Canadian Nuclear Association Association Nuclealre Canadienne

Total Page:16

File Type:pdf, Size:1020Kb

Canadian Nuclear Association Association Nuclealre Canadienne Canadian Nuclear Association Association Nuclealre Canadienne r „ ^ * ISSN 0706-1293 27th ANNUAL CONFERENCE of the CANADIAN NUCLEAR ASSOCIATION Theme: "Meeting Society's Goals" PROCEEDINGS June 14-17, 1987 Saint John, New Brunswick Canada Published by the Canadian Nuclear Association 111 Elizabeth Street Toronto, Ontario, Canada M5G 1P7 Copyright© 1987 Canadian Nuclear Association 27th ANNUAL CONFERENCE OF THE CNA June 14-17, 1987 ORGANIZING COMMITTEE Frank MacLoon, NB Power Sponsoring Director Jan Burnham, NB Power Committee Chairman Dan Meneley, UNB CNA Program John Sommerville, NB Power CNS Program Bob Munro, NB Power Hotel Arrangements Diane Waechter, CNA Registrations Jim Weller, CNA CNA/CNS Representation Roger Steed, NB Power Exhibit Coordinator Terry Thompson, NB Power Public Affairs Jeff Jones, NB Power Publications Wendy Anderson-Gillespie, NB Power Spousal Program, Tours Janice Haig, NB Power Graphics and Printing John Paciga, NB Power Secretary Arlie Blizzard, NB Power Treasurer I. TABLE OF CONTENTS SESSION 1 - SETTING THE SCENE PLANNING ENERGY SUPPLIES FOR PEOPLE O.J.C. Runnalls Chairman, Centre for Nuclear Engineering & Professor of Energy Studies University of Toronto THE CANADIAN GOVERNMENT'S REGULATORY POLICY INITIATIVE AND THE NUCLEAR INDUSTRY Antony Campbell Assistant Deputy Minister, Regulatory Affairs Office of Privatization and Regulatory Affairs 22 NUCLEAR REGULATION - IN TUNE WITH THE TIMES Z. Eomaratzki Director General Directorate of Reactor Regulation T.J. Molloy Manager, Components and Quality Assurance Division Atomic Energy Control Board 29 THE NUCLEAR INDUSTRY'S RECORD OF SERVICE Dr. Norman Aspin, President Electrical, Electronics Manufacturers Association of Canada J.E. Wilson, Vice President Canadian Nuclear Association 42 NUCLEAR POWER IN THE EUROPEAN COMMUNITY: ONE YEAR AFTER CHERNOBYL Jean-Claude Charrault and Derek M. Taylor Commission of the European Communities 47 ROMANIAN NUCLEAR POWER PROGRAM: A PROGRESS REPORT Mihai Pop, Director General ISPE, Dr. Eng. John P. Karger, Resident Engineering Manager Mircea Tarta, Deputy Manager ISPE Constantin Ningiuc, Cernavoda Design Manager Institute of Nuclear Power Studies and Design 63 \ SESSION 2 - THE DIALOGUE WITH THE PUBLIC TECHNOLOGY AND THE PUBLIC Gordon M. MacNabb (Panel Moderator & Panelist) Associate to the Principal, Queen's University; and President & Chief Executive Officer, Precarn Associates Inc 78 PANEL ON PUBLIC INFORMATION IN THE NUCLEAR INDUSTRY Margaret A. Buhlman Vice President, Research Decima Research 86 Rino Castonguay Department des Sciences Cite' des Jeune A.-M. Sormany 87 Linden Maclntyre Journalist Canadian Broadcasting Corporation 90 P. Parker Fredericton High School 94 P.J. Spratt President, P.J. Spratt & Associates Inc 95 SESSION 3 - IAEA: THE INTERNATIONAL PERSPECTIVE THE AGENCY'S ROLE AND NEEDS IN THE PEACEFUL DEVELOPMENT OF NUCLEAR ENERGY L.V. Konstantinov Deputy Director General, Dept. of Nuclear Energy and Safety International Atomic Energy Agency 101 THE OUTLOOK FOR NUCLEAR POWER AFTER CHERNOBYL L.L. Bennett Head, Economic Studies Section, Div. of Nuclear Power International Atomic Energy Agency 113 TRENDS TOWARDS IMPROVED OPERATING PERFORMANCE OF NUCLEAR POWER PLANTS N.L. Char Director, Div. of Nuclear Power G. Samdani Div. of Nuclear Power D. White International Atomic Energy Agency 128 \ THE INTERNATIONALIZATION OF NUCLEAR SAFETY - THE IAEA SAFETY PROGRAMME Morris Rosen Assistant Deputy Director General Director, Division of Nuclear Safety International Atomic Energy Agency 147 INTERNATIONAL ASSISTANCE TO THE PLANT OPERATOR FOR IMPROVED SAFETY E.M. Yaremy Division of Nuclear Safety International Atomic Energy Agency 153 SESSION 4 - ECONOMIC GOALS AND OPERATING LESSONS SLIGHTLY-ENRICHED FUEL FOR CANDU REACTORS P.R. Burroughs and G.H. Archinoff Design and Development Division - Generation Ontario Hydro 172 SUPPLY IN THE URANIUM FUEL CYCLE Jan Murray Secretary-General The Uranium Institute 190 IMPACT OF SUSTAINED ECONOMIC GROWTH ON THE U.S. POWER MARKET John R. Siegel Vice President, The Atomic Industrial Forum 203 DEVELOPING NEW PRODUCTS FROM CANADIAN NUCLEAR TECHNOLOGY Dr. S.R. Hatcher, President Atomic Energy of Canada Limited Research Company 221 THE USE OF RADIOISOTOPES IN MEDICINE AND FOOD PROCESSING D.J.R. Evans Vice President, Isotope Division AECL Radiochemical Company 233 ENVIRONMENTAL IMPACT AND EMERGENCY RESPONSE LESSONS FROM CHERNOBYL E.A. Warman Stone & Webster Engineering Corporation 238 CHERNOBYL SAFETY LESSONS FOR THE CANDU SYSTEM - A DESIGNER'S PERSPECTIVE G.L. Brooks Vice President & Chief Engineer Atomic Energy of Canada Limited 267 .... ,-. I SESSION 5 - PERFORMANCE GOALS PICKERING NGS UNIT I - READY FOR SERVICE W.G. Morison, W.J. Penn, K.H. Talbot, B.J. Murdoch Ontario Hydro 272 RECENT OPERATIONAL EXPERIENCE AT GENTILLY 2 Joseph M. McNally Vice-President, Mauricie Region Michel L. Ross Adviser - Special Projects Hydro-Quebec 298 (f rench version) . •• 308 EXPERIENCE D1 EXPLOITATION D'UN PARC IMPORTANT DE CENTRALES NUCLE"AIRES L. Bertron Service de la Production Thermique Electricity de France 328 THE CANDU OWNERS GROUP - ORGANIZATION FOR THE FUTURE H.S. Irvine - Ontario Hydro J.E. Stevens - AECL A. Duchesne — Hydro—Quebec A.R. McKenzie - New Brunswick Power B.R. Collingwood - CANDU Owners Group 342 PERFORMANCE INDICATORS AND LONG TERM GOALS T.J. Sullivan Division Director, Engineering Institute of Nuclear Power Operations 362 RADIATION PROTECTION - THE FUTURE? R. Wilson Director, Health and Safety Division D.A. Lee Manager, Safety Services Department Ontario Hydro 379 LUNCHEON ADDRESSES Sam G. Horton Chairman, Canadian Nuclear Association 386 R.W. Morrison Uranium and Nuclear Energy Branch Department of Energy, Mines and Resources 389 PLANNING ENERGY SUPPLIES FOR PEOPLE 0.J.C. Runnalls Chairman, Centre for Nuclear Engineering & Professor of Energy Studies University of Toronto Toronto, Ontario WORLD POPULATION The world population grew relatively slowly during the first 1500 years after 1 A.D. from a starting level of about 300 million people. Then the total began to escalate more rapidly until today the population.stands at an estimated 5 billion as indicat- ed in Figure l.U)UMJ' Fully 75% of that number live in less developed regions. These areas are sometimes referred to as the "South" and consist of Asia, Africa and Latin America as shown in Figure 2.' ' Figure 1 World Population (1) (2) t3) soo IOOO ISOO 2.OQO 2500 Population projections up to the end of the century indicate that the less developed regions will grow at about .3.to 4 times the rate of more developed regions in the "North" (see Figure 3). Figure 2 Regions of the World (4) North America Europe Industrialized Countries of the Pacific South Africa Sou th: Asia Africa Latin America Figure 3 Estimated World Population Growth Z-5 V WORLD o «E moat ocvcu»i>«e £«»<•<*« iOS •z 1 1 '960 1985 /99O /9S5 2000 By 2000 about 80% of the world's people will live in the South. As illustrated in Figure 4, the age distribution^in the two parts of the world will be markedly different as well '. The populat- ion in the North will be an aging one, whereas an increasing number of young people will be present in the South. Figure 4 Age-Sex Composition of World Population (2) MORE DEYELOPELO 1975 aooo JOO zoo 100 zoo zoo JOO LESS DEVELOPED 80* REGIONS 300 TOO Many amongst the 4 billion in less developed regions will be living in squalor and below the poverty level. This is not to say, however, that their expectations for improvement will not be high, particularly in this modern electronic age where the good life being experienced by many in the North is visible for all to see. It will be apparent, therefore, that the problems in plan- ing future energy supplies are immense but must be solved if social chaos is to be avoided. WORLD ENERGY SUPPLIES During the past 125 years, the sources of world primary,-energy supply have changed dramatically as shown in Figure 5. In 1860, wood was a very important source supplying some 70% of the total required. Now, however, its contribution is just a few percent even though many in the South rely on wood to provide heat for cooking and for warmth. The'use of coal peaked about 1920 and of oil some 60 years later. During the last 75 years, nuclear power has been the only new source to appear in an amount large enough to show on Figure 5 ,- i.e. greater than 1% of the total. Towards the end of the century and beyond, there may be other sources that contribute significantly such as solar energy and synthetic liquids. For the moment, however, they are not economically competitive. That situation could change in future as conventional hydrocarbons become more expensive, and should technological advances render solar power more attractive. Figure 5 . World Primary Energy Supply, 1860-2030 10 0-99 10 O-90 <D & VI 3; ui O-7O Q Id 0*0 % O-ZO u. 0 Oio 2 0 h iu iaso 1900 I93G 2OOO ZOSOOol Since 1900, wQ?}d annual energy consumption has increased more than ten-fold (see Figure 6). Since during the same period population has grown 2.5 times, the per capita energy consumption has risen by a factor of 4. In recent years oil and natural gas have played a major role, providing 58% of the total in 1985, for example. However, the contribution of oil appears to have peaked about 1980 with indications that it is now on the decline. Natural gas is expected to follow the same path, but perhaps Figure 6 World Primary Energy Consumption During the Twentieth Century (6) (Exajoules or Gigatonnes Oil Equivalent) 4-00 - 8 1300 19*0 I960 1380 zooo lagging by several decades. Meanwhile, energy consumption will continue to grow to more than double or.triple the present level by the year 2060 as shown in Figure 7. The uncertainty alone in energy needs by then will be larger than the total consumption in 1985. One estimate out- lining how.this huge future demand might be met is set out in Figure 8.
Recommended publications
  • Position Statement #74 Fast Reactor Technology: a Path to Long-Term Energy Sustainability
    Position Statement #74 Fast Reactor Technology: A Path to Long-Term Energy Sustainability The American Nuclear Society believes that the development and Fast reactors in conjunction with fuel recycling can diminish the deployment of advanced nuclear reactors based on fast-neutron cost and duration of storing and managing reactor waste with fi ssion technology is important to the sustainability, reliability, an offsetting increase in the fuel cycle cost due to reprocessing and security of the world’s long-term energy supply. Of the known and fuel refabrication. Virtually all long-lived heavy elements are and proven energy technologies, only nuclear fi ssion can provide eliminated during fast reactor operation, leaving a small amount the large quantities of energy required by industrial societies in a of fi ssion product waste that requires assured isolation from the sustainable and environmentally acceptable manner. environment for less than 500 years.4 Natural uranium mined from the earth’s crust is composed Although fast reactors do not eliminate the need for international primarily of two isotopes: 99.3% is U-238, and 0.7% is the fi ssile proliferation safeguards, they make the task easier by segregating U-235. Nearly all current power reactors are of the “thermal and consuming the plutonium as it is created. The use of onsite neutron” design, and their capability to extract the potential energy reprocessing makes illicit diversion from within the process highly in the uranium fuel is limited to less than 1% of that available. impractical. The combination of fast reactors and reprocessing is The remainder of the potential energy is left unused in the spent a promising option for reasons of safety, resource utilization, and fuel and in the uranium, depleted in U-235, that remains from proliferation resistance.
    [Show full text]
  • In the Red: the Green Behind Nuclear Power
    In the Red: The Green Behind Nuclear Power By Heath Packman Saskatchewan Office Suite G – 2835 13th Avenue Regina, SK S4T 1N6 www.policyalternatives.ca In the Red: The Green Behind Nuclear Power By Heath Packman July 2010 About the Author i>Ì Ê*>V>Ê `ÃÊ`i}ÀiiÃÊvÀÊÌ iÊ1ÛiÀÃÌÞÊvÊ,i}>ÊÊ VVÃÊ>`ÊÃÌÀÞ°ÊÊÜÀÌiÀÊ>`Ê ÀiÃi>ÀV iÀÊvÊ«ÕLVÊ«VÞ]Êi>Ì ÊëiÌÊÃÝÊÞi>ÀÃÊÜÀ}Ê>}Ã`iÊÌ iÊiÞÊÃÌiÀÃÊvÊÌ iÊ >ÛiÀÌÊ >`ÃÌÀ>ÌÊÊÌ iÊÃÌÀiÃÊvÊ`ÕÃÌÀÞ]Ê>Vi]Ê>`Ê`Û>Vi`Ê `ÕV>ÌÊ>`Ê/À>}° Acknowledgements / iÊ>ÕÌ ÀÊÃÊÃViÀiÞÊ}À>ÌivÕÊÌÊÌ iÊ >>`>Ê iÌÀiÊvÀÊ*VÞÊÌiÀ>ÌÛiÃÊvÀÊÃÕ««ÀÌ}ÊÌ iÊ ÊÜÀÌ}ÊvÊÌ ÃÊÀi«ÀÌ°Ê/ >ÃÊÌÊ-Ê V ]Ê ÀiVÌÀÊvÊÌ iÊ >>`>Ê iÌÀiÊvÀÊ*VÞÊÌiÀ>ÌÛi]Ê ->Ã>ÌV iÜ>]ÊvÀÊ ÃÊ>ÃÃÃÌ>ViÊÊ«ÀÛ`}Ê}Õ`>Vi]ÊÌÀiiÃÃÊvii`L>VÊ>`ÊÛiÀ>Ê`ÀiVÌ°Ê-«iV>Ê Ì >ÃÊÌÊÌ iÊ>ÞÕÃÊ«iiÀÀiÛiÜiÀÊvÀÊ>}Ê>ÞÊÕÃivÕÊÃÕ}}iÃÌÃÊÌÊvÀÌvÞÊÌ iÊ«>«iÀÊ>`Ê ÃÌÀi}Ì iÊÌÃÊ>ðÊ/ iÊ>ÕÌ ÀÊÜÕ`Ê>ÃÊiÊÌÊ«iÀÃ>ÞÊÌ >ÊÀ>ÃiÀÊ ii` >Ê>`Ê>ÀÊ «iÀÊ vÀÊÌ iÀÊ«>ÀÌ>ÊÀiÛiÜÊ>`Ê>>ÞÃÃÊvÊ`À>vÌÃ]Ê>`Êw>ÞÊÌ iÊ i«vÕÊ}Õ`>ViÊvÊ*iÌiÀÊ*ÀiLLi° / ÃÊ«ÕLV>ÌÊÃÊ>Û>>LiÊÕ`iÀÊÌi`ÊV«ÞÀ} ÌÊ«ÀÌiVÌ°Ê9ÕÊ>ÞÊ`Ü>`]Ê`ÃÌÀLÕÌi]Ê« Ì V«Þ]ÊVÌiÊÀÊiÝViÀ«ÌÊÌ ÃÊ`VÕiÌÊ«ÀÛ`i`ÊÌÊÃÊ«À«iÀÞÊ>`ÊvÕÞÊVÀi`Ìi`Ê>`ÊÌÊÕÃi`ÊvÀÊViÀV>Ê Ê«ÕÀ«ÃiðÊ/ iÊ«iÀÃÃÊvÊ *ÊÃÊÀiµÕÀi`ÊvÀÊ>ÊÌ iÀÊÕÃiÃ°Ê *ÀÌi`ÊV«iÃ\Êf£x°ää - ÊÇn£ÓÈnnnäÇ£ *i>ÃiÊ>iÊ>Ê`>ÌÊiÊ>ÌÊwww.policyalternatives.ca ÀÊV>ÊÌ iÊ *Ê >Ì>Ê"vwViÊÈ£ÎxÈΣÎ{£Ê ÀÊÎäÈÓ{ÎÎÇÓÊ->Ã>ÌV iÜ>Ê *°Ê>}Ê>Ê`>ÌÊÀÊLiV}Ê>ÊiLiÀÊvÊ *Ê i«ÃÊÕÃÊÌÊ VÌÕiÊÌÊ«ÀÛ`iÊ«i«iÊÜÌ Ê>VViÃÃÊÌÊÕÀÊÀiÃi>ÀV ÊvÀiiÊvÊV >À}i° ÓÊUÊ *ÊqÊ->Ã>ÌV iÜ>Ê"vwViÊ ÊÌ iÊ,i`\Ê/ iÊÀiiÊ i `Ê ÕVi>ÀÊ*ÜiÀ]ÊÕÞÊÓä£ä Contents ÌÀ`ÕVÌÊ°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° { ÊÌ iÊ,i`\Ê/ iÊÀiiÊ i `Ê ÕVi>ÀÊ*ÜiÀÊ°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
    [Show full text]
  • Canadian Nuclear Association 2020 Awards
    Canadian Nuclear Achievement Awards Prix canadiens pour contributions nucléaires exceptionnelles Canadian Nuclear Society/ Canadian Nuclear Association 2020 Awards 2020 June Gaëtan Thomas Ian McRae Award . Mr. Gaëtan Thomas is currently the President and Chief Executive Officer at New Brunswick Power, and has previously held the role of Chief Nuclear Officer and Vice President Nuclear. Throughout his career, he has advanced nuclear energy as a manager, administrator, public servant and top-level communicator. Mr. Thomas is known as a leader who engages with staff at all levels of the organization, facilitating a culture of innovation and excellence. He demonstrated determination and persistence in leading his team through completion of the Point Lepreau Refurbishment project and start-up, giving the station an extended 30 years of operation. He built a foundation of safety and operational excellence upon which the company could flourish and grow. In 2019, Point Lepreau achieved the highest industry standards as assessed by the World Association of Nuclear Operators (WANO). Mr. Thomas is also a leader within the broader industry. His roles have included Chair of the New Brunswick Energy Marketing Corporation, Board member of Plug ‘n Drive, and Chairman of the WANO Atlanta Centre. Additionally, he has been selected by Atlantic Business Magazine as one of the region’s Top 50 CEOs, and was selected as one of the Most Influential Acadians by L’Acadie Nouvelle. In recent years, Mr. Thomas has been instrumental in positioning New Brunswick Power as a leader in the development and deployment of Small Modular Reactors (SMRs). He has successfully worked with the New Brunswick government to encourage investment in SMR technology.
    [Show full text]
  • Nuclear Consultation. by Ricardo Acuna
    Issues: Another contentious issue, another phony consultation Nuclear Consultations Ricardo Acuña / ualberta.ca / parkland Why bother? Does anyone in Alberta really believe that "consultations" and "expert panel" reports generated by the provincial government are ever anything more than attempts to whitewash contentious issues and unpopular policies? Yet the government continues to spend millions of dollars on these public relations exercises, and continues to try to pass them off as genuine and objective consultations. The latest supposed information gathering and public consultation effort launched by the government is no different. When Albertans responded loudly and angrily to a proposal from Ontario's Bruce Power to build up to four nuclear reactors in northern Alberta, the government sought to quell the outcry by assuring us that they would not take a position on nuclear power without first studying the pros and cons in depth and fully consulting the public. As always, the first step in this process was the appointment of an "expert panel" to produce a "comprehensive and balanced" research report, which would look at the environmental, safety and myriad other issues related to nuclear power generation. Unfortunately, the panel itself was neither comprehensive nor balanced. The panel is chaired by Harvie Andre, a former Conservative MP who remains closely allied with pro-nuclear Conservatives, including Stephen Harper. Also on the panel is John Luxat, who is a past president of the Canadian Nuclear Society, and a current board member of Atomic Energy of Canada Limited (AECL). Rounding out the panel are Joseph Doucet, an energy policy professor from the University of Alberta, and Harrie Vredenburg, a prof from the University of Calgary who has done work in the past for energy companies holding a direct stake in Bruce Power.
    [Show full text]
  • Canadawest in the International Arena FOUNDAT ION GOING for GOLD Western Canada’S Economic Prosperity Is Not Only Good for the West, but for Canada As a Whole
    GOING FOR GOLD The Western Canadian Economy Prairiein the International Atoms: Arena The Opportunities and Challenges of Nuclear Power in Alberta and Saskatchewan Duane Bratt, PhD September 2008 GOING FOR GOLD The Western Canadian Economy CanadaWest in the International Arena FOUNDAT ION GOING FOR GOLD Western Canada’s economic prosperity is not only good for the West, but for Canada as a whole. But the West can not rest on its laurels. Like the athletes training for the forthcoming Winter Olympics in Vancouver, western Canada needs to be at the top of its game if it is to continue to compete successfully in the international economic arena, especially as its competitors step up their games. If we are not successful, our standard of living will fall. The Going For Gold Project is examining how best to position western Canada in the global economy through a series of research papers, provincial research roundtables, public opinion and expert surveys, and will end with a seminal international economic conference in Vancouver in the fall of 2009. Funding for the Going for Gold Project has been provided by the Provinces of British Columbia (Economic Development), Alberta (Employment, Immigration and Industry), Saskatchewan (Enterprise and Innovation), and Manitoba (Competitiveness, Training and Trade). This paper was prepared by Dr. Duane Bratt, Department of Policy Studies, Mount Royal College. The paper is part of the Canada West Foundation’s Going for Gold Project Research Paper Series. A total of 12 research papers have been commissioned. Each paper examines a key issue related to improving western Canada’s ability to compete and win in the global economy over the long-term.
    [Show full text]
  • Know Your Power
    NUCLEAR CANDU reactors use enriched Uranium as fuel, and Nuclear Fast Facts heavy water (deuterium) as the moderator. Nuclear power is derived from a nuclear fission reaction There is ample uranium in the world to fuel nuclear through a process in which large amounts of heat power plants today and in the future. are generated. The heat produced from the nuclear Eight pellets of uranium (smaller than an average reaction is used to generate the steam which rotates adult thumb), contains enough energy to power an the turbines to generate electricity. average home for about one year. In order for the nuclear fission reaction in a CANDU There were 438 operable nuclear power reactors in system to sustain a chain reaction, an atom com- 30 countries and 54 nuclear reactors under con- prised of Uranium, U-235, is required. The CANDU struction as of February 1, 2010. system can be described as a tank which contains tubes of uranium fuel, covered with heavy water that Nuclear power produced 12.9 per cent of global moderates the speed of neutrons thereby enabling a electricity in 2010. chain reaction of splitting atoms. As the fuel con- The Canada Deuterium Uranium (CANDU) reactor is tained in the tubes is heated, the heat is pumped also used in Argentina, Romania, Pakistan, India, through an external pipe using heavy water. The re- China, and the Republic of Korea. sult is hot heavy water which enters a boiler and converts to steam, thus producing electricity. Canadian Nuclear Uranium which is used to ignite the fission reaction in the nuclear power process is a common and Power Process abundant metal found in most rocks, soil, rivers, oceans and food.
    [Show full text]
  • Summary This Document Is a Summary of the Report Maintaining Excellence: Planning a New Multi-Purpose Research Reactor for Canada
    y S u m m a r About the CNS: The Canadian Nuclear Society (CNS), established in 1979 and independently incorporated in 1998, is a not-for-profit learned society with a nation-wide membership of over 1200. The CNS is dedicated to the exchange of information on the peaceful applications of nuclear science and technology. This encompasses all aspects of nuclear energy, uranium, For more information about the Canadian Nuclear Society, fission and other nuclear technologies, such please visit its website or main office: as occupational and environmental protection, medical diagnosis and Canadian Nuclear Society www.cns-snc.ca 480 University Avenue treatment, the use of radioisotopes, and Suite 200 Tel: (416) 977-7620 food preservation. CNS members join as Toronto, ON. Fax: (416) 977-8131 Canada M5G 1V2 individuals (there is no corporate category of membership), and are drawn mainly © 2010 - Canadian Nuclear Society from the various fields mentioned above, The information contained in this document may be copied without permission. including from within the academic This document is not intended for commercial use. Copyright for photography remains with the Canadian Nuclear Society, unless otherwise indicated. community. Canadian Nuclear Society / Société Nucléaire Canadienne MAINTAINING EXCELLENCE: PLANNING A NEW MULTI-PURPOSE RESEARCH REACTOR FOR CANADA Summary This document is a summary of the report Maintaining Excellence: Planning a New Multi-Purpose Research Reactor for Canada. In representing the interests of the Canadian nuclear science and engineering community, the Canadian Nuclear Society (CNS) issued that report as a factual, objective contribution to the national discussion on the future role of a national multi-purpose research reactor in Canada.
    [Show full text]
  • Conference Summaries Sommaires Du Congrès
    CA9500253 INIS-mf—14667 CONFERENCE SUMMARIES SOMMAIRES DU CONGRÈS 29th Annual Conference - Canadian Nuclear Association 29 e Congrès annuel - Association Nucléaire Canadienne 10th Annual Conference - Canadian Nuclear Society 10 e Congrès annuel - Société Nucléaire Canadienne 5 'ta 1 2 Co OTTAWA, ONTARIO June 4-7,1989 juin 4 - 7 3/ttî 29th Annual Conference Canadian Nuclear Association 29e Congrès annuel Association nucléaire canadienne Abstracts 29th Annual Conference Canadian Nuclear Association Résumés 29e Congrès annuel Association nucléaire canadienne Canadian Nuclear Association/Canadian Nuclear Society Special Symposium: 50 Years of Nuclear Fission in Review Co-sponsored by: The Royal Society of Canada Canadian Association of Chemistry Canadian Association of Nuclear Medicine Canadian Association of Physicists Canadian Society for Chemical Engineering The Chemical Institute of Canada Chairman: A.J. Hooradian, former senior Vice-President, AECL Moderator and Commentator: R. Bothwell, University of Toronto 1. Hov it all Began B. Goldschmidt, Former Director of Chemistry at Montreal and CRNL, 1942-1946, Former Director, Commissariat à l'Energie Atomique, France, and Former Chairman, Board of Governors, IAEA 2. Personal Reminiscences and Observations L. Cook, Consultant on Energy, Science & Technology, U.S.A., and Former Director, Chemistry and Metallurgy Division, CRNL 3. Fission and Physics in Canada G. Hanna, Former Director of Research, CRNL and Former Chairman, Physics and Astronomy Committee, NSIDRC 4. The Development of Nuclear Power J. Foster, Chairman of the International Executive Council of the World Energy Conference 5. The Second Nuclear Era A. Weinberg, Director, Institute for Energy Analysis, Oak Ridge and Former Director, Oak Ridge National Lab., U.S.A. "HOW IT ALL BEGAN" Bertrand Goldschmidt (From the discovery of fission to the Anglo-Canadian project and its French roots) 1934-1938 The Uranium puzzle - 1939 The leading Paris work of Joliot, Halban, Kowarski - 1940 The French acquisition of the Norwegian worldvide stock of heavy water.
    [Show full text]
  • Nuclear Power in Ontario Report Number Three
    mi NUCLEAR POWER IN ONTARIO REPORT NUMBER THREE Established by the Committee on Government Productivity of Ontario. JU JU JU JU JU vQ vQ (D fD (!) fD fD fD u< u> vo oo H 00 1 f fc-i t- H- H- JU H- JU 3 3 3 3 fD fD ir fD tr H w N) rO UI (D 00 to a c Hl Hl S *—N. Hl P m O O O rt CD fD 3 o (D fD CO TJ ju rt i-a i 3 3 H- I Pi rt 2! 0) Hl O (D O a Hl" 0) fD rt O (D O o ft JU Ju H w JU C 0) Pi H w 3 & u> CD 2! 8 M oo°8 i O D fD JU 3 Ut 25 fD 3 H* Pi O Pi 3 CQ - M 31 a I-S ft H- O M fD h 0 3 O JU P> fD 3 fD c 0) CO " H- M CO rt (D fj (1) I C Pi rt n a O ju * » p- IB N Additional copies of this report may be obtained by contacting: Ontario Government Bookstore, 880 Bay Strtet, Toronto 181, Ontario. 966-2054 REPORT NUMBER THREE sa 3 3 co REPORT TO THE EXECUTIVE COUNCIL § O NUCLEAR POWER IN ONTARIO m W K w Presented to the Executive Council 16 February, 1973 FEROUSON CLOCK, COMMITTEE ON GOVERNMENT PRODUCTIVITY QUEEN'S PARK, TORONTO I»». ONTARIO TELEPHONE <*!«> S«S-7iai ONTARIO TO HIS HONOUR THE LIEUTENANT-GOVERNOR OF THE PROVINCE OF ONTARIO MAY IT PLEASE YOUR HONOUR We» the members of the Committee on Government Productivity, appointed by Order-in-Council, dated 23rd December, 1969, to inquire into all matters pertaining to the management of the Government of Ontario and requested in the Speech from the Throne dated 30th March, 1971, to review the function, structure, operation, financing and objectives of the Hydro-Electric Power Commission of Ontario, herewith submit for your consideration a third report of Task Force Hydro containing their recommendations relating to Nuclear Power in Ontario.
    [Show full text]
  • A AECL EACL AECL Research EACL Recherche
    CA9501000 A AECL EACL AECL Research EACL Recherche AECL-10463, COG-91-340 Characteristics of Used CANDU Fuel Relevant to the Canadian Nuclear Fuel Waste Management Program Caractéristiques du combustible CANDU usé intéressant le Programme canadien de gestion des déchets de combustible nucléaire K.M. Wasywich £7.M<1 May 1993 mai AECL RESEARCH CHARACTERISTICS OF USED CANDU FUEL RELEVANT TO THE CANADIAN NUCLEAR FUEL WASTE MANAGEMENT PROGRAM by K.M. Wasywich Whiteshell Laboratories Pinawa, Manitoba 1993 AECL-10463 COG-91-340 CARACTÉRISTIQUES DU COMBUSTIBLE CANDU USÉ INTÉRESSANT LE PROGRAMME CANADIEN DE GESTION DES DÉCHETS DE COMBUSTIBLE NUCLÉAIRE par K.M. Wasywich RÉSUMÉ On a rassemblé, dans un manuel pratique, des renseignements provenant de la documentation sur les caractéristiques du combustible CANDU (CANada Deuterium Uranium) usé des réacteurs de puissance intéressant son comporte­ ment en tant que forme de déchets. On présente des renseignements sur les quantités de combustible usé produit, la combustion massique, les inven­ taires de radionuclides, la libération des gaz de fission, le volume et la surface de gaz, la microstructure du combustible, les propriétés de la gaine du combustible, la variation des propriétés des grappes de combus­ tible due aux procédés d'immobilisation, aux champs de rayonnement, à la chaleur de désintégration et aux tendances futures pour divers types de combustible CANDU. EACL Recherche Laboratoires de Vhiteshell Pinawa (Manitoba) ROE 1L0 1993 AECL-10463 COG-91-340 CHARACTERISTICS OF USED CANDU FUEL RELEVANT TO THE CANADIAN NUCLEAR FUEL WASTE MANAGEMENT PROGRAM by K.M. Wasywich ABSTRACT Literature data on the characteristics of used CANDU (CANada Deuterium Ura­ nium) power-reactor'fuel that are relevant to its performance as a waste form have been compiled in a convenient handbook.
    [Show full text]
  • Atomic Energy of Canada Limited CANADIAN POWER REACTOR
    Atomic Energy of Canada Limited CANADIAN POWER REACTOR PROGRAM- PRESENT AND FUTURE by E.C.W. PERRYMAN Presented at the 27th Annual Congress of the Canadian Association of Physicists, Edmonton, Alberta, on 27 June 1972 Chalk River Nuclear Laboratories Chalk River, Ontario September 1972 AECL-4265 CAI" ADIAN POWER REACTOR PROGRAM - PRESENT A. .D FUTURE1 by E.C.W. Perryman ABSTRACT A brief historical review of the Canadian Power Reactor Program is given, covering heavy-water moderated reactors cooled with heavy water, light water and organic liquid. The experience obtained from NPD and Douglas Point is discussed in relation to the first year's successful operation of the Pickering Nuclear Power Station. Future improvements and trends in the CANDU family of reactors are described. 1 This talk was presented at the 27th Annual Congress of the Canadian Association of Physicists, Edmonton, Alberta, on 27 June 1972. Chalk River Nuclear Laboratories Chalk River, Ontario September 1972 AECL-4265 Programme canadien des reacteuirs de puissance — Le present et l'avenir1 par E.C.W. Perryman Resume On passe brievement en revue le programme canadien des reacteurs moderes par eau lourde dont le caloporteur est de l'eau lourde, de l'eau legere ou un liquide organique. L'experience acquise grace a NPD et a Douglas Point est commentee a la lumiere du foncttonnement initial heureux de la centrale nucleaire Pickering. Les ameliorations futures et les tendances de la filiere CANDU sont decites. 'Cette conference a ete presentee lors du XXVIIe Congres annuel de 1'Association canadienne des physicien.% tenu a Edmonton, Alberta, !e 27 juin 1972.
    [Show full text]
  • The Use of Small Modular Nuclear Reactors for Canadian Oil Sands Applications: a Proposal and Way Forward
    The use of Small Modular Nuclear Reactors for Canadian Oil Sands Applications: A proposal and way forward By Dennis Attwood, P.Eng, Ph.D Principal, Human Factors Applications and Mohamed Moledina Senior Nuclear Engineer, Nuclear Energy Business Unit WorleyParsons Resources & Energy Canada 1. ABSTRACT It has been estimated that Canada’s Oil Sands contain between 160 and 200 billion barrels of oil reserves – the second largest accumulation of oil in the world after Saudi Arabia. It is also estimated that by 2015, output from the oil sands should increase from about 1 million barrels per day (mbbl/day)to approximately 4 mbbl/day. However, Canada and the world have to pay a price for oil extraction from the sands.It is estimated that about 40 cubic metres of natural gas as fuel must be burned for each barrel of synthetic crude produced. Therefore, if oil sands production did reach 4 mbbl/day,natural gas use for oil production could seriously limit exports of natural gas to the US. It has also been estimated that every barrel of synthetic oil pollutes about 950 litersof fresh water and emits about 100 Kg of Carbon Dioxode (CO2)along with other pollutants. Clearly an alternate source of energy is required for oil sands production that will allow our natural gas to be put to better use while simultaneously sustaining our environment. The energy must be continuously obtainable and not be subject to the intermittentavailability of wind or sunlight. Nuclear energy is the obvious choice. Nuclear energy for power generation has been prevalently used around the world since the 1950’s.
    [Show full text]