Catalogue of the Continental Mollusks of Russia and Adjacent Territories

Total Page:16

File Type:pdf, Size:1020Kb

Catalogue of the Continental Mollusks of Russia and Adjacent Territories CATALOGUE OF THE CONTINENTAL MOLLUSKS OF RUSSIA AND ADJACENT TERRITORIES YURI I. KANTOR, MAXIM V. VINARSKI, ANATOLY A. SCHILEYKO, ALEXANDER V. SYSOEV VERSION 2.0 (published online on March 23, 2009) See newest version 2.3 http://www.ruthenica.com/documents/Continental_Russian_molluscs_ver2-3.pdf The new version is siginificantly corrected and updated for the fresh-water molluscs. We high- lighted all alterations in blue. From now and on in every new version the corrections will be high- lighted similarly, while the text of the previous version will be in black. The other major revision is the inclusion of the Caspian gastropods in the current version. They were treated in Kantor and Sysoev (2006) illustrated catalogue of Russian Marine and brack- ish-water Gastropoda. Nevertheless since the on-line catalogue includes Caspian bivalves we de- cided to include gastropods as well for the convenience of the readers. This brought the total number of included taxa to 2026 comparing to 1892 continental species included in Version 1.0. In addition to the acknowledgements below we would like to express our thanks to colleagues who assisted us in improving version 1.0 of the Catalogue: Peter Glöer (Hetlingen, Germany) Alexei V. Chernyshev (Vladivostok, Russia) Alexander A. Frolov (Murmansk, Russia) Ludvig Dorodnitsyn (Moscow, Russia). YURI I. KANTOR, MAXIM V. VINARSKI March 23, 2009 Introduction to the version 1.0 (published online on February 15, 2009) Inventories of molluscs of Russia (and adjacent territories) is currently becoming a priority, especially in last decade. Several important publications appeared recently, among others the identi- fication guide to freshwater molluscs of Russia [Starobogatov et al., 2004], annotated list of the mol- luscs of Baikal Lake [Sitnikova et al., 2004; Slugina, Starobogatov, 2004], monograph of Lymnaei- dae of Europe and northern Asia [Kruglov, 2005], as well as the first complete catalogue (although in abridged form and only in Russian) of all groups of Mollusca of Russia and adjacent countries (within the borders of former USSR) [Kantor, Sysoev, 2005]. The catalogue was compiled mostly from published data. Only for some groups were the data based on collections, mostly that of ZIN, which possesses the largest collection of molluscs from the territory of the former USSR. Later the illustrated catalogue of marine and brackish-water Gastropoda was published [Kan- tor, Sysoev, 2006]. It included 1240 species, being approximately 1/3 of entire fauna of molluscs. The catalogue included as a rule photographs of the type specimens for the species, described from Russia and adjacent territories. For the species, described from elsewhere, mostly the specimens were used for illustrations on which the record was based, that were identified by the authors in the corresponding publications. The full version of the catalogue, which includes the data on type localities and type specimens of each species for the remaining groups of molluscs has been in preparation since. After the publication of illustrated catalogue of gastropods it became obvious that such publi- cations turmed to be outdated rather fast. During two years since it was completed, several important monographs and revisions were published, several are in preparation. The situation with the continental molluscs is even more complicated. Firstly, the Russian spe- cialists on fresh-water molluscs appeared to be “splitters” comparing with their western colleagues. This sometimes leads to extreme differences in opinion on species number and taxonomy of some groups. For example, Graf [2007] recently analyzed the number of species of Unionoidea of Palearctic recognised by Russian malacologists (156 species in 34 genera) and western specialists (45 species in 16 genera). Most of the groups are still awaiting the critical re-assessment. In this situation I decided to publish the available to us materials on continental (fresh-water and terrestrial) molluscs of Russia and adjacent territories within the borders of former USSR on the Internet in order to make the results available to broad audience of specialists in Russia and abroad. Publication in this format will allow rapid corrections and additions of new materials in future. I in- vite all the specialists to contribute their experience and knowledge to build most comprehensive and updated inventory of continental molluscs. This work has been accomplished besides Yu. Kantor by A.A. Schileyko (both from A.N.Severtzov Institute of Ecology and Evolution of Russian Academy of Sciences) and A.V.Sysoev (Zoological Museum of Moscow State University). Invaluable help was provided by M.V. Vinarski (Omsk State Pedagogical University). In compiling the work all available sources were used: monographs, separate papers, as well as species lists and catalogues. Moreover, the original descriptions of most of the species were checked. This was possible through the access to several large libraries in Russia and abroad (prin- cipally the libraries of Muséum national d’histoire naturelle, Paris and National Museum of Natural History, Smithsonian Institution, Washington D.C.). As a result hundreds of mistakes in published sources, including the nomenclature of many species were corrected. Unfortunately, we were not able to find references for a few species. Still type material for many species was not traced. The basis of the list of terrestrial species was the unpublished manuscript of Likharev and Schileyko. It represented the second updated edition of the famous monograph of I.M. Likharev and E.S. Ram- melmeyer [1952], which was supposed to be published in late 1980-s but due to long period of eco- nomic instability was never printed. In current database all terrestrial and freshwater molluscs are included. Frackish-water species of Gastropoda were treated in Kantor and Sysoev [2006] and therefore are not included herein. On the contrary, brackish water bivalves (including those of the Caspian Sea, which may be considered as marine) are treated in the current catalogue. In species entry the main habitat is included: F – stands for fresh-water species, B – for brack- ish-water, M – for marine, and T – for terrestrial species. Species within genera and genera within families are arranged in alphabetical order. Subgen- era are not included. On the types of Ya. I. Starobogatov Mention should be made of the types of some species, described by Ya. I. Starobogatov (1932- 2004), especially in co-authorship with B. M. Logvinenko from the Caspian Sea. These authors wrote the molluscan section in the Atlas of invertebrates of the Caspian Sea (Moscow, 1968). Log- vinenko and Starobogatov did not mention holotypes in the text (or type localities), but specified them in the figure captions. Although there is no information about the depository of the types, they should be stored in ZIN, where Ya. I. Starobogatov worked most of his life. Nevertheless, we were not able to find many of the types in ZIN collection. According to personal communication of L. L. Yarohnovich (collection manager of fresh-water and land molluscs of ZIN), part of the collection of Caspian molluscs, including types of new species, was stored in the Biological Faculty of Moscow State University in the laboratory of B. M. Logvinenko. After his death the material was transferred to ZIN and was kept in the personal office of Starobogatov for many years. After Starobogatov’s death all the numerous samples were transferred to the general molluscan storage, but until now not completely processed and therefore not included into type and general collections. Thus it is possi- ble that many of the types that are listed in this publication as “not traced” may be available in fu- ture. On the inventory system in Zoological Institute of RAS A significant number of the types are stored in ZIN. Therefore we should briefly mention the system of inventory numbers used in this collection. Starting in the late XIX century there was a card systematic catalogue in molluscs collections of ZIN (probably started by S. M. Herzenstein and N. M. Knipowich). For each species a separate card (with several entries) was started and the locality and the author of identification were cited for each sample. Thus, each sample was given a number which was unique only within single species. In this publication we refer to such numbers in the systematic catalogue as “ZIN No. ** in the sys- tematic catalogue”. Usually the card started with the type specimens and therefore most of them have No. 1. In the collections the lots are arranged taxonomically in accordance with the systematic catalogue numbers. Beside the systematic catalogue, in the 1960’s a system of inventory numbers was started. The numbers were attributed to the lots not in taxonomic order. The inventory numbers cover most of the samples of marine gastropods and only partially those of fresh-water and land. In this book we pro- vide the inventory numbers (if available), as well as systematic catalogue numbers. The number be- fore the slash is the inventory number, while that following is the number in the systematic cata- logue. Quantitative estimate of the fauna of continental molluscs of Russia At present 1892 continental species are included in Version 1.0 of the catalogue. We are fol- lowing the current number of species in Russian literature (see above about the “splitting”). Acknowledgements Many colleagues assisted us in compiling this list. We want to thank them all, but especially: B. I. Sirenko, P. V. Kiyashko, L. L. Yarohnovich, R. Kormushkina from ZIN; T. Ya. Sitnikova from Limnological Institute of RAS; V.V. Anistratenko (Institute of Zoology of National Academy of Sciences of Ukraine); L. A. Prozorova (Biological-Pedological Institute of Farf-Eastern Branch of RAS; prof. P. Bouchet, J.-P. Rocroi, V. Héros from the Muséum national d’histoire naturelle (Paris); J. D. Taylor, K. Way, and D. G. Reid from the Natural History Museum (London); R. Heshler and M.
Recommended publications
  • CAN the ENVIRONMENT INDUCE INTRA-VARIETY CHANGES of Helix Pomatia CONCHOLOGICAL FEATURES?
    Analele Universităţii din Oradea - Fascicula Biologie Tom. XVIII, Issue: 2, 2011, pp. 140-145 CAN THE ENVIRONMENT INDUCE INTRA-VARIETY CHANGES OF Helix pomatia CONCHOLOGICAL FEATURES? Dragoş NICA*, Mărioara Nicoleta FILIMON**, Aurica Breica BOROZAN***, Doru VINTILĂ* * Banat`s University of Agricultural Sciences and Veterinary Medicine, Faculty of Animal Sciences and Biotechnologies ** West University of Timisoara, Faculty of Chemistry-Biology-Geography, Department of Biology *** Banat`s University of Agricultural Sciences and Veterinary Medicine, Faculty of Food Products Technology Corresponding author: Dragos NICA, Banat`s University of Agricultural Sciences and Veterinary Medicine, Faculty of Animal Sciences and Biotechnologies, 119 Aradului Way, zip code: 300645, Timisoara, Romania, tel: 0040256277110, fax: 0040256277110, e-mail: [email protected]. Abstract. Inter- and intra-specific genetically and phenotypically determined variations in snail morphological features are well documented. The same may be true even within the same species variety. The snails (Helix pomatia var. Banatica) were collected from two distinct sites, placed 100 km one from another and characterized by different climatic conditions (rainfall level, altitude, annual average temperature, and subtype of temperate climate): Oraviţa and Timişoara area. Using bi - and tridimensional data processing, statistical, and biochemical analyses we assessed the cumulated actions of environmental factors on intra - variety changes of shell morphological features in relation to origin area. Formula proposed for shell tri-dimensional processing (shell volume) provided a reliable and faster method to assess variations among shell height, width, and depth than the multiple analyses of each feature apart. Similarly, aperture bi-dimensional processing (aperture area) successfully replaced the separated statistical analyses of aperture height and depth.
    [Show full text]
  • Allatrendszertani Gyakorlatok R
    Állatrendszertani gyakorlatok Farkas János (1, 4, 11, 12, 13, 18 fejezet) Szővényi Gergely (5, 7, 8, 9, 10, 15, 16 fejezet) Török János (17. fejezet) Török Júlia Katalin (2, 3, 6, 14 fejezet) XML to PDF by RenderX XEP XSL-FO F ormatter, visit us at http://www.renderx.com/ Állatrendszertani gyakorlatok írta Farkas János (1, 4, 11, 12, 13, 18 fejezet), Szővényi Gergely (5, 7, 8, 9, 10, 15, 16 fejezet), Török János (17. fejezet), és Török Júlia Katalin (2, 3, 6, 14 fejezet) szerkesztette: Farkas János lektorok: Csorba Gábor (1-18. fejezet) Forró László (6. fejezet) Kriska György (2. fejezet) Lengyel Gábor (13. fejezet) Majoros Gábor (3. fejezet) Merkl Ottó (1-18. fejezet) Murányi Dávid (7-8. fejezet) Puskás Gellért (7-8. fejezet) Rédei Dávid (7-8. fejezet) Rózsa Lajos (1-18. fejezet) Szinetár Csaba (4. fejezet) Tóth Balázs (14. fejezet) Vas Zoltán (12., 17. fejezet) Vörös Judit (1-18. fejezet) Szerzői jog © 2013 Eötvös Loránd Tudományegyetem E könyv kutatási és oktatási célokra szabadon használható. Bármilyen formában való sokszorosítása a jogtulajdonos írásos engedélyéhez kötött. Készült a TÁMOP-4.1.2.A/1-11/1-2011-0073 számú, „E-learning természettudományos tartalomfejlesztés az ELTE TTK-n” című projekt keretében. Konzorciumvezető: Eötvös Loránd Tudományegyetem, konzorciumi tagok: ELTE TTK Hallgatói Alapítvány, ITStudy Hungary Számítástechnikai Oktató- és Kutatóközpont Kft. XML to PDF by RenderX XEP XSL-FO F ormatter, visit us at http://www.renderx.com/ Tartalom Bevezetés ....................................................................................................................................
    [Show full text]
  • Specimen of the Pond Snail Lymnaea Stagnalis (L.) with Antler-Like Tentacles
    BASTERIA, 52: 193-196, 1988 On a specimen of the pond snail Lymnaea stagnalis (L.) with antler-like tentacles A.J. Lever Department of Biology, Free University, De Boelelaan 1087, Amsterdam, Netherlands 1 A specimen of Lymnaea stagnalis with abnormal, antler-like tentacles from a laboratory-bred tentacle behaviour. The snail be colony was subjected to some experiments on appeared to normal in all respects. Tactile stimulation ofthe normal tentacles resulted in normal reacti- of reaction ons. Stimulation of the outgrowth the left tentacle, however, did not cause any This the conclusion the whatsoever. leads to that this abnormal part of tentacle lacked appro- priate innervation. Key words: Gastropoda, Pulmonata, Lymnaeidae, Lymnaea stagnalis,teratology. In the 1975-1978 I involved in studies the interactionsbetween the years was on cen- tral and the peripheral nervous systems of the pond snail Lymnaea stagnalis (L., 1758) Part of these studies behavioural and (see Lever, 1978). was a physiological investiga- tion of the 'withdrawal reaction' of this snail: the withdrawal into the shell as a reac- tentacle tion upon touch or light-dark stimuli. In particular, the reflex of contraction, characteristic of the withdrawal studied et a component reaction, was (Lever ah, animals 1977). The experiments were carried out with laboratory-bred animals. All had normal which had antler-like tentacles. a appearance, except one, Most Malformations of snails have been reported upon before. reports concern abnormalitiesof the shell direction of in dextral and of the coiling, e.g. sinistrality spe- cies (cf. Lever, 1982, 1984). Less has been published about malformationsof the soft parts of snails.
    [Show full text]
  • Life Cycles of Clausiliids of Poland – Knowns and Unknowns
    A N N A L E S Z O O L O G I C I (Warszawa), 2008, 58(4): 857-880 LIFE CYCLES OF CLAUSILIIDS OF POLAND – KNOWNS AND UNKNOWNS TOMASZ K. MALTZ1 and ANNA SULIKOWSKA-DROZD2 1Museum of Natural History, Wrocław University, Sienkiewicza 21, 50-335 Wrocław, Poland; e-mail: [email protected] 2Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland; e-mail: [email protected] Abstract.— Among the 24 native clausiliids, 15 were subject to laboratory observations. Eleven of them were found to be oviparous, three – egg retainers and one – ovoviviparous. Batches, containing most often one to about a dozen of partly calcified, ellipsoidal or spherical eggs, appeared usually in the spring and autumn (in non-hibernating individuals throughout the year). Probably the main factors determining the onset of reproduction are humidity and temperature while the photoperiod has no significant effect. The incubation period is ca. two weeks (room temperature), the hatching is synchronous or asynchronous. Cases of intra-batch and inter-batch cannibalism were observed. The minimum time from hatching/birth till adult size is ca. 3–9 months and after further 5–8 months the snails start producing eggs/babies. Clausiliids are iteroparous. Anatomical studies on the development of the reproductive system show that just before lip completion the reproductive system is still incompletely developed. Penis, epiphallus and spermatheca develop within the first month after growth completion (which would indicate attainment of ability to copulate), and the reproductive system becomes wholly mature only after a few months.
    [Show full text]
  • Erőss Zoltán Péter Óbudai Gimnázium 2007
    EÖTVÖS LORÁND TUDOMÁNYEGYETEM, ÁLLATRENDSZERTANI ÉS ÖKOLÓGIAI TANSZÉK BIOLÓGIA DOKTORI ISKOLA ISKOLAVEZETŐ: DR. ERDEI ANNA AKADÉMIKUS, EGYETEMI TANÁR ZOOTAXONÓMIA, ÁLLATÖKOLÓGIA, HIDROBIOLÓGIA DOKTORI PROGRAM PROGRAMVEZETŐ: DR. DÓZSA-FARKAS KLÁRA EGYETEMI TANÁR, AZ MTA DOKTORA A BÖRZSÖNY HEGYSÉG MOLLUSCA FAUNÁJÁNAK TAXONÓMIAI ÉS TERMÉSZETVÉDELMI VONATKOZÁSAI DOKTORI ÉRTEKEZÉS ERŐSS ZOLTÁN PÉTER ÓBUDAI GIMNÁZIUM TÉMAVEZETŐ: DR. GERE GÉZA NY. EGYETEMI TANÁR (ELTE ÁLLATRENDSZERTANI ÉS ÖKOLÓGIAI TANSZÉK), A BIOLÓGIA TUDOMÁNYOK DOKTORA 2007. TARTALOMJEGYZÉK 1. BEVEZETÉS ..................................................................................................4. 2. CÉLKITŰZÉSEK .............................................................................................7. 3. MÓDSZER ....................................................................................................9. 3.1. MÓDSZEREK LEÍRÁSA ............................................................................9. 3.1.1. MINTAVÉTELI, ADATGYŰJTÉSI MÓDSZEREK ................................9. 3.1.2. A VÉGZETT TEREPMUNKA .......................................................14. 3.1.3. ÉRTÉKELÉSI MÓDSZEREK ........................................................16. 3.2. A MÓDSZEREK KRITIKAI ÉRTÉKELÉSE .....................................................17. 4. A BÖRZSÖNY HEGYSÉG MALAKOFAUNISZTIKAI IRODALMÁNAK ÁTTEKINTÉSE.......20. 5. A VIZSGÁLT TERÜLET ÁLTALÁNOS JELLEMZÉSE ..............................................23. 5.1. A BÖRZSÖNY TERÜLETI FELOSZTÁSA.......................................................24.
    [Show full text]
  • Helix Lutescens Rossmässler, 1837 (Gastropoda: Helicidae) in the Holy Cross Mountains National Park and Its Vicinity
    Folia Malacol. 3: 23–32 http://dx.doi.org/10.12657/folmal.003.002 HELIX LUTESCENS ROSSMÄSSLER, 1837 (GASTROPODA: HELICIDAE) IN THE HOLY CROSS MOUNTAINS NATIONAL PARK AND ITS VICINITY Jadwiga Barga-więcławska Institute of Biology, The Faculty of Mathematics and Natural Sciences, Jan Kochanowski University, Świętokrzyska 15, 25-406 Kielce, Poland ABSTRACT: The author recorded the occurrence of Helix lutescens Rossmässler, 1837 on five localities within the Holy Cross Mountains National Park and its protective zone, and on three localities in the city of Kielce. The presence of H. lutescens on the eight localities does not permit to establish its real origin, though the author suggests that in those particular habitats the species may be a postglacial or Late Holocene relict. KEY WORDS: Świętokrzyski National Park, malacofauna, new localities Folia Malacologica 3/1989 was originally published as No. 1216 of Scientific Bulletins of University of Mining and Metallurgy, Cracow. This digitalised version was prepared by the Association of Polish Malacologists and first published on-line on December 30th, 2016. ZESZYTY NAUKOWE AKADEMII GORNICZO-HUTNICZEJ IM. STANISlAWA STASZICA Nr 1216 Folio Maloc:ologic:a z. 3 Krak6w 1989 .JADWIGA BARGA-WII;Ct.AWSKA HELIX LUTESCENS ROSSMASSLER, 1887 (GASTROPODA: HELICIDAE) IN THE HOLV CROSS MOUNTAINS NATIONAL PARK AND ITS VICINITY Ab s t r a c t : The author recorded the occurrence of Helix lutescens Rossmassler, 1837 on five localities within the Holy Cross Mountains Na­ tional Park and its protective zone, and on three localities in the city of Kielce. The presence of H. lutescens on the t:~ight localities does not permit to establish its real origin, though the author suggests that in those par­ ticular habitats the species may be a postglacial or Late Holocene relict.
    [Show full text]
  • Downloadable
    This publication was elaborated within BioREGIO Carpathians project supported by South East Europe Programme and was fi nanced by a Swiss-Slovak project supported by the Swiss Contribution to the enlarged European Union and Carpathian Wetlands Initiative. Program švajčiarsko-slovenskej spolupráce Swiss-Slovak Cooperation Programme Slovenská republika CARPATHIAN RED LIST OF FOREST HABITATS AND SPECIES CARPATHIAN LIST OF INVASIVE ALIEN SPECIES (DRAFT) THE STATE NATURE CONSERVANCY OF THE SLOVAK REPUBLIC CARPATHIAN RED LIST OF FOREST HABITATS AND SPECIES CARPATHIAN LIST OF INVASIVE ALIEN SPECIES (DRAFT) OF INVASIVE LIST AND SPECIES CARPATHIAN HABITATS OF FOREST RED LIST CARPATHIAN ISBN 978-80-89310-81-4 2014 oobalka_cervenebalka_cervene zzoznamy.inddoznamy.indd 1 225.9.20145.9.2014 221:41:521:41:52 CARPATHIAN RED LIST OF FOREST HABITATS AND SPECIES CARPATHIAN LIST OF INVASIVE ALIEN SPECIES (DRAFT) PUBLISHED BY THE STATE NATURE CONSERVANCY OF THE SLOVAK REPUBLIC 2014 Table of contents Draft Red Lists of Threatened Carpathian Habitats and Species and Carpathian List of Invasive Alien Species . 5 Draft Carpathian Red List of Forest Habitats . 20 Red List of Vascular Plants of the Carpathians . 44 Draft Carpathian Red List of Molluscs (Mollusca) . 106 Red List of Spiders (Araneae) of the Carpathian Mts. 118 Draft Red List of Dragonfl ies (Odonata) of the Carpathians . 172 © Štátna ochrana prírody Slovenskej republiky, 2014 Red List of Grasshoppers, Bush-crickets and Crickets (Orthoptera) Editor: Ján Kadlečík of the Carpathian Mountains . 186 Available from: Štátna ochrana prírody SR Tajovského 28B Draft Red List of Butterfl ies (Lepidoptera: Papilionoidea) of the Carpathian Mts. 200 974 01 Banská Bystrica Slovakia Draft Carpathian Red List of Fish and Lamprey Species .
    [Show full text]
  • Life Cycle and Population Dynamics of Helicodonta Obvoluta (O. F. Müller, 1774) (Gastropoda: Pulmonata: Helicidae)
    Vol. 11(3/4): 63–88 LIFE CYCLE AND POPULATION DYNAMICS OF HELICODONTA OBVOLUTA (O. F. MÜLLER, 1774) (GASTROPODA: PULMONATA: HELICIDAE) TOMASZ KRZYSZTOF MALTZ Museum of Natural History, Wroc³aw University, Sienkiewicza 21, 50-335 Wroc³aw, Poland (e-mail: [email protected]) ABSTRACT: Lifecycleof Helicodonta obvoluta (O. F. Müll.) was studied in the field and in laboratory. Mating lasts 2–3 hrs and includes: meeting of the partners, recognition, courtship dance, copulation, resting phase and parting. No spermatophores were observed upon dissection of a total of 90 adult individuals which seems to indicatethat H. obvoluta does not produce them. The egg-laying snail embeds anterior part of its body 4–6 mm deep in rotting timber. The egg-laying lasts from about a dozen hours to two days. Freshly laid eggs are white, calcified, slightly translucent and get opaque in a few days. They are slightly oval, of 2.10–2.85 mm major and 2.00–2.60 mm minor diameter. In laboratory, eggs are laid in spring (March-June) and autumn (August-November), in the field, the egg-laying periods are somewhat shorter (April-beginning of June, end of August-beginning of October). Most laboratory snails laid eggs only once in their lifetime, the maximum number of egg-laying periods was four. The percentage of hatching eggs in laboratory is ca. 59%. The number of eggs per clutch ranges from 9 to 27. The incubation period ranges from 14 to 31 days, and is shorter for spring (14–18 days) compared to autumn (19–23 days) clutches.
    [Show full text]
  • Assessment of Risks to Norwegian Biodiversity from the Import and Keeping of Terrestrial Gastropods in Terraria
    VKM Report 2017: 33 Assessment of the risk to Norwegian biodiversity from the import and keeping of terrestrial gastropods in terraria Opinion of the Panel on Alien Organisms and Trade in Endangered Species of the Norwegian Scientific Committee for Food and Environment Report from the Norwegian Scientific Committee for Food and Environment (VKM) 2017:33 Assessment of risks to Norwegian biodiversity from the import and keeping of terrestrial gastropods in terraria Opinion of the Panel on Alien Organisms and Trade in Endangered Species of the Norwegian Scientific Committee for Food and Environment 18.12.2017 Authors: Anders Nielsen, Bjørn Arild Hatteland, Martin Malmstrøm, Ted von Proschwitz, Gaute Velle, Hugo de Boer, Jan Ove Gjershaug, Lawrence R. Kirkendall, Eli K. Rueness og Vigdis Vandvik ISBN: 978-82-8259-290-1 ISSN: 2535-4019 Norwegian Scientific Committee for Food and Environment (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] www.vkm.no www.english.vkm.no Cover photo: ColourBox Suggested citation: VKM, Anders Nielsen, Bjørn Arild Hatteland, Martin Malmstrøm, Ted von Proschwitz, Gaute Velle, Hugo de Boer, Jan Ove Gjershaug, Lawrence R. Kirkendall, Eli K. Rueness and Vigdis Vandvik (2017). Assessment of the risk to Norwegian biodiversity from the import and keeping of terrestrial gastropods in terraria. Opinion of the Panel on Alien Organisms and Trade in Endangered Species of the Norwegian Scientific Committee for Food and Environment. VKM report 2017:33, ISBN: 978-82-8259-290-1, ISSN: 2535-4019, Norwegian Scientific Committee for Food and Environment (VKM), Oslo, Norway. VKM Report 2017: 33 Assessment of risk to Norwegian biodiversity from the import and keeping of terrestrial gastropods in terraria Preperation of the opinion The Norwegian Scientific Committee for Food and Environment (Vitenskapskomiteen for mat og miljø, VKM) appointed a project group to answer the request from the Norwegian Environment Agency.
    [Show full text]
  • Latitudinal Variation of Body Size in Land Snail Populations and Communities Jeffrey C
    chapter two Latitudinal Variation of Body Size in Land Snail Populations and Communities Jeffrey C. Nekola, Gary M. Barker, Robert A. D. Cameron, and Beata M. Pokryszko ergmann’s rule states the tendency for body size to positively cor- Brelate with latitude within groups of closely related animals (Berg- mann 1847; Rensch 1938; Mayr 1956; James 1970). While there has been much discussion about the appropriate taxonomic groups and scales where this pattern is expected to operate, there is little question that it applies to most endothermic vertebrates (e.g., Blackburn et al. 1999). However, not only are the underlying mechanisms still the subject of considerable debate (Ashton et al. 2000), but it is also less clear if this pattern should be expected for ectothermic invertebrates. This is be- cause while larger ectothermic bodies experience lowered heat loss rates due to smaller surface-to-volume ratios, they will also experience corre- spondingly lower heat absorption rates (Cushman et al. 1993). It should thus not be surprising that general body size vs. latitude re- lationships have not been forthcoming for these species. While positive body size–latitude relationships have been identifi ed in ants (Cushman et al. 1993; Kaspari and Vargo 1995), marine isopods (Poulin 1995b), copepods (Poulin 1995a), amphipods (Poulin and Hamilton 1995), and monogoneans (Poulin 1996), marine bivalves tend to have largest body sizes at midlatitudes (Roy and Martien 2001). While Northern Hemi- sphere butterfl ies possess positive body size correlations with increasing latitude, Southern Hemisphere taxa demonstrate a negative relationship (Barlow 1994; Hawkins and Lawton 1995). Eastern North American (© University of Chicago Press.
    [Show full text]
  • Folia Malacoligica Zeszyt 7-4
    HELIX LUTESCENS ROSSMÄSSLER, 1837 (GASTROPODA: PULMONATA: HELICIDAE) – ITS STRUCTURE, BIOLOGY AND ECOLOGY EL¯BIETA KORALEWSKA-BATURA Department of General Zoology, Institute of Environmental Sciences, Adam Mickiewicz University, Fredry 10, 61-701 Poznañ, Poland ABSTRACT: Helix lutescens Rossmässler, 1837 is a xerothermophilous species. It reaches its NW distribution bor- der in SE Poland. The studies, carried out in 1990–1997, involved the distribution of H. lutescens in Poland, its biology and ecology. Besides, shell structure and internal organs were studied, with special reference to differ- ences between H. lutescens and the related H. pomatia L. In H. lutescens the shell is roundish-conical, of a yellow- ish-white colour and much smaller than that of H. pomatia. The body is greyish and covered with numerous wrinkles and grooves; fine, whitish granules are located in the grooves, especially in those that form two deli- cate light streaks along the darker back of the animal; these streaks are characteristic of the species. The repro- ductive system of H. lutescens is of a structure similar to that in H. pomatia, but the duct of the gametolythic gland never bears a diverticle while flagellum, epiphallus and penis in adults are pigmented. The diurnal activ- ity of H. lutescens varies seasonally, depending on environmental factors (air temperature and relative humid- ity in ground layer, and substratum humidity – dew point). The reproductive activity reaches its peak in May and June. Courtship and copulation are in accordance with the typical helicid pattern. The copulation lasts ca. 15 mins, and the entire mating process takes over 3 hrs. Eggs are laid in nests dug in the soil, the mean number of eggs per nest being 35.
    [Show full text]
  • Realtime Social Networking Service Rapidly Reveals Distributions of Non-Indigenous Land Snails in a European Capital
    BioInvasions Records (2019) Volume 8, Issue 4: 782–792 CORRECTED PROOF Research Article Realtime Social Networking Service rapidly reveals distributions of non-indigenous land snails in a European capital Barna Páll-Gergely1,*, Gábor Majoros2, Tamás Domokos3, Alexandra Juhász4, Ágnes Turóci5, László Badacsonyi6, Judit Fekete7 and Takahiro Asami8 1Plant Protection Institute, Centre for Agricultural Research, Herman Ottó Street 15, Budapest, H-1022, Hungary 2Department of Parasitology and Zoology, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary 3Independent scholar, Bürök u. 24‒26E, 1124 Budapest, Hungary 4Department of Parasitology and Zoology, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary 5Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó Street 15, Budapest, H-1022, Hungary 6Independent scholar, Gárdonyi u. 15, 3060 Pásztó, Hungary 7University of Pannonia, Department of Limnology, 8200 Veszprém, Egyetem u. 10., Hungary 8Department of Biology, Shinshu University, Matsumoto 390-8621, Japan Author e-mails: [email protected], [email protected] (BPG), [email protected] (GM), [email protected] (TD), [email protected] (AJ), [email protected] (AT), [email protected] (LB), [email protected] (JF), [email protected] (TA) *Corresponding author Citation: Páll-Gergely B, Majoros G, Domokos T, Juhász A, Turóci Á, Abstract Badacsonyi L, Fekete J, Asami T (2019) Realtime Social Networking Service We utilized a social media website (Facebook) to gather information from citizen rapidly reveals distributions of non- scientists on their observations of the introduced large land snail species Cornu indigenous land snails in a European aspersum, and Helix lucorum in Budapest, Hungary.
    [Show full text]