The Multivariate Normal Distribution=1See Last Slide For

Total Page:16

File Type:pdf, Size:1020Kb

The Multivariate Normal Distribution=1See Last Slide For Moment-generating Functions Definition Properties χ2 and t distributions The Multivariate Normal Distribution1 STA 302 Fall 2017 1See last slide for copyright information. 1 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ2 and t distributions 2 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Joint moment-generating function Of a p-dimensional random vector x t0x Mx(t) = E e x t +x t +x t For example, M (t1; t2; t3) = E e 1 1 2 2 3 3 (x1;x2;x3) Just write M(t) if there is no ambiguity. Section 4.3 of Linear models in statistics has some material on moment-generating functions (optional). 3 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Uniqueness Proof omitted Joint moment-generating functions correspond uniquely to joint probability distributions. M(t) is a function of F (x). Step One: f(x) = @ ··· @ F (x). @x1 @xp @ @ R x2 R x1 For example, f(y1; y2) dy1dy2 @x1 @x2 −∞ −∞ 0 Step Two: M(t) = R ··· R et xf(x) dx Could write M(t) = g (F (x)). Uniqueness says the function g is one-to-one, so that F (x) = g−1 (M(t)). 4 / 40 Moment-generating Functions Definition Properties χ2 and t distributions g−1 (M(t)) = F (x) A two-variable example g−1 (M(t)) = F (x) −1 R 1 R 1 x1t1+x2t2 R x2 R x1 g −∞ −∞ e f(x1; x2) dx1dx2 = −∞ −∞ f(y1; y2) dy1dy2 5 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Theorem Two random vectors x1 and x2 are independent if and only if the moment-generating function of their joint distribution is the product of their moment-generating functions. 6 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Proof Two random vectors are independent if and only if the moment-generating function of their joint distribution is the product of their moment-generating functions. Independence therefore the MGFs factor is an exercise. Mx1;x2 (t1; t2) = Mx1 (t1)Mx2 (t2) Z 1 Z 1 x1t1 x2t2 = e fx1 (x1) dx1 e fx2 (x2) dx2 −∞ −∞ Z 1 Z 1 x1t1 x2t2 = e e fx1 (x1)fx2 (x2) dx1dx2 −∞ −∞ Z 1 Z 1 x1t1+x2t2 = e fx1 (x1)fx2 (x2) dx1dx2 −∞ −∞ 7 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Proof continued R 1 R 1 x1t1+x2t2 Have Mx1;x2 (t1; t2) = −∞ −∞ e fx1 (x1)fx2 (x2) dx1dx2. Using F (x) = g−1 (M(t)), Z 1 Z 1 −1 x1t1+x2t2 F (x1; x2) = g e fx1 (x1)fx2 (x2) dx1dx2 −∞ −∞ Z x2 Z x1 = fx1 (y1)fx2 (y2) dy1dy2 −∞ −∞ Z x2 Z x1 = fx2 (y2) fx1 (y1) dy1 dy2 −∞ −∞ Z x2 = fx2 (y2)Fx1 (x1) dy2 −∞ Z x2 = Fx1 (x1) fx2 (y2) dy2 −∞ = Fx1 (x1) Fx2 (x2) So that x1 and x2 are independent. 8 / 40 Moment-generating Functions Definition Properties χ2 and t distributions A helpful distinction If x1 and x2 are independent, M (t) = M (t)M (t) x1+x2 x1 x2 x1 and x2 are independent if and only if M (t ; t ) = M (t )M (t ) x1;x2 1 2 x1 1 x2 2 9 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Theorem: Functions of independent random vectors are independent Show x1 and x2 independent implies that y1 = g1(x1) and y2 = g2(x2) are independent. y g (x ) t Let y = 1 = 1 1 and t = 1 : Then y2 g2(x2) t2 t0y My(t) = E e 0 0 0 0 = E et1y1+t2y2 = E et1y1 et2y2 0 0 = E et1g1(x1)et2g2(x2) ZZ 0 0 t1g1(x1) t2g2(x2) = e e fx1 (x1)fx2 (x2) dx1dx2 Z 0 Z 0 t2g2(x2) t1g1(x1) = e fx2 (x2) e fx1 (x1) dx1 dx2 Z 0 t2g2(x2) = e fx2 (x2)Mg1(x1)(t1)dx2 = Mg1(x1)(t1)Mg2(x2)(t2) = My1 (t1)My2 (t2) So y1 and y2 are independent. 10 / 40 Moment-generating Functions Definition Properties χ2 and t distributions 0 MAx(t) = Mx(A t) Analogue of Max(t) = Mx(at) t0Ax MAx(t) = E e 0 0 = E e(A t) x 0 = Mx(A t) Note that t is the same length as y = Ax: The number of rows in A. 11 / 40 Moment-generating Functions Definition Properties χ2 and t distributions t0c Mx+c(t) = e Mx(t) ct Analogue of Mx+c(t) = e Mx(t) t0(x+c) Mx+c(t) = E e 0 0 = E et x+t c 0 0 = et c E et x t0c = e Mx(t) 12 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Distributions may be defined in terms of moment-generating functions Build up the multivariate normal from univariate normals. 1 2 2 2 µt+ 2 σ t If y ∼ N(µ, σ ), then My (t) = e Moment-generating functions correspond uniquely to probability distributions. So define a normal random variable with expected value µ and variance σ2 as a random variable with µt+ 1 σ2t2 moment-generating function e 2 . This has one surprising consequence . 13 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Degenerate random variables A degenerate random variable has all the probability concentrated at a single value, say P rfy = y0g = 1. Then yt My (t) = E(e ) X = eytp(y) y y0t = e · p(y0) = ey0t · 1 = ey0t 14 / 40 Moment-generating Functions Definition Properties χ2 and t distributions y0t If P rfy = y0g = 1, then My (t) = e µt+ 1 σ2t2 2 This is of the form e 2 with µ = y0 and σ = 0. So y ∼ N(y0; 0). That is, degenerate random variables are \normal" with variance zero. Call them singular normals. This will be surprisingly handy later. 15 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Independent standard normals i:i:d: Let z1; : : : ; zp ∼ N(0; 1). 0 1 z1 . z = @ . A zp E(z) = 0 cov(z) = Ip 16 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Moment-generating function of z µt+ 1 σ2t2 Using e 2 p Y Mz (t) = Mzj (tj) j=1 p Y 1 t2 = e 2 j j=1 1 Pp t2 = e 2 j=1 j 1 t0t = e 2 17 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Transform z to get a general multivariate normal Remember: A non-negative definite means v0Av ≥ 0 Let Σ be a p × p symmetric non-negative definite matrix and p 1=2 µ 2 R . Let y = Σ z + µ. The elements of y are linear combinations of independent standard normals. Linear combinations of normals should be normal. y has a multivariate distribution. We'd like to call y a multivariate normal. 18 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Moment-generating function of y = Σ1=2z + µ 0 1 0 0 t c 2 t t Remember: MAx(t) = Mx(A t) and Mx+c(t) = e Mx(t) and Mz (t) = e M (t) = M (t) y Σ1=2z+µ 0 = et µ M (t) Σ1=2z t0µ 1=2 0 = e Mz (Σ t) t0µ 1=2 = e Mz (Σ t) t0µ 1 (Σ1=2t)0(Σ1=2t) = e e 2 t0µ 1 t0Σ1=2Σ1=2t = e e 2 t0µ 1 t0Σt = e e 2 t0µ+ 1 t0Σt = e 2 So define a multivariate normal random variable y as one with 0 1 0 t µ+ 2 t Σt moment-generating function My (t) = e . 19 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Compare univariate and multivariate normal moment-generating functions 1 2 2 µt+ 2 σ t Univariate My (t) = e 0 1 0 t µ+ 2 t Σt Multivariate My (t) = e So the univariate normal is a special case of the multivariate normal with p = 1. 20 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Mean and covariance matrix For a univariate normal, E(y) = µ and V ar(y) = σ2 Recall y = Σ1=2z + µ. E(y) = µ cov(y) = Σ1=2cov(z)Σ1=20 = Σ1=2 I Σ1=2 = Σ We will say y is multivariate normal with expected value µ and variance-covariance matrix Σ, and write y ∼ Np(µ; Σ). 0 1 0 t µ+ 2 t Σt Note that because My (t) = e , µ and Σ completely determine the distribution. 21 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Probability density function of y ∼ Np(µ; Σ) Remember, Σ is only positive semi-definite. It is easy to write down the density of z ∼ Np(0;I) as a product of standard normals. If Σ is strictly positive definite (and not otherwise), the density of y = Σ1=2z + µ can be obtained using the Jacobian Theorem as 1 1 0 −1 f(y) = 1 p exp − (y − µ) Σ (y − µ) jΣj 2 (2π) 2 2 This is usually how the multivariate normal is defined. 22 / 40 Moment-generating Functions Definition Properties χ2 and t distributions Σ positive definite? Positive definite means that for any non-zero p × 1 vector a, we have a0Σa > 0. Pp Since the one-dimensional random variable w = i=1 aiyi may be written as w = a0y and V ar(w) = cov(a0y) = a0Σa, it is natural to require that Σ be positive definite. All it means is that every non-zero linear combination of y values has a positive variance.
Recommended publications
  • On Moments of Folded and Truncated Multivariate Normal Distributions
    On Moments of Folded and Truncated Multivariate Normal Distributions Raymond Kan Rotman School of Management, University of Toronto 105 St. George Street, Toronto, Ontario M5S 3E6, Canada (E-mail: [email protected]) and Cesare Robotti Terry College of Business, University of Georgia 310 Herty Drive, Athens, Georgia 30602, USA (E-mail: [email protected]) April 3, 2017 Abstract Recurrence relations for integrals that involve the density of multivariate normal distributions are developed. These recursions allow fast computation of the moments of folded and truncated multivariate normal distributions. Besides being numerically efficient, the proposed recursions also allow us to obtain explicit expressions of low order moments of folded and truncated multivariate normal distributions. Keywords: Multivariate normal distribution; Folded normal distribution; Truncated normal distribution. 1 Introduction T Suppose X = (X1;:::;Xn) follows a multivariate normal distribution with mean µ and k kn positive definite covariance matrix Σ. We are interested in computing E(jX1j 1 · · · jXnj ) k1 kn and E(X1 ··· Xn j ai < Xi < bi; i = 1; : : : ; n) for nonnegative integer values ki = 0; 1; 2;:::. The first expression is the moment of a folded multivariate normal distribution T jXj = (jX1j;:::; jXnj) . The second expression is the moment of a truncated multivariate normal distribution, with Xi truncated at the lower limit ai and upper limit bi. In the second expression, some of the ai's can be −∞ and some of the bi's can be 1. When all the bi's are 1, the distribution is called the lower truncated multivariate normal, and when all the ai's are −∞, the distribution is called the upper truncated multivariate normal.
    [Show full text]
  • 5.1 Convergence in Distribution
    556: MATHEMATICAL STATISTICS I CHAPTER 5: STOCHASTIC CONVERGENCE The following definitions are stated in terms of scalar random variables, but extend naturally to vector random variables defined on the same probability space with measure P . Forp example, some results 2 are stated in terms of the Euclidean distance in one dimension jXn − Xj = (Xn − X) , or for se- > quences of k-dimensional random variables Xn = (Xn1;:::;Xnk) , 0 1 1=2 Xk @ 2A kXn − Xk = (Xnj − Xj) : j=1 5.1 Convergence in Distribution Consider a sequence of random variables X1;X2;::: and a corresponding sequence of cdfs, FX1 ;FX2 ;::: ≤ so that for n = 1; 2; :: FXn (x) =P[Xn x] : Suppose that there exists a cdf, FX , such that for all x at which FX is continuous, lim FX (x) = FX (x): n−!1 n Then X1;:::;Xn converges in distribution to random variable X with cdf FX , denoted d Xn −! X and FX is the limiting distribution. Convergence of a sequence of mgfs or cfs also indicates conver- gence in distribution, that is, if for all t at which MX (t) is defined, if as n −! 1, we have −! () −!d MXi (t) MX (t) Xn X: Definition : DEGENERATE DISTRIBUTIONS The sequence of random variables X1;:::;Xn converges in distribution to constant c if the limiting d distribution of X1;:::;Xn is degenerate at c, that is, Xn −! X and P [X = c] = 1, so that { 0 x < c F (x) = X 1 x ≥ c Interpretation: A special case of convergence in distribution occurs when the limiting distribution is discrete, with the probability mass function only being non-zero at a single value, that is, if the limiting random variable is X, then P [X = c] = 1 and zero otherwise.
    [Show full text]
  • A Study of Non-Central Skew T Distributions and Their Applications in Data Analysis and Change Point Detection
    A STUDY OF NON-CENTRAL SKEW T DISTRIBUTIONS AND THEIR APPLICATIONS IN DATA ANALYSIS AND CHANGE POINT DETECTION Abeer M. Hasan A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2013 Committee: Arjun K. Gupta, Co-advisor Wei Ning, Advisor Mark Earley, Graduate Faculty Representative Junfeng Shang. Copyright c August 2013 Abeer M. Hasan All rights reserved iii ABSTRACT Arjun K. Gupta, Co-advisor Wei Ning, Advisor Over the past three decades there has been a growing interest in searching for distribution families that are suitable to analyze skewed data with excess kurtosis. The search started by numerous papers on the skew normal distribution. Multivariate t distributions started to catch attention shortly after the development of the multivariate skew normal distribution. Many researchers proposed alternative methods to generalize the univariate t distribution to the multivariate case. Recently, skew t distribution started to become popular in research. Skew t distributions provide more flexibility and better ability to accommodate long-tailed data than skew normal distributions. In this dissertation, a new non-central skew t distribution is studied and its theoretical properties are explored. Applications of the proposed non-central skew t distribution in data analysis and model comparisons are studied. An extension of our distribution to the multivariate case is presented and properties of the multivariate non-central skew t distri- bution are discussed. We also discuss the distribution of quadratic forms of the non-central skew t distribution. In the last chapter, the change point problem of the non-central skew t distribution is discussed under different settings.
    [Show full text]
  • Parameter Specification of the Beta Distribution and Its Dirichlet
    %HWD'LVWULEXWLRQVDQG,WV$SSOLFDWLRQV 3DUDPHWHU6SHFLILFDWLRQRIWKH%HWD 'LVWULEXWLRQDQGLWV'LULFKOHW([WHQVLRQV 8WLOL]LQJ4XDQWLOHV -5HQpYDQ'RUSDQG7KRPDV$0D]]XFKL (Submitted January 2003, Revised March 2003) I. INTRODUCTION.................................................................................................... 1 II. SPECIFICATION OF PRIOR BETA PARAMETERS..............................................5 A. Basic Properties of the Beta Distribution...............................................................6 B. Solving for the Beta Prior Parameters...................................................................8 C. Design of a Numerical Procedure........................................................................12 III. SPECIFICATION OF PRIOR DIRICHLET PARAMETERS................................. 17 A. Basic Properties of the Dirichlet Distribution...................................................... 18 B. Solving for the Dirichlet prior parameters...........................................................20 IV. SPECIFICATION OF ORDERED DIRICHLET PARAMETERS...........................22 A. Properties of the Ordered Dirichlet Distribution................................................. 23 B. Solving for the Ordered Dirichlet Prior Parameters............................................ 25 C. Transforming the Ordered Dirichlet Distribution and Numerical Stability ......... 27 V. CONCLUSIONS........................................................................................................ 31 APPENDIX...................................................................................................................
    [Show full text]
  • The Normal Moment Generating Function
    MSc. Econ: MATHEMATICAL STATISTICS, 1996 The Moment Generating Function of the Normal Distribution Recall that the probability density function of a normally distributed random variable x with a mean of E(x)=and a variance of V (x)=2 is 2 1 1 (x)2/2 (1) N(x; , )=p e 2 . (22) Our object is to nd the moment generating function which corresponds to this distribution. To begin, let us consider the case where = 0 and 2 =1. Then we have a standard normal, denoted by N(z;0,1), and the corresponding moment generating function is dened by Z zt zt 1 1 z2 Mz(t)=E(e )= e √ e 2 dz (2) 2 1 t2 = e 2 . To demonstate this result, the exponential terms may be gathered and rear- ranged to give exp zt exp 1 z2 = exp 1 z2 + zt (3) 2 2 1 2 1 2 = exp 2 (z t) exp 2 t . Then Z 1t2 1 1(zt)2 Mz(t)=e2 √ e 2 dz (4) 2 1 t2 = e 2 , where the nal equality follows from the fact that the expression under the integral is the N(z; = t, 2 = 1) probability density function which integrates to unity. Now consider the moment generating function of the Normal N(x; , 2) distribution when and 2 have arbitrary values. This is given by Z xt xt 1 1 (x)2/2 (5) Mx(t)=E(e )= e p e 2 dx (22) Dene x (6) z = , which implies x = z + . 1 MSc. Econ: MATHEMATICAL STATISTICS: BRIEF NOTES, 1996 Then, using the change-of-variable technique, we get Z 1 1 2 dx t zt p 2 z Mx(t)=e e e dz 2 dz Z (2 ) (7) t zt 1 1 z2 = e e √ e 2 dz 2 t 1 2t2 = e e 2 , Here, to establish the rst equality, we have used dx/dz = .
    [Show full text]
  • Package 'Distributional'
    Package ‘distributional’ February 2, 2021 Title Vectorised Probability Distributions Version 0.2.2 Description Vectorised distribution objects with tools for manipulating, visualising, and using probability distributions. Designed to allow model prediction outputs to return distributions rather than their parameters, allowing users to directly interact with predictive distributions in a data-oriented workflow. In addition to providing generic replacements for p/d/q/r functions, other useful statistics can be computed including means, variances, intervals, and highest density regions. License GPL-3 Imports vctrs (>= 0.3.0), rlang (>= 0.4.5), generics, ellipsis, stats, numDeriv, ggplot2, scales, farver, digest, utils, lifecycle Suggests testthat (>= 2.1.0), covr, mvtnorm, actuar, ggdist RdMacros lifecycle URL https://pkg.mitchelloharawild.com/distributional/, https: //github.com/mitchelloharawild/distributional BugReports https://github.com/mitchelloharawild/distributional/issues Encoding UTF-8 Language en-GB LazyData true Roxygen list(markdown = TRUE, roclets=c('rd', 'collate', 'namespace')) RoxygenNote 7.1.1 1 2 R topics documented: R topics documented: autoplot.distribution . .3 cdf..............................................4 density.distribution . .4 dist_bernoulli . .5 dist_beta . .6 dist_binomial . .7 dist_burr . .8 dist_cauchy . .9 dist_chisq . 10 dist_degenerate . 11 dist_exponential . 12 dist_f . 13 dist_gamma . 14 dist_geometric . 16 dist_gumbel . 17 dist_hypergeometric . 18 dist_inflated . 20 dist_inverse_exponential . 20 dist_inverse_gamma
    [Show full text]
  • Iam 530 Elements of Probability and Statistics
    IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS LECTURE 4-SOME DISCERETE AND CONTINUOUS DISTRIBUTION FUNCTIONS SOME DISCRETE PROBABILITY DISTRIBUTIONS Degenerate, Uniform, Bernoulli, Binomial, Poisson, Negative Binomial, Geometric, Hypergeometric DEGENERATE DISTRIBUTION • An rv X is degenerate at point k if 1, Xk P X x 0, ow. The cdf: 0, Xk F x P X x 1, Xk UNIFORM DISTRIBUTION • A finite number of equally spaced values are equally likely to be observed. 1 P(X x) ; x 1,2,..., N; N 1,2,... N • Example: throw a fair die. P(X=1)=…=P(X=6)=1/6 N 1 (N 1)(N 1) E(X) ; Var(X) 2 12 BERNOULLI DISTRIBUTION • An experiment consists of one trial. It can result in one of 2 outcomes: Success or Failure (or a characteristic being Present or Absent). • Probability of Success is p (0<p<1) 1 with probability p Xp;0 1 0 with probability 1 p P(X x) px (1 p)1 x for x 0,1; and 0 p 1 1 E(X ) xp(y) 0(1 p) 1p p y 0 E X 2 02 (1 p) 12 p p V (X ) E X 2 E(X ) 2 p p2 p(1 p) p(1 p) Binomial Experiment • Experiment consists of a series of n identical trials • Each trial can end in one of 2 outcomes: Success or Failure • Trials are independent (outcome of one has no bearing on outcomes of others) • Probability of Success, p, is constant for all trials • Random Variable X, is the number of Successes in the n trials is said to follow Binomial Distribution with parameters n and p • X can take on the values x=0,1,…,n • Notation: X~Bin(n,p) Consider outcomes of an experiment with 3 Trials : SSS y 3 P(SSS) P(Y 3) p(3) p3 SSF, SFS, FSS y 2 P(SSF SFS FSS) P(Y 2) p(2) 3p2 (1 p) SFF, FSF, FFS y 1 P(SFF FSF FFS ) P(Y 1) p(1) 3p(1 p)2 FFF y 0 P(FFF ) P(Y 0) p(0) (1 p)3 In General: n n! 1) # of ways of arranging x S s (and (n x) F s ) in a sequence of n positions x x!(n x)! 2) Probability of each arrangement of x S s (and (n x) F s ) p x (1 p)n x n 3)P(X x) p(x) p x (1 p)n x x 0,1,..., n x • Example: • There are black and white balls in a box.
    [Show full text]
  • The Length-Biased Versus Random Sampling for the Binomial and Poisson Events Makarand V
    Journal of Modern Applied Statistical Methods Volume 12 | Issue 1 Article 10 5-1-2013 The Length-Biased Versus Random Sampling for the Binomial and Poisson Events Makarand V. Ratnaparkhi Wright State University, [email protected] Uttara V. Naik-Nimbalkar Pune University, Pune, India Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons Recommended Citation Ratnaparkhi, Makarand V. and Naik-Nimbalkar, Uttara V. (2013) "The Length-Biased Versus Random Sampling for the Binomial and Poisson Events," Journal of Modern Applied Statistical Methods: Vol. 12 : Iss. 1 , Article 10. DOI: 10.22237/jmasm/1367381340 Available at: http://digitalcommons.wayne.edu/jmasm/vol12/iss1/10 This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState. Journal of Modern Applied Statistical Methods Copyright © 2013 JMASM, Inc. May 2013, Vol. 12, No. 1, 54-57 1538 – 9472/13/$95.00 The Length-Biased Versus Random Sampling for the Binomial and Poisson Events Makarand V. Ratnaparkhi Uttara V. Naik-Nimbalkar Wright State University, Pune University, Dayton, OH Pune, India The equivalence between the length-biased and the random sampling on a non-negative, discrete random variable is established. The length-biased versions of the binomial and Poisson distributions are discussed. Key words: Length-biased data, weighted distributions, binomial, Poisson, convolutions. Introduction binomial distribution (probabilities), which was The occurrence of so-called length-biased data appropriate at that time.
    [Show full text]
  • Volatility Modeling Using the Student's T Distribution
    Volatility Modeling Using the Student’s t Distribution Maria S. Heracleous Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Economics Aris Spanos, Chair Richard Ashley Raman Kumar Anya McGuirk Dennis Yang August 29, 2003 Blacksburg, Virginia Keywords: Student’s t Distribution, Multivariate GARCH, VAR, Exchange Rates Copyright 2003, Maria S. Heracleous Volatility Modeling Using the Student’s t Distribution Maria S. Heracleous (ABSTRACT) Over the last twenty years or so the Dynamic Volatility literature has produced a wealth of uni- variateandmultivariateGARCHtypemodels.Whiletheunivariatemodelshavebeenrelatively successful in empirical studies, they suffer from a number of weaknesses, such as unverifiable param- eter restrictions, existence of moment conditions and the retention of Normality. These problems are naturally more acute in the multivariate GARCH type models, which in addition have the problem of overparameterization. This dissertation uses the Student’s t distribution and follows the Probabilistic Reduction (PR) methodology to modify and extend the univariate and multivariate volatility models viewed as alternative to the GARCH models. Its most important advantage is that it gives rise to internally consistent statistical models that do not require ad hoc parameter restrictions unlike the GARCH formulations. Chapters 1 and 2 provide an overview of my dissertation and recent developments in the volatil- ity literature. In Chapter 3 we provide an empirical illustration of the PR approach for modeling univariate volatility. Estimation results suggest that the Student’s t AR model is a parsimonious and statistically adequate representation of exchange rate returns and Dow Jones returns data.
    [Show full text]
  • Strategic Information Transmission and Stochastic Orders
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Szalay, Dezsö Working Paper Strategic information transmission and stochastic orders SFB/TR 15 Discussion Paper, No. 386 Provided in Cooperation with: Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich, Collaborative Research Center Transregio 15: Governance and the Efficiency of Economic Systems Suggested Citation: Szalay, Dezsö (2012) : Strategic information transmission and stochastic orders, SFB/TR 15 Discussion Paper, No. 386, Sonderforschungsbereich/Transregio 15 - Governance and the Efficiency of Economic Systems (GESY), München, http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-14011-6 This Version is available at: http://hdl.handle.net/10419/93951 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence.
    [Show full text]
  • The Rth Moment About the Origin of a Random Variable X, Denoted By
    SAMPLE MOMENTS 1. POPULATION MOMENTS 1.1. Moments about the origin (raw moments). The rth moment about the origin of a random 0 r variable X, denoted by µr, is the expected value of X ; symbolically, 0 r µr =E(X ) (1) = X xr f(x) (2) x for r = 0, 1, 2, . when X is discrete and 0 r µr =E(X ) v (3) when X is continuous. The rth moment about the origin is only defined if E[ Xr ] exists. A mo- 0 ment about the origin is sometimes called a raw moment. Note that µ1 = E(X)=µX , the mean of the distribution of X, or simply the mean of X. The rth moment is sometimes written as function of θ where θ is a vector of parameters that characterize the distribution of X. If there is a sequence of random variables, X1,X2,...Xn, we will call the rth population moment 0 of the ith random variable µi, r and define it as 0 r µ i,r = E (X i) (4) 1.2. Central moments. The rth moment about the mean of a random variable X, denoted by µr,is r the expected value of ( X − µX ) symbolically, r µr =E[(X − µX ) ] r (5) = X ( x − µX ) f(x) x for r = 0, 1, 2, . when X is discrete and r µr =E[(X − µX ) ] ∞ r (6) =R−∞ (x − µX ) f(x) dx r when X is continuous. The rth moment about the mean is only defined if E[ (X - µX) ] exists. The rth moment about the mean of a random variable X is sometimes called the rth central moment of r X.
    [Show full text]
  • Discrete Random Variables Randomness
    Discrete Random Variables Randomness • The word random effectively means unpredictable • In engineering practice we may treat some signals as random to simplify the analysis even though they may not actually be random Random Variable Defined X A random variable () is the assignment of numerical values to the outcomes of experiments Random Variables Examples of assignments of numbers to the outcomes of experiments. Discrete-Value vs Continuous- Value Random Variables •A discrete-value (DV) random variable has a set of distinct values separated by values that cannot occur • A random variable associated with the outcomes of coin flips, card draws, dice tosses, etc... would be DV random variable •A continuous-value (CV) random variable may take on any value in a continuum of values which may be finite or infinite in size Probability Mass Functions The probability mass function (pmf ) for a discrete random variable X is P x = P X = x . X () Probability Mass Functions A DV random variable X is a Bernoulli random variable if it takes on only two values 0 and 1 and its pmf is 1 p , x = 0 P x p , x 1 X ()= = 0 , otherwise and 0 < p < 1. Probability Mass Functions Example of a Bernoulli pmf Probability Mass Functions If we perform n trials of an experiment whose outcome is Bernoulli distributed and if X represents the total number of 1’s that occur in those n trials, then X is said to be a Binomial random variable and its pmf is n x nx p 1 p , x 0,1,2,,n P x () {} X ()= x 0 , otherwise Probability Mass Functions Binomial pmf Probability Mass Functions If we perform Bernoulli trials until a 1 (success) occurs and the probability of a 1 on any single trial is p, the probability that the k1 first success will occur on the kth trial is p()1 p .
    [Show full text]