Braincase of the Upper Devonian Shark Cladodoides Wildungensis (Chondrichthyes, Elasmobranchii), with Observations on the Braincase in Early Chondrichthyans

Total Page:16

File Type:pdf, Size:1020Kb

Braincase of the Upper Devonian Shark Cladodoides Wildungensis (Chondrichthyes, Elasmobranchii), with Observations on the Braincase in Early Chondrichthyans BRAINCASE OF THE UPPER DEVONIAN SHARK CLADODOIDES WILDUNGENSIS (CHONDRICHTHYES, ELASMOBRANCHII), WITH OBSERVATIONS ON THE BRAINCASE IN EARLY CHONDRICHTHYANS JOHN G. MAISEY Division of Paleontology American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 288, 103 pp., 38 ®gures Issued March 2, 2005 Copyright q American Museum of Natural History 2005 ISSN 0003-0090 2 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 288 CONTENTS Abstract ....................................................................... 3 Introduction .................................................................... 3 Materials and Methods .......................................................... 4 Anatomical Abbreviations ....................................................... 10 Description .................................................................... 11 General Features, Taphonomy, and Forensic Observations ........................ 11 Ethmoid Region ........................................................... 15 Extent of Polar Cartilage-Derived Region .................................... 18 Ophthalmic and Efferent Pseudobranchial Arteries ............................. 19 Anterior Palatoquadrate Articulation ......................................... 22 Bucco-Hypophyseal Fenestra and Internal Carotid Arteries ..................... 22 Optic Pedicel, Optic Nerve, and Oculomotor Nerve ........................... 25 Trochlear Nerve ........................................................... 26 Abducent Nerve ........................................................... 27 Profundal Nerve ........................................................... 30 Trigeminal Nerve .......................................................... 30 Facial Nerve .............................................................. 31 Octavolateral Nerves ....................................................... 34 Posterior part of Orbit ..................................................... 35 Postorbital Process ......................................................... 36 Dorsal Aortae ............................................................. 39 Orbital Artery and Palatine Nerve ........................................... 40 Roof of Orbitotemporal Region ............................................. 41 Posterior Tectum and Dorsal Fontanelle ...................................... 41 Dorsal Otic Ridges ........................................................ 42 Lateral Otic Process and Hyomandibular Fossa ............................... 42 General Features of Skeletal Labyrinth ....................................... 42 Occipital Arch ............................................................ 43 Cranial Endocast .......................................................... 52 Discussion .................................................................... 57 Ontogenetic Aspects of the Braincase ........................................ 57 Precerebral Fontanelle ...................................................... 58 Efferent Pseudobranchial Artery ............................................. 58 Anterior Palatoquadrate Articulation ......................................... 59 Trabeculae, Polar Cartilage, and Suborbital Shelf .............................. 64 Optic Pedicel and Position of Oculomotor Foramen ........................... 67 Trigeminal, Facial, and Octavolateral Nerves .................................. 68 Trigemino-Facial Recess .................................................... 71 Postorbital Process ......................................................... 72 Postorbital Articulation ..................................................... 77 The ``Extra Foramen'' Problem ............................................. 78 Remarks on the Dorsal Vein Sinus in Acanthodes ............................. 81 Otico-Occipital Proportions ................................................. 81 Remarks on the Inner Ear in Chondrichthyans, Placoderms, and Agnathans ...... 81 Posterior Dorsal Fontanelle and Posterior Tectum ............................. 86 Lateral Otic Process ....................................................... 87 Hyomandibular Fossa ...................................................... 88 Occipital Arch, Otico-Occipital Fissure, and Hypotic Lamina ................... 89 What Kind of Shark was Cladodoides? ...................................... 92 Phylogenetic Patterns in Paleozoic Sharks .................................... 93 Conclusions ................................................................... 95 Acknowledgments ............................................................. 98 References .................................................................... 98 2005 MAISEY: CRANIAL MORPHOLOGY OF CLADODOIDES 3 ABSTRACT The braincase of an Upper Devonian shark (Cladodoides wildungensis) is investigated using high-resolution CT scanning, and its internal and external morphology is described from three- dimensional digital reconstructions. Many features are shared with modern elasmobranchs (neoselachians); these mostly represent conserved elasmobranch, chondrichthyan, or gnathos- tome characters. C. wildungensis resembles neoselachians in having a closed metotic ®ssure de®ning a glossopharyngeal canal, unlike some early chondrichthyans (e.g., Pucapampella, Orthacanthus) in which an open metotic ®ssure extends a considerable distance beneath the otic capsule. However, the glossopharyngeal canal in C. wildungensis is connected to a per- sistent dorsal ®ssure between the occipital arch and otic capsules, whereas this ®ssure becomes closed during neoselachian ontogeny. The embryonic polar cartilage apparently made a much greater contribution to the basicranium than in neoselachians and gnathostomes generally. This has affected the position of the efferent pseudobranchial foramen and the location of the orbital articulation in Cladodoides (both of which are located anteriorly in the orbit), as well as the size and extent of the dorsum sellae and the hypophyseal chamber inside the braincase. An- other unusual feature in Cladodoides is the postorbital position of its trigeminal and facial nerves; instead of being situated in a trigemino-facial fossa of the orbit as in neoselachians, their foramina are located behind the postorbital process, although the pituitary vein and the origin of the external rectus eye muscle (located within the trigemino-facial fossa in neose- lachians) both lie in the posterior part of the orbit. The oblique orientation of the postorbital arcade (derived from the embryonic lateral commissure) may be related to the exclusion of the trigeminal and facial nerves from the orbit. A laterally oriented canal through the process probably contained the trigeminal maxillary ramus (perhaps accompanied by the buccal ramus of the anterodorsal lateral line nerve). By contrast, in neoselachians these rami pass directly into the orbit (sometimes forming a buccal-maxillary complex), but they do not pass through the postorbital process. The Cladodoides braincase probably represents a juvenile or submature individual and shows indications of incomplete development (e.g., presence of a wide bucco- hypophyseal fenestra and absence of a precarotid commissure; incomplete enclosure of the internal carotids and orbital arteries by basicranial cartilage; incomplete closure of the brain- case roof along the dorsal midline). The braincase also lacks multiple-layered prismatic cal- ci®cation, possibly representing another juvenile feature. The phylogenetic relationship of Cla- dodoides wildungensis is discussed. Dental, postcranial, and cranial features lend some support to the old hypothesis that cladodont sharks form a monophyletic group. While such a view is at variance with several recently published phylogenetic analyses, many of the characters noted in the present work have yet to be tested within a rigorous cladistic framework, and their phylogenetic signi®cance is uncertain. INTRODUCTION drichthyans and elasmobranchs has helped Literature on the phylogeny of early gna- steer these hypotheses, whereas little atten- thostomes is dominated by descriptions and tion has been paid to extinct chondri- comparisons of osteichthyans, placoderms, chthyans. This stasis undoubtedly results and acanthodians, but the body of literature from the great rarity of morphologically in- concerned with fossil chondrichthyan anato- formative chondrichthyan fossils, as well as my is comparatively small. Despite this pau- from inadequate preservation and a limited city of reliable morphological data (or per- ability to observe crucial features even in haps because of it), chondrichthyans have better specimens. Whatever the reason, there sometimes been credited with considerable has never been a comprehensive survey of evolutionary importance (for example as pu- morphological diversity in early chondri- tative placoderm descendants; Holmgren, chthyans. 1942; StensioÈ, 1969), while at other times We need to look for more shark fossils, they have been treated rather summarily, as and the importance of new discoveries is am- a primitive sister group to osteichthyans (Ro- ply illustrated by recent discoveries of artic- sen et al., 1981; Gardiner, 1984a). Invariably, ulated and other well preserved remains of however, the morphology of modern chon- Lower and Middle Devonian chondri- 4 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 288 chthyans (e.g., Pucapampella, Doliodus, and
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Symmoriiform Sharks from the Pennsylvanian of Nebraska
    Acta Geologica Polonica, Vol. 68 (2018), No. 3, pp. 391–401 DOI: 10.1515/agp-2018-0009 Symmoriiform sharks from the Pennsylvanian of Nebraska MICHAŁ GINTER University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, PL-02-089 Warsaw, Poland. E-mail: [email protected] ABSTRACT: Ginter, M. 2018. Symmoriiform sharks from the Pennsylvanian of Nebraska. Acta Geologica Polonica, 68 (3), 391–401. Warszawa. The Indian Cave Sandstone (Upper Pennsylvanian, Gzhelian) from the area of Peru, Nebraska, USA, has yielded numerous isolated chondrichthyan remains and among them teeth and dermal denticles of the Symmoriiformes Zangerl, 1981. Two tooth-based taxa were identified: a falcatid Denaea saltsmani Ginter and Hansen, 2010, and a new species of Stethacanthus Newberry, 1889, S. concavus sp. nov. In addition, there occur a few long, monocuspid tooth-like denticles, similar to those observed in Cobelodus Zangerl, 1973, probably represent- ing the head cover or the spine-brush complex. A review of the available information on the fossil record of Symmoriiformes has revealed that the group existed from the Late Devonian (Famennian) till the end of the Middle Permian (Capitanian). Key words: Symmoriiformes; Microfossils; Carboniferous; Indian Cave Sandstone; USA Midcontinent. INTRODUCTION size and shape is concerned [compare the thick me- dian cusp, almost a centimetre long, in Stethacanthus The Symmoriiformes (Symmoriida sensu Zan- neilsoni (Traquair, 1898), and the minute, 0.5 mm gerl 1981) are a group of Palaeozoic cladodont sharks wide, multicuspid, comb-like tooth of Denaea wangi sharing several common characters: relatively short Wang, Jin and Wang, 2004; Ginter et al. 2010, figs skulls, large eyes, terminal mouth, epicercal but ex- 58A–C and 61, respectively].
    [Show full text]
  • Sharks from the Middle-Late Devonian Aztec Siltstone, Southern Victoria Land, Antarctica
    Records of the Western Australian Museum 17: 287-308 (1995). Sharks from the Middle-Late Devonian Aztec Siltstone, southern Victoria Land, Antarctica John A. Longl and Gavin C. Young2 I Western Australian Museum, Francis Street, Perth, Western Australia 6000 2 Australian Geological Survey Organisation, p.a. Box 378, Canberra, A.C.T. 2601 Abstract Shark teeth representing three new taxa are described from the Middle-Late Devonian Aztec Siltstone of southern Victoria Land, Antarctica. Portalodus bradshawae gen. et sp. novo is represented by large diplodont teeth which have a base with a well-produced labial platform. It occurs in the middle to upper sections of the Aztec Siltstone. Aztecodus harmsenae gen. et sp. novo is represented by broad bicuspid teeth, wider than high, with numerous medial crenulations and twin nutritive foramina penetrating the rectangular base. It occurs in the middle sections of the Aztec Siltstone. The teeth of Anareodus statei gen. et sp. novo are characterised by having a main cusp which is more than twice as high as the second cusp, a small cusplet developed on the outer cutting edge of the main cusp, sometimes with few crenulations developed in the middle of the two cusps, and the base is strongly concave. Antarctilanma cf. prisca Young, 1982 is also recorded from the middle and upper sections of the Aztec Siltstone above the thelodont horizons and occurring with phyllolepids and Pambulaspis in the Cook Mountains section south of Mt Hughes. The chondrichthyan fauna from the Aztec Siltstone now contains at least 5 species, being the most diverse assemblage of Middle Devonian chondrichthyans (based on teeth) from one stratigraphic unit.
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • BETTER DATA COLLECTION in SHARK FISHERIES LEARNING from PRACTICE Cover Image: Cacaodesign.It FAO Fisheries and Aquaculture Circular No
    NFIF/C1227 (En) FAO Fisheries and Aquaculture Circular ISSN 2070-6065 BETTER DATA COLLECTION IN SHARK FISHERIES LEARNING FROM PRACTICE Cover image: cacaodesign.it FAO Fisheries and Aquaculture Circular No. 1227 NFIF/C1227 (En) BETTER DATA COLLECTION IN SHARK FISHERIES LEARNING FROM PRACTICE by Monica Barone Fishery Resources Consultant FAO Fisheries Department Rome, Italy and Kim Friedman Senior Fishery Resources Officer FAO Fisheries Department Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2021 Required citation: FAO. 2021. Better data collection in shark fisheries – Learning from practice. FAO Fisheries and Aquaculture Circular No. 1227. Rome. https://doi.org/10.4060/cb5378en The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-134622-8 © FAO, 2021 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode).
    [Show full text]
  • Etyfish Hexanchiform
    HEXANCHIFORMES · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 6.0 - 17 July 2019 Order HEXANCHIFORMES 2 families · 4 genera · 7 species Family CHLAMYDOSELACHIDAE Frilled Sharks Chlamydoselachus Garman 1884 chlamydos, cloak or mantle, referring to first pair of gill slits that fit like a cloak or frill around throat; selachos, shark Chlamydoselachus africana Ebert & Compagno 2009 referring to South Africa’s Marine and Coastal Management research vessel Africana, for the excellent research surveys it has conducted; it is also the vessel that collected paratype Chlamydoselachus anguineus Garman 1884 snake-like, referring to snake or eel-like shape Family HEXANCHIDAE Cow Sharks Heptranchias Rafinesque 1810 hepta, seven; [b]ranchos, gill or ankos, bend or hollow, referring to seven gill openings Heptranchias perlo (Bonnaterre 1788) from French vernacular le perlon, meaning pearl, perhaps referring to smooth and grayish (“lisse & grisâtre”) skin Hexanchus Rafinesque 1810 hexa-, six; [b]ranchos, gill or ankos, bend or hollow, referring to six gill openings Hexanchus griseus (Bonnaterre 1788) latinization of common name “Le Griset,” gray, referring to dark gray coloration Hexanchus nakamurai Teng 1962 in honor of Teng’s colleague Hiroshi Nakamura, who illustrated this species as H. griseus in 1936 Hexanchus vitulus Springer & Waller 1969 a bull calf, i.e., a small cowshark, smaller than its fellow Atlantic congener, H. griseus Notorynchus Ayres 1856 etymology not explained, presumably noto-, back, perhaps referring to single dorsal fin; rhynchus, snout, probably referring to broad, depressed snout Notorynchus cepedianus (Péron 1807) -anus, belonging to: Bernard-Germain-Étienne de La Ville-sur-Illon, comte de [count of] La Cepède (also spelled as La Cépède, Lacépède, or Lacepède, 1756-1825), author of Histoire Naturelle des Poissons (1798-1803) Chlamydoselachus anguineus.
    [Show full text]
  • Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences
    Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 147064, 11 pages http://dx.doi.org/10.1155/2013/147064 Research Article Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences Keiko Tanaka,1 Takashi Shiina,1 Taketeru Tomita,2 Shingo Suzuki,1 Kazuyoshi Hosomichi,3 Kazumi Sano,4 Hiroyuki Doi,5 Azumi Kono,1 Tomoyoshi Komiyama,6 Hidetoshi Inoko,1 Jerzy K. Kulski,1,7 and Sho Tanaka8 1 Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 2 Fisheries Science Center, The Hokkaido University Museum, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan 3 Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan 4 Division of Science Interpreter Training, Komaba Organization for Education Excellence College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan 5 Shimonoseki Marine Science Museum, 6-1 Arcaport, Shimonoseki, Yamaguchi 750-0036, Japan 6 Department of Clinical Pharmacology, Division of Basic Clinical Science and Public Health, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 7 Centre for Forensic Science, The University of Western Australia, Nedlands, WA 6008, Australia 8 Department of Marine Biology, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan Correspondence should be addressed to Takashi Shiina; [email protected] Received 1 March 2013; Accepted 26 July 2013 Academic Editor: Dietmar Quandt Copyright © 2013 Keiko Tanaka et al.
    [Show full text]
  • Carboniferous Formations and Faunas of Central Montana
    Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa­ tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________
    [Show full text]
  • Investigating Sexual Dimorphism in Ceratopsid Horncores
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-01-25 Investigating Sexual Dimorphism in Ceratopsid Horncores Borkovic, Benjamin Borkovic, B. (2013). Investigating Sexual Dimorphism in Ceratopsid Horncores (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26635 http://hdl.handle.net/11023/498 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Investigating Sexual Dimorphism in Ceratopsid Horncores by Benjamin Borkovic A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES CALGARY, ALBERTA JANUARY, 2013 © Benjamin Borkovic 2013 Abstract Evidence for sexual dimorphism was investigated in the horncores of two ceratopsid dinosaurs, Triceratops and Centrosaurus apertus. A review of studies of sexual dimorphism in the vertebrate fossil record revealed methods that were selected for use in ceratopsids. Mountain goats, bison, and pronghorn were selected as exemplar taxa for a proof of principle study that tested the selected methods, and informed and guided the investigation of sexual dimorphism in dinosaurs. Skulls of these exemplar taxa were measured in museum collections, and methods of analysing morphological variation were tested for their ability to demonstrate sexual dimorphism in their horns and horncores.
    [Show full text]
  • New Genus of Eugaleaspidiforms Found in China 15 February 2012
    New genus of Eugaleaspidiforms found in China 15 February 2012 The new genus is most suggestive of Eugaleaspis of the Eugaleaspidae by the absence of inner corners, in addition to the diagnostic features of the family, such as only 3 pairs of lateral transverse canals from lateral dorsal canals, and the U-shaped trajectory of median dorsal canals. They differ in that the new genus possesses a pair of posteriorly extending corners, the breadth/length ratio of the shield smaller than 1.1, and the posterior end of median dorsal opening beyond the posterior margin of orbits. Dr. ZHU Min, lead author of the study, and his colleagues reexamined the type specimen of Eugaleaspis xiushanensis from the Wenlock Huixingshao Formation of Chongqing, and observed a pair of posteriorly extending lobate corners and three (instead of four in the original description) pairs of lateral transverse canals. Thus, they re-assigned it to Dunyu. The new species Fig.1: Cephalic shield of Dunyu longiforus gen. et sp. differs from Dunyu xiushanensis in its large nov. ( holotype IVPP V 17681). A. dorsal view; B. ventral cephalic shield which is longer than broad, spine- view; C. close-up view of the left corner; D. close-up shaped corners, anteriorly positioned orbits, the view to show the regional variation of polygonal length ratio between preorbital and postorbital tubercles, and minute spines on the inner surface of the portions of the shield less than 0.75, and large dermal rim encircling the median dorsal opening; E. polygonal, flat-topping tubercles exceeding 2.0 mm illustrative drawing in dorsal view.
    [Show full text]
  • A New Euselachian Shark from the Early Permian of the Middle Urals, Russia
    A new euselachian shark from the early Permian of the Middle Urals, Russia ALEXANDER O. IVANOV, CHRISTOPHER J. DUFFIN, and SERGE V. NAUGOLNYKH Ivanov , A.O., Duffin, C.J., and Naugolnykh, S.V. 2017. A new euselachian shark from the early Permian of the Middle Urals, Russia. Acta Palaeontologica Polonica 62 (2): 289–298. The isolated teeth of a new euselachian shark Artiodus prominens Ivanov and Duffin gen. et sp. nov. have been found in the Artinskian Stage (Early Permian) of Krasnoufimskie Klyuchiki quarry (Sverdlovsk Region, Middle Urals, Russia). The teeth of Artiodus possess a multicuspid orthodont crown with from four to nine triangular cusps; prominent labial projection terminating in a large round tubercle; distinct ornamentation from straight or recurved cristae; oval or semilu- nar, elongate, considerably vascularized base; dense vascular network formed of transverse horizontal, ascending, short secondary and semicircular canals. The teeth of the new taxon otherwise most closely resemble the teeth of some prot- acrodontid and sphenacanthid euselachians possessing a protacrodont-type crown, but differ from the teeth of all other known euselachians in the unique structure of the labial projection. The studied teeth vary in crown and base morphol- ogy, and three tooth morphotypes can be distinguished in the collection reflecting a moderate degree of linear gradient monognathic heterodonty. The range of morphologies otherwise displayed by the collection of teeth shows the greatest similarity to that described for the dentitions of relatively high-crowned hybodontids from the Mesozoic. The internal structure of the teeth, including their vascularization system is reconstructed using microtomography. The highest chon- drichthyan taxonomic diversity is found in the Artinskian, especially from the localities of the Middle and South Urals.
    [Show full text]