move beyond LWR technology into advanced reactors and fuel cycles. Specifically, the Global Nuclear Energy Partnership (GNEP), under the Department of Energy (DOE) is developing advanced reprocessing (or recycling) technologies to extract plutonium and uranium from spent nuclear fuel, as well as an advanced reactor that could fully destroy long-lived radioactive isotopes. DOE’s Generation IV Nuclear Energy Systems Initiative is developing other advanced reactor technologies that could be safer than LWRs and produce high-temperature heat to make hydrogen. DOE’s advanced nuclear technology programs date back to the early years of the Atomic Energy Commission in the 1940s and 1950s. In particular, it was widely believed that breeder reactors — designed to produce maximum amounts of plutonium from natural uranium — would be necessary for providing sufficient fuel for a large commercial nuclear power industry. Early research was also conducted on a wide variety of other power reactor concepts, some of which are still under active consideration.
    [Show full text]
  • The Nuclear Fuel Cycle
    THE COLLECTION > From the uranium mine> toI wNTasRtOeD dUisCpToIsOaN l 1 > The atom 2 > Radioactivity 3 > Radiation and man 4 > Energy 5 > Nuclear energy: fusion and fission 6 > How a nuclear reactor works 7 > The nuclear fuel cycle 7 > The nuclear fuel cycle FROM RESEARCH 8 > Microelectronics 9 > The laser: a concentrate of light TO INDUSTRY 10 > Medical imaging 11 > Nuclear astrophysics 12 > Hydrogen 7 >>TThhee nnuucclleeaarr ffuueell ccyyccllee UPSTREAM THE REACTOR: PREPARING THE FUEL IN THE REACTOR: FUEL CONSUMPTION DOWNSTREAM THE REACTOR: REPROCESSING NUCLEAR WASTE NUCLEAR WASTE © Commissariat à l’’Énergie Atomique et aux Energies Alternatives, 2005 Communication Division Bâtiment Siège - 91191 Gif-sur-Yvette cedex www.cea.fr ISSN 1637-5408. From the uranium mine to waste disposal 7 > The nuclear fuel cycle From the uranium mine to waste disposal 7 > The nuclear fuel cycle 2 > CONTENTS > INTRODUCTION 3 Uranium ore is extracted from open-pit mines – such as the McClear mines in Canada seen here – or underground workings. a m e g o C © “The nuclear fuel cycle includes an erray UPSTREAM THE REACTOR: of industrial operations, from uranium PREPARING THE FUEL 4 e mining to the disposal of radioactive l Extracting uranium from the ore 5 waste.” c Concentrating and refining uranium 6 y Enriching uranium 6 c Enrichment methods 8 l introduction uel is a material that can be burnt to pro - IN THE REACTOR: FUEL CONSUMPTION 9 Fvide heat. The most familiar fuels are wood, e Preparing fuel assemblies 10 coal, natural gas and oil. By analogy, the ura - e g a nium used in nuclear power plants is called Per unit or mass (e.g.
    [Show full text]
  • Simulations of the Chinese Nuclear Fuel Cycle Scenario Using a New Code
    Simulations of the Chinese Nuclear Fuel Cycle Scenario Using a New Code YOUPENG ZHANG Master of Science Diploma Work Department of Reactor Physics Royal Institute of Technology Stockholm, 2007 TRITA-FYS 2007:42 Abstract One of the most important affairs in the nuclear industry is the fuel cycle situation prediction. It affects the energy company’s profit, environment and even the safety of reactor operation. For these reasons, a series of computer codes have been generated to simulate the fuel cycle scenario including NFCSim, ORION and so on. At the Department of Reactor Physics, a new fuel cycle simulation code is under development and this code will be used in the present thesis. In order to simulate the nuclides transmutation chains, MCNP was first used to calculate the neutron spectrum and cross section data for the reactor cores, using JEF 3.0 and EAF 99 data libraries. The main task of this project is to simulate the present and future status of all the facilities in Chinese reactor park. Three consecutive scenarios (present, near-term and long-term) are defined for this comparison, simulation time scale is set to be 208 years (1992~2200) and four groups of nuclides (major actinides, minor actinides, major fission products and safety related nuclides) are defined and presented. Power balance scenario, plutonium self-sustained scenario and CIAE proposals are discussed individually as choices of reactor parks’ future development. The result is that at least 70 years (cooling storage time is not included) are needed to transmute the minor actinides inventory after the large-scale FBR (Fast Breeder Reactor) technology is mature enough for large scale commissioning in plutonium-sustained scenario.
    [Show full text]
  • Nuclear Fuel Cycles Technology Assessment
    Clean Power Quadrennial Technology Review 2015 Chapter 4: Advancing Clean Electric Power Technologies Technology Assessments Advanced Plant Technologies Biopower Carbon Dioxide Capture and Storage Clean Power Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle U.S. DEPARTMENT OF Wind Power ENERGY Clean Power Quadrennial Technology Review 2015 Nuclear Fuel Cycles Chapter 4: Technology Assessments Introduction and Background The Nuclear Fuel Cycle (NFC) is defined as the total set of operations required to produce fission energy and manage the associated nuclear materials. It can have different attributes, including the extension of natural resources, or the minimization of waste disposal requirements. The NFC, as depicted in Figure 4.O.1, is comprised of a set of operations that include the extraction of uranium (U) resources from the earth (and possibly from seawater), uranium enrichment and fuel fabrication, use of the fuel in reactors, interim storage of used nuclear fuel, the optional recycle of the used fuel, and the final disposition of used fuel and waste forms from the recycling processes. Thorium (Th) fuel cycles have been proposed also, but have not been commercially implemented). Figure 4.O.1 Schematic of the uranium based Nuclear Fuel Cycle 1 Quadrennial Technology Review 2015 Clean Power TA 4.O: Nuclear Fuel Cycles The nuclear fuel cycle is often grouped into three classical components (front-end, reactor, and back-end): Front End: The focus of the front end of the nuclear fuel cycle is to deliver fabricated fuel to the reactor.
    [Show full text]
  • Restoring US Leadership in Nuclear Energy
    JUNE 2013 Restoring U.S. Leadership in Nuclear Energy A National Security Imperative The CSIS Commission on Nuclear Energy Policy in the United States Restoring U.S. Leadership in Nuclear Energy A National Security Imperative THE CSIS COMMISSION ON NUCLEAR ENERGY POLICY IN THE UNITED STATES A Report of the CSIS Nuclear Energy Program June 2013 CHARTING our future ROWMAN & LITTLEFIELD Lanham • Boulder • New York • Toronto • Plymouth, UK About CSIS—50th Anniversary Year For 50 years, the Center for Strategic and International Studies (CSIS) has developed solutions to the world’s greatest policy challenges. As we celebrate this milestone, CSIS scholars are developing strategic insights and bipartisan policy solutions to help decisionmakers chart a course toward a better world. CSIS is a nonprofit organization headquartered in Washington, D.C. The Center’s 220 full-time staff and large network of affiliated scholars conduct research and analysis and develop policy initiatives that look into the future and anticipate change. Founded at the height of the Cold War by David M. Abshire and Admiral Arleigh Burke, CSIS was dedicated to finding ways to sustain American prominence and prosperity as a force for good in the world. Since 1962, CSIS has become one of the world’s preeminent international institutions focused on defense and security; regional stability; and transnational challenges ranging from energy and climate to global health and economic integration. Former U.S. senator Sam Nunn has chaired the CSIS Board of Trustees since 1999. Former deputy secretary of defense John J. Hamre became the Center’s president and chief executive officer in April 2000.
    [Show full text]
  • Plutonium and China's Future Nuclear Fuel Cycle Jasper Pandza, International Institute for Strategic Studies [email protected]
    1 Plutonium and China’s Future Nuclear Fuel Cycle Jasper Pandza, International Institute for Strategic Studies [email protected] 13th PIIC Beijing Seminar on International Security: Building a World of Sustainable Peace and Stability Beijing, China October 31 - 3 November, 2012 Introduction Following the March 2011 Fukushima accident, the State Council, China’s highest policy- making body, suspended approvals for new nuclear plants and initiated a range of other measures aimed at improving the country’s nuclear safety provisions. The suspension of new construction approvals is expected to be lifted within the coming months,1 after being in place for longer than initially expected. The State Council’s actions demonstrated a new resolve among China’s leadership to give nuclear safety considerations greater priority compared to the economic benefits of nuclear power. The Fukushima accident apparently gave policy makers a reason to fear that a similar accident in China would put the government-run nuclear programme at serious risk. Throughout the past year, China has not moved away from its long-standing commitment to a closed, plutonium-based nuclear fuel cycle with spent fuel reprocessing and fast-neutron reactors. However, China’s response to Fukushima appears to have delayed progress in that direction. The construction of conventional light water reactors (LWR) will soon gather greater pace, but further delays in China’s fuel-cycle plans can be expected, as resources may need to be diverted towards improving the safety of current and future LWRs and to accelerating the shift from generation II to generation III LWR technology. This cautious approach should be welcomed, because it provides China with further opportunity to reconsider the economic rationale and the security risks associated with reprocessing and fast-reactor technologies.
    [Show full text]
  • Plutonium Management in the Medium Term
    Nuclear Science ISBN 92-64-02151-5 Plutonium Management in the Medium Term A Review by the OECD/NEA Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles (WPPR) © OECD 2003 NEA4451 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: − to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; − to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and − to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The following countries became Members subsequently through accession at the dates indicated hereafter: Japan (28th April 1964), Finland (28th January 1969), Australia (7th June 1971), New Zealand (29th May 1973), Mexico (18th May 1994), the Czech Republic (21st December 1995), Hungary (7th May 1996), Poland (22nd November 1996); Korea (12th December 1996) and the Slovak Republic (14th December 2000). The Commission of the European Communities takes part in the work of the OECD (Article 13 of the OECD Convention).
    [Show full text]
  • Revisiting the Thorium-Uranium Nuclear Fuel Cycle
    s e r u t Revisiting the a e f thorium-uranium nuclear fuel cycle [DOI: 10.1051/EPN:2007007 ] Sylvain David a, Elisabeth Huffer b and Hervé Nifenecker b, Energy Panel of the French Physics Society a Institut de Physique Nucléaire d’Orsay • France b Laboratoire de Physique Subatomique et de Cosmologie (IN2P3, Grenoble) • France thorium-uranium nuclear fuel cycle, in which the main amounts of uranium 233 available remained tiny, insufficient to HE fissile nucleus is uranium 233 and fuel regeneration is allow the rapid development of a thorium-uranium concept. ensured through neutron capture on thorium 232 offers many It appears today that the growth rate of nuclear power Tpotential advantages as compared to the better known urani - worldwide does not require the fast development of breeder re - um-plutonium fuel cycle. These include, in particular, reduced actor concepts. It is then possible, as we show in this paper, to high activity long lived waste production and less likelihood of constitute a stockpile of uranium 233 that could allow the nuclear proliferation. A brief description of the nuclear reactors development of a fleet of thorium-uranium reactors. We show being considered for this fuel cycle is given. We show also that a also that such a concept has many major advantages, in partic - strategy can be put together to constitute the initial uranium ular concerning the disposal of radioactive waste and the risks 233 supply for such reactors, using today’s pressurized water of nuclear proliferation. We give a brief description of the types reactors and a thorium and plutonium mixed oxide fuel.
    [Show full text]
  • Nuclear Energy Outlook – 2008
    Nuclear Energy Outlook – 2008 This Nuclear Energy Outlook (NEO) is the first of its kind and Nuclear Energy Outlook – 2008 responds to the renewed interest in nuclear energy by many OECD member countries. World energy demand continues to grow unabated and is leading to very serious concerns about security of supply, soaring energy prices and climate change stemming from fossil fuel consumption. Nuclear energy is being increasingly seen as having a role to play in addressing these concerns. This Outlook uses the most current data and statistics available and provides projections up to 2050 to consider growth scenarios and potential implications on the future use of nuclear energy. It also offers unique analyses and recommendations on the possible challenges that lie ahead. NUCLEAR ENERGY OUTLOOK Topics covered by the NEO include nuclear power’s current status and projected trends, environmental impacts, uranium resources and security of supply, costs, safety and regulation, radioactive 2008 waste management and decommissioning, non-proliferation and security, legal frameworks, infrastructure, stakeholder engagement, advanced reactors and advanced fuel cycles. www.nea.fr (66 2008 08 1 P) € 105 -:HSTCQE=UZYVUX: ISBN 978-92-64-05410-3 NUCLEAR ENERGY AGENCY Erratum Nuclear Energy Outlook 2008 ISBN 978-92-64-05410-3 Page 278 Table 9.2: “Annex 2” states whose ratification is necessary for entry into force of the CTBT* State Ratification State Ratification Algeria 11 July 2003 Israel Argentina 04 Dec. 1998 Italy 01 Feb. 1999 Australia 09 July 1998 Japan 08 July 1997 Austria 13 March 1998 Korea 24 Sept. 1999 Bangladesh 08 March 2000 Mexico 05 Oct.
    [Show full text]
  • Strategic Energy Plan
    Provisional Translation Strategic Energy Plan July, 2018 Table of Contents Introduction・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3 Chapter 1 Structural Issues, Changes in Circumstances, and Policy Timeframe Section 1. Structural issues faced by Japan・・・・・・・・・・・・・・・・・6 1. Vulnerability due to high dependency on overseas energy resources 2. Mid- to long-term changes in the energy demand structure (population decline, etc.) 3. Instability of resource prices (increased energy demand in emerging countries, etc.) 4. Increasing global greenhouse gas emissions Section 2 Changes in energy environments ・・・・・・・・9 1. Start of inter-technology competition for decarbonization 2. Geopolitical risks increased by technology changes 3. Intensified competition between nations and firms Section 3 Achievement of an optimal energy mix by 2030 and its relation with the 2050 scenario・・・・・・13 Chapter 2 Basic Policies and Measures towards 2030 Section 1 Basic policies・・・・・・・・・・・・・・・・・・・・・・・・・・15 1. Confirmation of the basic viewpoint of the energy policy (3E + S) 2. Building of a “multilayered and diversified flexible energy supply-demand structure” and policy direction 3. Position of each energy source in the primary energy structure and its policy direction 4.Principles of the secondary energy structure Section 2 Policy measures towards 2030・・・・・・・・・・・・・・・・・・・30 1. Promotion of securing of resources 2. Realization of a thorough energy efficient society 3. Efforts for the utilization of renewable energy as the major power source 4. Re-establishment of the nuclear energy policy 5. Efficient and stable use of fossil fuel 6. Fundamental reinforcement of measures for realizing a hydrogen society 7. Promotion of energy system reform 8. Enhancment of resilience of the domestic energy supply networks 9. Improvement of the secondary energy structure 10.
    [Show full text]
  • THE FUTURE of NUCLEAR ENERGY to 2030 and ITS IMPLICATIONS for SAFETY, SECURITY and NONPROLIFERATION Part 1 – the Future of Nuclear Energy to 2030
    THE FUTURE OF NUCLEAR ENERGY TO 2030 AND IT’S IMPLICATIONS FOR SAFETY, SECURITY AND NON PROLIFERATION: PART 2 – THE FUTURE OF NUCLEAR ENERGY TO 2030 TO THE FUTURE OF NUCLEAR ENERGY 2 – PART AND NON PROLIFERATION: SECURITY FOR SAFETY, AND IT’S IMPLICATIONS 2030 TO THE FUTURE OF NUCLEAR ENERGY THE FUTURE OF NUCLEAR ENERGY TO 2030 AND ITS IMPLICATIONS FOR SAFETY, SECURITY AND NONPROLIFERATION Part 1 – The Future of Nuclear Energy to 2030 57 Erb Street West TREVOR FINDLAY Waterloo, Ontario N2L 6C2, Canada tel +1 519 885 2444 fax +1 519 885 5450 www.cigionline.org CIGIONLINE.ORG Addressing International Governance Challenges The Future of Nuclear Energy to 2030 and its Implications for Safety, Security and Nonproliferation Part 1 – The Future of Nuclear Energy to 2030 Trevor Findlay CIGI’s Nuclear Energy Futures Project is conducted in partnership with the Canadian Centre for Treaty Compliance (CCTC) at the Norman Paterson School of International Affairs, Carleton University, Ottawa. The project is chaired by CIGI Distinguished Fellow Louise Fréchette and directed by CIGI Senior Fellow Trevor Findlay, director of CCTC. CIGI gratefully acknowledges the Government of Ontario’s contribution to this project. The opinions expressed in this report are those of the author(s) and do not necessarily reflect the views of The Centre for International Governance Innovation, its Board of Directors and/or Board of Governors, or the Government of Ontario. Copyright © 2010 The Centre for International Governance Innovation (CIGI), Waterloo, Ontario, Canada (www.cigionline.org). This work is licensed under a Creative Commons Attribution — Noncommercial — No Derivatives License.
    [Show full text]