Claims Frequency Distribution Models

Total Page:16

File Type:pdf, Size:1020Kb

Claims Frequency Distribution Models Claims Frequency Distribution Models Chapter 6 Stat 477 - Loss Models Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 1 / 19 Introduction Introduction Here we introduce a large class of counting distributions, which are discrete distributions with support consisting of non-negative integers. Generally used for modeling number of events, but in an insurance context, the number of claims within a certain period, e.g. one year. We call these claims frequency models. Let N denote the number of events (or claims). Its probability mass function (pmf), pk = Pr(N = k), for k = 0; 1; 2;:::, gives the probability that exactly k events (or claims) occur. Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 2 / 19 Introduction probability generating function The probability generating function N P1 k Recall the pgf of N: PN (z) = E(z ) = k=0 pkz . Just like the mgf, pgf also generates moments: 0 00 PN (1) = E(N) and PN (1) = E[N(N − 1)]: More importantly, it generates probabilities: dm P (m)(z) = E zN = E[N(N − 1) ··· (N − m + 1)zN−m] N dzm 1 X k−m = k(k − 1) ··· (k − m + 1)z pk k=m Thus, we see that 1 P (m)(0) = m! p or p = P (m)(0): N m m m! Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 3 / 19 Some discrete distributions Some familiar discrete distributions Some of the most commonly used distributions for number of claims: Binomial (with Bernoulli as special case) Poisson Geometric Negative Binomial The (a; b; 0) class The (a; b; 1) class Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 4 / 19 Bernoulli random variables Bernoulli random variables N is Bernoulli if it takes only one of two possible outcomes: 1; if a claim occurs N = : 0; otherwise q is the standard symbol for the probability of a claim, i.e. Pr(N = 1) = q. We write N ∼ Bernoulli(q). Mean E(N) = q and variance Var(N) = q(1 − q) Probability generating function: PN (z) = qz + (1 − q) Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 5 / 19 Binomial random variables Binomial random variables We write N ∼ Binomial(m; q) if N has a Binomial distribution with pmf: m m! p = Pr(N = k) = qk(1 − q)m−k = qk(1 − q)m−k; k k k!(m − k)! for k = 0; : : : ; m. Binomial r.v. is also the sum of independent Bernoulli's with Pm N = k=1 Nk where each Nk ∼ Bernoulli(q). Mean E(N) = mq and variance Var(N) = mq(1 − q) Probability generating function: m PN (z) = [qz + (1 − q)] Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 6 / 19 Poisson random variables Poisson random variables N ∼ Poisson(λ) if pmf is λk p = P (X = k) = e−λ ; for k = 0; 1; 2;::: k k! Mean and variance are equal: E(N) = Var(N) = λ Probability generating function of a Poisson: λ(z−1) PN (z) = e : Sums of independent Poissons: If N1;:::;Nn be n independent Poisson variables with parameters λ1; : : : ; λn, then the sum N = N1 + ··· + Nn has a Poisson distribution with parameter λ = λ1 + ··· + λn. Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 7 / 19 Poisson random variables decomposition Decomposition property of the Poisson Suppose a certain number, N, of events will occur and N ∼ Poisson(λ). Suppose further that each event is either a Type 1 event with probability p or a Type 2 event with probability 1 − p. Let N1 and N2 be the number of Types 1 and 2 events, respectively, so that N = N1 + N2. Result: N1 and N2 are independent Poisson random variables with respective means E(N1) = λp and E(N2) = λ(1 − p): Proof to be provided in class. This result can be extended to several types, say 1; 2; : : : ; n, with N = N1 + ··· + Nn. Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 8 / 19 Poisson random variables example Example Suppose you have a portfolio of m independent and homogeneous risks where the total number of claims from the portfolio has a Poisson distribution with mean parameter λ. Suppose the number of homogeneous risks in the portfolio was changed to m∗. Prove that the total number of claims in the new portfolio still has a Poisson distribution. Identify its mean parameter. Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 9 / 19 Negative binomial random variable Negative binomial random variable N has a Negative Binomial distribution, written N ∼ NB(β; r), if its pmf can be expressed as k + r − 1 1 r β k p = Pr(N = k) = ; k k 1 + β 1 + β for k = 0; 1; 2;::: where r > 0; β > 0. Probability generating function of a Negative Binomial: −r PN (z) = [1 − β(z − 1)] : Mean: E(N) = rβ Variance: Var(N) = rβ(1 + β). Clearly, since β > 0, the variance of the NB exceeds the mean. Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 10 / 19 Negative binomial random variable Geometric Geometric random variable The Geometric distribution is a special case of the Negative Binomial with r = 1. N is said to be a Geometric r.v. and written as N ∼ Geometric(p) if its pmf is therefore expressed as 1 β k p = Pr(N = k) = ; for k = 0; 1; 2;:::: k 1 + β 1 + β Mean is E(N) = β and variance is Var(N) = β(1 + β). Its pgf is: 1 P (z) = N 1 − β(z − 1) Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 11 / 19 Negative binomial random variable mixture of Poissons Negative Binomial as a mixture of Poissons Suppose that conditionally on the parameter risk parameter Λ = λ, the random variable N is Poisson with mean λ. To evaluate the unconditional probability of N, use the law of total probability: Z 1 Z 1 e−λλk pk = Pr(N = k j Λ = λ)u(λ)dλ = u(λ)dλ, 0 0 k! where u(·) is the pdf of Λ. In the case where Λ has a gamma distribution, it can be shown (to be done in lecture) that N has a Negative Binomial distribution. In effect, the mixed Poisson, with a gamma mixing distribution, is equivalent to a Negative Binomial. Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 12 / 19 Negative binomial random variable limiting case Limiting case of the Negative Binomial Prove that the Poisson distribution is a limiting case of the Negative Binomial distribution. Proof to be discussed in class. Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 13 / 19 Negative binomial random variable SOA question SOA question Actuaries have modeled auto windshield claim frequencies and have concluded that the number of windshield claims filed per year per driver follows the Poisson distribution with parameter λ, where λ follows the gamma distribution with mean 3 and variance 3. Calculate the probability that a driver selected at random will file no more than 1 windshield claim next year. Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 14 / 19 Special class of distributions the (a; b; 0) class Special class of distributions The (a; b; 0) class of distributions satisfies the recursion equations of the general form: p b k = a + ; for k = 1; 2;:::: pk−1 k The three distributions (including Geometric as special case of NB) are the only distributions that belong to this class: Binomial, Poisson, and Negative Binomial. It can be shown that the applicable parameters a and b are: Distribution Values of a and b q q Binomial(m; q) a = − 1−q , b = (m + 1) 1−q Poisson(λ) a = 0, b = λ β β NB(β; r) a = 1+β , b = (r − 1) 1+β Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 15 / 19 Special class of distributions the (a; b; 0) class Example Suppose N is a counting distribution satisfying the recursive probabilities: p 4 1 k = − ; pk−1 k 3 for k = 1; 2;::: Identify the distribution of N. Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 16 / 19 Special class of distributions the (a; b; 0) class SOA question The distribution of accidents for 84 randomly selected policies is as follows: Number of Accidents Number of Policies 0 32 1 26 2 12 3 7 4 4 5 2 6 1 Identify the frequency model that best represents these data. Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 17 / 19 Truncation and modification at zero the (a; b; 1) class Truncation and modification at zero The (a; b; 1) class of distributions satisfies the recursion equations of the general form: p b k = a + ; for k = 2; 3;:::: pk−1 k Only difference with the (a; b; 0) class is the recursion here begins at p1 instead of p0. The values from k = 1 to k = 1 are the same up to a constant of proportionality. For the class to be a distribution, the remaining probability must be set for k = 0. zero-truncated distributions: the case when p0 = 0 zero-modified distributions: the case when p0 > 0 The distributions in the second subclass is indeed a mixture of an (a; b; 0) and a degenerate distribution. A zero-modified distribution can be viewed as a zero-truncated by setting p0 = 0. Chapter 6 (Stat 477) Claims Frequency Models Brian Hartman - BYU 18 / 19 Truncation and modification at zero illustrative example Illustrative example Consider the zero-modified Geometric distribution with probabilities 1 p = 0 2 12k−1 p = ; for k = 1; 2; 3;::: k 6 3 Derive the probability generating function, the mean and the variance of this distribution.
Recommended publications
  • Effect of Probability Distribution of the Response Variable in Optimal Experimental Design with Applications in Medicine †
    mathematics Article Effect of Probability Distribution of the Response Variable in Optimal Experimental Design with Applications in Medicine † Sergio Pozuelo-Campos *,‡ , Víctor Casero-Alonso ‡ and Mariano Amo-Salas ‡ Department of Mathematics, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; [email protected] (V.C.-A.); [email protected] (M.A.-S.) * Correspondence: [email protected] † This paper is an extended version of a published conference paper as a part of the proceedings of the 35th International Workshop on Statistical Modeling (IWSM), Bilbao, Spain, 19–24 July 2020. ‡ These authors contributed equally to this work. Abstract: In optimal experimental design theory it is usually assumed that the response variable follows a normal distribution with constant variance. However, some works assume other probability distributions based on additional information or practitioner’s prior experience. The main goal of this paper is to study the effect, in terms of efficiency, when misspecification in the probability distribution of the response variable occurs. The elemental information matrix, which includes information on the probability distribution of the response variable, provides a generalized Fisher information matrix. This study is performed from a practical perspective, comparing a normal distribution with the Poisson or gamma distribution. First, analytical results are obtained, including results for the linear quadratic model, and these are applied to some real illustrative examples. The nonlinear 4-parameter Hill model is next considered to study the influence of misspecification in a Citation: Pozuelo-Campos, S.; dose-response model. This analysis shows the behavior of the efficiency of the designs obtained in Casero-Alonso, V.; Amo-Salas, M.
    [Show full text]
  • Lecture.7 Poisson Distributions - Properties, Normal Distributions- Properties
    Lecture.7 Poisson Distributions - properties, Normal Distributions- properties Theoretical Distributions Theoretical distributions are 1. Binomial distribution Discrete distribution 2. Poisson distribution 3. Normal distribution Continuous distribution Discrete Probability distribution Bernoulli distribution A random variable x takes two values 0 and 1, with probabilities q and p ie., p(x=1) = p and p(x=0)=q, q-1-p is called a Bernoulli variate and is said to be Bernoulli distribution where p and q are probability of success and failure. It was given by Swiss mathematician James Bernoulli (1654-1705) Example • Tossing a coin(head or tail) • Germination of seed(germinate or not) Binomial distribution Binomial distribution was discovered by James Bernoulli (1654-1705). Let a random experiment be performed repeatedly and the occurrence of an event in a trial be called as success and its non-occurrence is failure. Consider a set of n independent trails (n being finite), in which the probability p of success in any trail is constant for each trial. Then q=1-p is the probability of failure in any trail. 1 The probability of x success and consequently n-x failures in n independent trails. But x successes in n trails can occur in ncx ways. Probability for each of these ways is pxqn-x. P(sss…ff…fsf…f)=p(s)p(s)….p(f)p(f)…. = p,p…q,q… = (p,p…p)(q,q…q) (x times) (n-x times) Hence the probability of x success in n trials is given by x n-x ncx p q Definition A random variable x is said to follow binomial distribution if it assumes non- negative values and its probability mass function is given by P(X=x) =p(x) = x n-x ncx p q , x=0,1,2…n q=1-p 0, otherwise The two independent constants n and p in the distribution are known as the parameters of the distribution.
    [Show full text]
  • 5.1 Convergence in Distribution
    556: MATHEMATICAL STATISTICS I CHAPTER 5: STOCHASTIC CONVERGENCE The following definitions are stated in terms of scalar random variables, but extend naturally to vector random variables defined on the same probability space with measure P . Forp example, some results 2 are stated in terms of the Euclidean distance in one dimension jXn − Xj = (Xn − X) , or for se- > quences of k-dimensional random variables Xn = (Xn1;:::;Xnk) , 0 1 1=2 Xk @ 2A kXn − Xk = (Xnj − Xj) : j=1 5.1 Convergence in Distribution Consider a sequence of random variables X1;X2;::: and a corresponding sequence of cdfs, FX1 ;FX2 ;::: ≤ so that for n = 1; 2; :: FXn (x) =P[Xn x] : Suppose that there exists a cdf, FX , such that for all x at which FX is continuous, lim FX (x) = FX (x): n−!1 n Then X1;:::;Xn converges in distribution to random variable X with cdf FX , denoted d Xn −! X and FX is the limiting distribution. Convergence of a sequence of mgfs or cfs also indicates conver- gence in distribution, that is, if for all t at which MX (t) is defined, if as n −! 1, we have −! () −!d MXi (t) MX (t) Xn X: Definition : DEGENERATE DISTRIBUTIONS The sequence of random variables X1;:::;Xn converges in distribution to constant c if the limiting d distribution of X1;:::;Xn is degenerate at c, that is, Xn −! X and P [X = c] = 1, so that { 0 x < c F (x) = X 1 x ≥ c Interpretation: A special case of convergence in distribution occurs when the limiting distribution is discrete, with the probability mass function only being non-zero at a single value, that is, if the limiting random variable is X, then P [X = c] = 1 and zero otherwise.
    [Show full text]
  • 1 One Parameter Exponential Families
    1 One parameter exponential families The world of exponential families bridges the gap between the Gaussian family and general dis- tributions. Many properties of Gaussians carry through to exponential families in a fairly precise sense. • In the Gaussian world, there exact small sample distributional results (i.e. t, F , χ2). • In the exponential family world, there are approximate distributional results (i.e. deviance tests). • In the general setting, we can only appeal to asymptotics. A one-parameter exponential family, F is a one-parameter family of distributions of the form Pη(dx) = exp (η · t(x) − Λ(η)) P0(dx) for some probability measure P0. The parameter η is called the natural or canonical parameter and the function Λ is called the cumulant generating function, and is simply the normalization needed to make dPη fη(x) = (x) = exp (η · t(x) − Λ(η)) dP0 a proper probability density. The random variable t(X) is the sufficient statistic of the exponential family. Note that P0 does not have to be a distribution on R, but these are of course the simplest examples. 1.0.1 A first example: Gaussian with linear sufficient statistic Consider the standard normal distribution Z e−z2=2 P0(A) = p dz A 2π and let t(x) = x. Then, the exponential family is eη·x−x2=2 Pη(dx) / p 2π and we see that Λ(η) = η2=2: eta= np.linspace(-2,2,101) CGF= eta**2/2. plt.plot(eta, CGF) A= plt.gca() A.set_xlabel(r'$\eta$', size=20) A.set_ylabel(r'$\Lambda(\eta)$', size=20) f= plt.gcf() 1 Thus, the exponential family in this setting is the collection F = fN(η; 1) : η 2 Rg : d 1.0.2 Normal with quadratic sufficient statistic on R d As a second example, take P0 = N(0;Id×d), i.e.
    [Show full text]
  • ONE SAMPLE TESTS the Following Data Represent the Change
    1 WORKED EXAMPLES 6 INTRODUCTION TO STATISTICAL METHODS EXAMPLE 1: ONE SAMPLE TESTS The following data represent the change (in ml) in the amount of Carbon monoxide transfer (an indicator of improved lung function) in smokers with chickenpox over a one week period: 33, 2, 24, 17, 4, 1, -6 Is there evidence of significant improvement in lung function (a) if the data are normally distributed with σ = 10, (b) if the data are normally distributed with σ unknown? Use a significance level of α = 0.05. SOLUTION: (a) Here we have a sample of size 7 with sample mean x = 10.71. We want to test H0 : μ = 0.0, H1 : μ = 0.0, 6 under the assumption that the data follow a Normal distribution with σ = 10.0 known. Then, we have, in the Z-test, 10.71 0.0 z = − = 2.83, 10.0/√7 which lies in the critical region, as the critical values for this test are 1.96, for significance ± level α = 0.05. Therefore we have evidence to reject H0. The p-value is given by p = 2Φ( 2.83) = 0.004 < α. − (b) The sample variance is s2 = 14.192. In the T-test, we have test statistic t given by x 0.0 10.71 0.0 t = − = − = 2.00. s/√n 14.19/√7 The upper critical value CR is obtained by solving FSt(n 1)(CR) = 0.975, − where FSt(n 1) is the cdf of a Student-t distribution with n 1 degrees of freedom; here n = 7, so − − we can use statistical tables or a computer to find that CR = 2.447, and note that, as Student-t distributions are symmetric the lower critical value is CR.
    [Show full text]
  • Parameter Specification of the Beta Distribution and Its Dirichlet
    %HWD'LVWULEXWLRQVDQG,WV$SSOLFDWLRQV 3DUDPHWHU6SHFLILFDWLRQRIWKH%HWD 'LVWULEXWLRQDQGLWV'LULFKOHW([WHQVLRQV 8WLOL]LQJ4XDQWLOHV -5HQpYDQ'RUSDQG7KRPDV$0D]]XFKL (Submitted January 2003, Revised March 2003) I. INTRODUCTION.................................................................................................... 1 II. SPECIFICATION OF PRIOR BETA PARAMETERS..............................................5 A. Basic Properties of the Beta Distribution...............................................................6 B. Solving for the Beta Prior Parameters...................................................................8 C. Design of a Numerical Procedure........................................................................12 III. SPECIFICATION OF PRIOR DIRICHLET PARAMETERS................................. 17 A. Basic Properties of the Dirichlet Distribution...................................................... 18 B. Solving for the Dirichlet prior parameters...........................................................20 IV. SPECIFICATION OF ORDERED DIRICHLET PARAMETERS...........................22 A. Properties of the Ordered Dirichlet Distribution................................................. 23 B. Solving for the Ordered Dirichlet Prior Parameters............................................ 25 C. Transforming the Ordered Dirichlet Distribution and Numerical Stability ......... 27 V. CONCLUSIONS........................................................................................................ 31 APPENDIX...................................................................................................................
    [Show full text]
  • Package 'Distributional'
    Package ‘distributional’ February 2, 2021 Title Vectorised Probability Distributions Version 0.2.2 Description Vectorised distribution objects with tools for manipulating, visualising, and using probability distributions. Designed to allow model prediction outputs to return distributions rather than their parameters, allowing users to directly interact with predictive distributions in a data-oriented workflow. In addition to providing generic replacements for p/d/q/r functions, other useful statistics can be computed including means, variances, intervals, and highest density regions. License GPL-3 Imports vctrs (>= 0.3.0), rlang (>= 0.4.5), generics, ellipsis, stats, numDeriv, ggplot2, scales, farver, digest, utils, lifecycle Suggests testthat (>= 2.1.0), covr, mvtnorm, actuar, ggdist RdMacros lifecycle URL https://pkg.mitchelloharawild.com/distributional/, https: //github.com/mitchelloharawild/distributional BugReports https://github.com/mitchelloharawild/distributional/issues Encoding UTF-8 Language en-GB LazyData true Roxygen list(markdown = TRUE, roclets=c('rd', 'collate', 'namespace')) RoxygenNote 7.1.1 1 2 R topics documented: R topics documented: autoplot.distribution . .3 cdf..............................................4 density.distribution . .4 dist_bernoulli . .5 dist_beta . .6 dist_binomial . .7 dist_burr . .8 dist_cauchy . .9 dist_chisq . 10 dist_degenerate . 11 dist_exponential . 12 dist_f . 13 dist_gamma . 14 dist_geometric . 16 dist_gumbel . 17 dist_hypergeometric . 18 dist_inflated . 20 dist_inverse_exponential . 20 dist_inverse_gamma
    [Show full text]
  • Iam 530 Elements of Probability and Statistics
    IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS LECTURE 4-SOME DISCERETE AND CONTINUOUS DISTRIBUTION FUNCTIONS SOME DISCRETE PROBABILITY DISTRIBUTIONS Degenerate, Uniform, Bernoulli, Binomial, Poisson, Negative Binomial, Geometric, Hypergeometric DEGENERATE DISTRIBUTION • An rv X is degenerate at point k if 1, Xk P X x 0, ow. The cdf: 0, Xk F x P X x 1, Xk UNIFORM DISTRIBUTION • A finite number of equally spaced values are equally likely to be observed. 1 P(X x) ; x 1,2,..., N; N 1,2,... N • Example: throw a fair die. P(X=1)=…=P(X=6)=1/6 N 1 (N 1)(N 1) E(X) ; Var(X) 2 12 BERNOULLI DISTRIBUTION • An experiment consists of one trial. It can result in one of 2 outcomes: Success or Failure (or a characteristic being Present or Absent). • Probability of Success is p (0<p<1) 1 with probability p Xp;0 1 0 with probability 1 p P(X x) px (1 p)1 x for x 0,1; and 0 p 1 1 E(X ) xp(y) 0(1 p) 1p p y 0 E X 2 02 (1 p) 12 p p V (X ) E X 2 E(X ) 2 p p2 p(1 p) p(1 p) Binomial Experiment • Experiment consists of a series of n identical trials • Each trial can end in one of 2 outcomes: Success or Failure • Trials are independent (outcome of one has no bearing on outcomes of others) • Probability of Success, p, is constant for all trials • Random Variable X, is the number of Successes in the n trials is said to follow Binomial Distribution with parameters n and p • X can take on the values x=0,1,…,n • Notation: X~Bin(n,p) Consider outcomes of an experiment with 3 Trials : SSS y 3 P(SSS) P(Y 3) p(3) p3 SSF, SFS, FSS y 2 P(SSF SFS FSS) P(Y 2) p(2) 3p2 (1 p) SFF, FSF, FFS y 1 P(SFF FSF FFS ) P(Y 1) p(1) 3p(1 p)2 FFF y 0 P(FFF ) P(Y 0) p(0) (1 p)3 In General: n n! 1) # of ways of arranging x S s (and (n x) F s ) in a sequence of n positions x x!(n x)! 2) Probability of each arrangement of x S s (and (n x) F s ) p x (1 p)n x n 3)P(X x) p(x) p x (1 p)n x x 0,1,..., n x • Example: • There are black and white balls in a box.
    [Show full text]
  • Poisson Versus Negative Binomial Regression
    Handling Count Data The Negative Binomial Distribution Other Applications and Analysis in R References Poisson versus Negative Binomial Regression Randall Reese Utah State University [email protected] February 29, 2016 Randall Reese Poisson and Neg. Binom Handling Count Data The Negative Binomial Distribution Other Applications and Analysis in R References Overview 1 Handling Count Data ADEM Overdispersion 2 The Negative Binomial Distribution Foundations of Negative Binomial Distribution Basic Properties of the Negative Binomial Distribution Fitting the Negative Binomial Model 3 Other Applications and Analysis in R 4 References Randall Reese Poisson and Neg. Binom Handling Count Data The Negative Binomial Distribution ADEM Other Applications and Analysis in R Overdispersion References Count Data Randall Reese Poisson and Neg. Binom Handling Count Data The Negative Binomial Distribution ADEM Other Applications and Analysis in R Overdispersion References Count Data Data whose values come from Z≥0, the non-negative integers. Classic example is deaths in the Prussian army per year by horse kick (Bortkiewicz) Example 2 of Notes 5. (Number of successful \attempts"). Randall Reese Poisson and Neg. Binom Handling Count Data The Negative Binomial Distribution ADEM Other Applications and Analysis in R Overdispersion References Poisson Distribution Support is the non-negative integers. (Count data). Described by a single parameter λ > 0. When Y ∼ Poisson(λ), then E(Y ) = Var(Y ) = λ Randall Reese Poisson and Neg. Binom Handling Count Data The Negative Binomial Distribution ADEM Other Applications and Analysis in R Overdispersion References Acute Disseminated Encephalomyelitis Acute Disseminated Encephalomyelitis (ADEM) is a neurological, immune disorder in which widespread inflammation of the brain and spinal cord damages tissue known as white matter.
    [Show full text]
  • 6.1 Definition: the Density Function of Th
    CHAPTER 6: Some Continuous Probability Distributions Continuous Uniform Distribution: 6.1 Definition: The density function of the continuous random variable X on the interval [A; B] is 1 A x B B A ≤ ≤ f(x; A; B) = 8 − < 0 otherwise: : Application: Some continuous random variables in the physical, management, and biological sciences have approximately uniform probability distributions. For example, suppose we are counting events that have a Poisson distribution, such as telephone calls coming into a switchboard. If it is known that exactly one such event has occurred in a given interval, say (0; t),then the actual time of occurrence is distributed uniformly over this interval. Example: Arrivals of customers at a certain checkout counter follow a Poisson distribution. It is known that, during a given 30-minute period, one customer arrived at the counter. Find the probability that the customer arrived during the last 5 minutes of the 30-minute period. Solution: As just mentioned, the actual time of arrival follows a uniform distribution over the interval of (0; 30). If X denotes the arrival time, then 30 1 30 25 1 P (25 X 30) = dx = − = ≤ ≤ Z25 30 30 6 Theorem 6.1: The mean and variance of the uniform distribution are 2 B 2 2 B 1 x B A A+B µ = A x B A = 2(B A) = 2(B− A) = 2 : R − h − iA − It is easy to show that (B A)2 σ2 = − 12 Normal Distribution: 6.2 Definition: The density function of the normal random variable X, with mean µ and variance σ2, is 2 1 (1=2)[(x µ)/σ] n(x; µ, σ) = e− − < x < ; p2πσ − 1 1 where π = 3:14159 : : : and e = 2:71828 : : : Example: The SAT aptitude examinations in English and Mathematics were originally designed so that scores would be approximately normal with µ = 500 and σ = 100.
    [Show full text]
  • The Length-Biased Versus Random Sampling for the Binomial and Poisson Events Makarand V
    Journal of Modern Applied Statistical Methods Volume 12 | Issue 1 Article 10 5-1-2013 The Length-Biased Versus Random Sampling for the Binomial and Poisson Events Makarand V. Ratnaparkhi Wright State University, [email protected] Uttara V. Naik-Nimbalkar Pune University, Pune, India Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons Recommended Citation Ratnaparkhi, Makarand V. and Naik-Nimbalkar, Uttara V. (2013) "The Length-Biased Versus Random Sampling for the Binomial and Poisson Events," Journal of Modern Applied Statistical Methods: Vol. 12 : Iss. 1 , Article 10. DOI: 10.22237/jmasm/1367381340 Available at: http://digitalcommons.wayne.edu/jmasm/vol12/iss1/10 This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState. Journal of Modern Applied Statistical Methods Copyright © 2013 JMASM, Inc. May 2013, Vol. 12, No. 1, 54-57 1538 – 9472/13/$95.00 The Length-Biased Versus Random Sampling for the Binomial and Poisson Events Makarand V. Ratnaparkhi Uttara V. Naik-Nimbalkar Wright State University, Pune University, Dayton, OH Pune, India The equivalence between the length-biased and the random sampling on a non-negative, discrete random variable is established. The length-biased versions of the binomial and Poisson distributions are discussed. Key words: Length-biased data, weighted distributions, binomial, Poisson, convolutions. Introduction binomial distribution (probabilities), which was The occurrence of so-called length-biased data appropriate at that time.
    [Show full text]
  • Statistical Inference
    GU4204: Statistical Inference Bodhisattva Sen Columbia University February 27, 2020 Contents 1 Introduction5 1.1 Statistical Inference: Motivation.....................5 1.2 Recap: Some results from probability..................5 1.3 Back to Example 1.1...........................8 1.4 Delta method...............................8 1.5 Back to Example 1.1........................... 10 2 Statistical Inference: Estimation 11 2.1 Statistical model............................. 11 2.2 Method of Moments estimators..................... 13 3 Method of Maximum Likelihood 16 3.1 Properties of MLEs............................ 20 3.1.1 Invariance............................. 20 3.1.2 Consistency............................ 21 3.2 Computational methods for approximating MLEs........... 21 3.2.1 Newton's Method......................... 21 3.2.2 The EM Algorithm........................ 22 1 4 Principles of estimation 23 4.1 Mean squared error............................ 24 4.2 Comparing estimators.......................... 25 4.3 Unbiased estimators........................... 26 4.4 Sufficient Statistics............................ 28 5 Bayesian paradigm 33 5.1 Prior distribution............................. 33 5.2 Posterior distribution........................... 34 5.3 Bayes Estimators............................. 36 5.4 Sampling from a normal distribution.................. 37 6 The sampling distribution of a statistic 39 6.1 The gamma and the χ2 distributions.................. 39 6.1.1 The gamma distribution..................... 39 6.1.2 The Chi-squared distribution.................. 41 6.2 Sampling from a normal population................... 42 6.3 The t-distribution............................. 45 7 Confidence intervals 46 8 The (Cramer-Rao) Information Inequality 51 9 Large Sample Properties of the MLE 57 10 Hypothesis Testing 61 10.1 Principles of Hypothesis Testing..................... 61 10.2 Critical regions and test statistics.................... 62 10.3 Power function and types of error.................... 64 10.4 Significance level............................
    [Show full text]