Two New Species of the Anemadus Taiwanus Species-Group (Coleoptera: Leiodidae: Cholevinae: Anemadini) from China

Total Page:16

File Type:pdf, Size:1020Kb

Two New Species of the Anemadus Taiwanus Species-Group (Coleoptera: Leiodidae: Cholevinae: Anemadini) from China Zootaxa 4072 (2): 282–290 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4072.2.9 http://zoobank.org/urn:lsid:zoobank.org:pub:1C21A78B-C978-4C2B-BD83-66F54478980E Two new species of the Anemadus taiwanus species-group (Coleoptera: Leiodidae: Cholevinae: Anemadini) from China CHENG-BIN WANG1 & HONG-ZHANG ZHOU1, 2 1Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, University of Chinese Academy of Sciences, 1 Beichen West Rd., Chaoyang District, Beijing 100101, P. R. China 2Corresponding author. E-mail: [email protected] Abstract Anemadus perreaui sp. nov. and A. sichuanus sp. nov., both belong to the A. taiwanus species-group (Coleoptera: Leio- didae: Cholevinae, Anemadini), are described from Sichuan Province, China. Color plates and line drawings are offered to illustrate their important characteristics. A key to all species of the group is compiled so as to include the two new spe- cies. Key words: Leiodidae, Cholevinae, Anemadus, taxonomy, new species, China 摘要 本文描述了产自中国四川省的佩罗风小葬甲 Anemadus perreaui sp. nov. 与四川风小葬甲 A. sichuanus sp. nov.,两 者均隶属于台湾风小葬甲种组 A. taiwanus species-group (鞘翅目:球蕈甲科:小葬甲亚科,风小葬甲族)。我 们提供了彩色图版与线条图来阐明其重要特征,并且编制了一个该种组所有种 (包括两新种)的检索表。 Introduction The genus Anemadus, belonging to the subtribe Anemadina of the tibe Anemadini in the subfamily Cholevinae (Coleoptera: Leiodidae), was originally established by Reitter (1884), with Catops strigosus Kraatz, 1852 as the type species fixed by the subsequent designation by Jeannel (1922). Before our study, the genus Anemadus Reitter, 1884 was composed of 39 valid species; their geographical distributions are generally limited within the zoogeographical regions of the Palaearctic and the Oriental. Giachino & Vailati (1993) established ten species-groups to classify the congener species; Perreau (2000) added two additional species groups which only found in China at present. The fauna of East Asia of this genus was known with 8 species categorized to 3 species groups: Anemadus asperatus species-group (5 spp.): 1. A. nipponensis Perreau, 1996a (JAPAN, Honshu) [erected on the basis of 1♀] Anemadus smetanai species-group (2 spp.): 2. A. smetanai Růžička, 1999 (CHINA, Yunnan) [erected on the basis of 2♂♂4♀♀] 3. A. kabaki Perreau, 2009 (CHINA, Sichuan) [erected on the basis of 1♂1♀] Anemadus taiwanus species-group (5 spp.): 4. A. hubeiensis Perreau, 2004 (CHINA, Hubei) [erected on the basis of 1♂] 5. A. ruzickai Perreau, 2002 (CHINA, Sichuan) [erected on the basis of 1♂1♀] 6. A. schuelkei Perreau, 2002 (CHINA, Shaanxi) [erected on the basis of 2♂♂3♀♀] 7. A. taiwanus Perreau, 1996a (CHINA, Taiwan) [erected on the basis of 1♂1♀] 8. A. wolongianus Perreau, 1996b (CHINA, Sichuan) [erected on the basis of 1♂2♀♀] 282 Accepted by W. Hall: 7 Dec. 2015; published: 29 Jan. 2016 The genus Anemadus had only 7 species recorded hitherto in China and was thus a poorly studied group. They were also represented only by a few specimens (see content in square brackets of above checklist); the group appears to be rare and infrequently collected. In this paper, two new species are described and illustrated, namely A. perreaui sp. nov. and A. sichuanus sp. nov., both belong to the Anemadus taiwanus species-group and were collected from Baoxing, Sichuan Province in SW China. A key to all species of the group is compiled based on the version of Perreau (2002) and the modification includes of course the two new species. Material and methods Specimens were relaxed and softened in a hot saturated solution of potassium hydroxide for 4 minutes (for mounted dry specimens) or 8 minutes (for alcohol-preserved specimens), and then transferred to distilled water to rinse the residual potassium hydroxide off and stop any further bleaching. The softened specimens were moved into glycerin and dissected there to observe morphological details. After examination, the body parts were mounted on a plastic slip with Gum Arabic for future studies. Observation, drawing and measurement were performed using a Leica MZ APO stereomicroscope (magnification up to ×250) with a squared eyepiece graticule. Some microstructures were observed under Zeiss Axio Zoom.V16 motorized stereo zoom microscope (magnification up to ×270). Color photographs were taken with Zeiss AxioCam MRc 5 and the final deep focus images were created with the stacking software Helicon Focus 5.3. The program Adobe Photoshop® CS6 was used to make the line-art plates. The distribution map was downloaded from China Map Press (www.chinamap.com), and modified in Adobe Photoshop® CS6 based on examined materials and published records. The material examined for this study is deposited in the Institute of Zoology, Chinese Academy of Sciences, Beijing, China (IZ-CAS). The following abbreviations are used for measurement in millimeters (mm): AL (antennal length): length from the antennal base to its tip. BTW (basitarsal width): width of the widest portion of 1st protarsomere. EBL (Extended body length): summation of HL, PL, ELL and length of exposed scutellum, preventing the error introduced by exposed or retracted head. ELL (elytral length): length from the tail end of scutellum to the elytral apex. ELW (elytral width): width of the widest portion of two elytra closed together. EW (eye width): width of a single compound eye in dorsal view. HL (head length): axial length from the anterior apex of clypeus through the posterior margin of occipital carina. HW (head width): width of the widest portion of head (usually including eyes). PL (pronotal length): axial length of the pronotum. PW (pronotal width): width of the widest portion of pronotum. TW (tibial width): width of the widest portion of protibia (excluding spines along outer margin etc.). Taxonomy Genus Anemadus Reitter, 1885 Reitter, 1884: 58 (species included: acicularis, angusticollis, arcadius, graecus, incisipennis, maritimus, orchesioide, pellitus, pulchellus, strigosus, subcostatus, transversostriatus, vandalitiae); Jeannel, 1936: 198 (valid genus; characters; key to species); Giachino & Vailati, 1993: 62 (revision; phylogeny; key to species); Perreau, 2000: 41 (world catalog; 32 species). Type species. Catops strigosus Kraatz, 1852, fixed by subsequent designation by Jeannel (1922: 41). Synonymy. Namadeus Jeannel, 1936: 203 (valid genus; species included: acicularis, anatolicus, creticus, cribratostriatus, graecus, leonhardi, macedo, pellitus; Type Species: Catops acicularis Kraatz, fixed by original designation); Giachino & Vailati, 1993: 62 (synonym with Anemadus). TWO NEW SPECIES OF ANEMADUS FROM CHINA Zootaxa 4072 (2) © 2016 Magnolia Press · 283 Anemadus taiwanus species-group Perreau, 2000: 46 (species included: taiwanus, wolongianus); Perreau, 2002: 46 (key to species). Diagnosis. Small size compared to other congeners; protarsi weakly expanded and expansion of mesotarsi imperceptible; median lobe of aedeagus bifid, apical indentation wide or reduced to a simple incision longitudinally short (Perreau, 2002). Distribution. China (Distribution map as shown in Fig. 1). FIGURE 1. Distribution map of the Anemadus taiwanus species-group. Key to males of the Anemadus taiwanus species-group, modified based on Perreau (2002) 1 Aedeagus with narrow apical indentation, reduced to a simple incision longitudinally short . 2 - Aedeagus with wide and deep apical indentation . 3 2 Parameres shortly divergent at apex and about 1/6 longer than median lobe; median lobe parallel up to apical 1/4 and rounded at apex . .A. schuelkei Perreau - Parameres convergent towards one another at apex and about 1/3 longer than median lobe; median lobe triangularly narrowed from middle to apex . A. taiwanus Perreau 284 · Zootaxa 4072 (2) © 2016 Magnolia Press WANG & ZHOU 3 Parameres and median lobe extremely thick in lateral view . .A. hubeiensis Perreau - Parameres and median lobe normally thick for the genus in lateral view. 4 4 Parameres shortly divergent at apex and about 1/3 longer than median lobe . 5 - Parameres expanded and subrounded at apex and about 1/8 longer than median lobe (Fig. 4H). .A. sichuanus sp. nov. 5 Median lobe narrowed at middle; colour lighter, mostly yellowish brown . A. wolongianus Perreau - Median lobe not narrowed at middle; colour darker, mostly chestnut brown or dark brown . 6 6 Antennomere length of 2th/3th = 1.50; each paramere with 4 setae at apex, 1 inner and 3 outer. .A. ruzickai Perreau - Antennomere length of 2th/3th = 1.24; each paramere with 5 setae at apex, all inner (Figs. 3K&L). A. perreaui sp. nov. Anemadus perreaui sp. nov. (Figs. 2A–D; 3A–L) Type material. Holotype: CHINA, Sichuan: ♂, Baoxing, Ruobigou, 1630 m, Cyclobalanopsis forest, from fallen wood, 10.VIII.2003, Jie Wu leg. (IZ-CAS). Paratypes: 1♀, same data as holotype (IZ-CAS); 1♀, Baoxing, Ganyanggou, 2000 m, Cyclobalanopsis forest, from fallen wood, 9.VIII.2003, Jie Wu leg. (IZ-CAS). Description. Male. EBL: 3.00 mm. Length of different body parts: HL : AL : PL : ELL = 0.56 : 1.14 : 0.68 : 1.61 mm; width: HW : EW : PW : ELW = 0.70 : 0.12 : 1.16 : 1.42 mm. Proportion of antennomeres from base to tip in μm (length × width): 111 × 62, 147 × 50, 119 × 43, 74 × 42, 79 × 47, 64 × 51, 94 × 71, 41 × 68, 85 × 81, 83 × 89, 155 × 88. Habitus (Fig. 2A) elongated oval, regularly convex and sublustrous. Moderately pigmented: mostly chestnut brown; mouthparts, basal four or five antennomeres and apical half of ultimate antennomere, areas near hind corners of pronotum, elytral apices, and tarsi more or less yellowish. Dorsum continually covered with fine, recumbent, sallow pubescence. Insertions of pubescence on elytra aligned along transverse striolations. Head retractile, HW/HL = 1.24. Surface covered with strong round punctures, separated about 2.0–4.0 times of their diameter; interspaces smooth, without visable microsculpture. Clypeofrontal suture distinct. Clypeus trapezoidal, anterior margin almost straight. Compound eyes well developed, EW/HW = 0.12. Antennae (Fig. 3A) long and slender, AL/HW = 1.63; length of 2th/3th = 1.24; 8th asymmetrical, wider than long; 10th slightly wider than long; 11th elongated pear-like. Pronotum (Fig.
Recommended publications
  • Insecta: Coleoptera: Leiodidae: Cholevinae), with a Description of Sciaphyes Shestakovi Sp.N
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2011 Band/Volume: 69 Autor(en)/Author(s): Fresneda Javier, Grebennikov Vasily V., Ribera Ignacio Artikel/Article: The phylogenetic and geographic limits of Leptodirini (Insecta: Coleoptera: Leiodidae: Cholevinae), with a description of Sciaphyes shestakovi sp.n. from the Russian Far East 99-123 Arthropod Systematics & Phylogeny 99 69 (2) 99 –123 © Museum für Tierkunde Dresden, eISSN 1864-8312, 21.07.2011 The phylogenetic and geographic limits of Leptodirini (Insecta: Coleoptera: Leiodidae: Cholevinae), with a description of Sciaphyes shestakovi sp. n. from the Russian Far East JAVIER FRESNEDA 1, 2, VASILY V. GREBENNIKOV 3 & IGNACIO RIBERA 4, * 1 Ca de Massa, 25526 Llesp, Lleida, Spain 2 Museu de Ciències Naturals (Zoologia), Passeig Picasso s/n, 08003 Barcelona, Spain [[email protected]] 3 Ottawa Plant Laboratory, Canadian Food Inspection Agency, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada [[email protected]] 4 Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta, 37 – 49, 08003 Barcelona, Spain [[email protected]] * Corresponding author Received 26.iv.2011, accepted 27.v.2011. Published online at www.arthropod-systematics.de on 21.vii.2011. > Abstract The tribe Leptodirini of the beetle family Leiodidae is one of the most diverse radiations of cave animals, with a distribution centred north of the Mediterranean basin from the Iberian Peninsula to Iran. Six genera outside this core area, most notably Platycholeus Horn, 1880 in the western United States and others in East Asia, have been assumed to be related to Lepto- dirini.
    [Show full text]
  • From Baltic Amber Using Phase Contrast Synchrotron X-Ray Microtomography
    Zootaxa 3455: 81–88 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:F6265918-EEAE-4AB5-97D3-62BA08E7F17E Description of a new genus and two new species of Leiodidae (Coleoptera) from Baltic amber using phase contrast synchrotron X-ray microtomography MICHEL PERREAU Université Paris 7, IUT Paris Jussieu, case 7139, 5 rue Thomas Mann, 75205 Paris cedex 13, France. Email: [email protected] Abstract A new genus and two new amber fossil species of Leiodidae are described: Catops perkovskyi sp. n. (Cholevinae Cholevini) and Tafforeus cainosternus gen. n., sp. n. (Leiodinae Pseudoliodini); using virtual dissection by propagation phase contrast synchrotron X-ray microtomography, which allows for visualization of the genital structures in a non- invasive way. The external and internal morphology of the new species is compared to that of the extant related species. Putative evolutionary relationship between Tafforeus and the genus Cainosternum Notman, 1921, and their placement in the tribe Pseudoliodini are discussed. Key words: paleoentomology, Cholevini, Pseudoliodini Introduction Only a small number of fossil species of Leiodidae have been described. Among approximately 4000 valid species, currently five fossil species are attributed to this family, four from amber deposits and one from limestone deposits: Catops nathani Perkovsky, 2001a (Cholevinae, Cholevini) and Nemadus microtomographicus Perreau & Tafforeau, 2011 (Cholevinae, Andemadini), from Baltic amber; Prionochaeta gratschevi Perkovsky, 2009 (Cholevinae, Cholevini), from Rovno amber (Ukraine); Aglyptinus poinari Perkovsky, 2000 (Leiodinae, Scotocryptini), from Dominican amber; and Mesagyrtoides fulvus Perkovsky, 1999b, from the upper Jurassic limestone of Shar Teg (Mongolia).
    [Show full text]
  • Characteristics for Identification of Larval Cholevinae (Coleoptera: Leiodidae)
    February-July 2015, 24 EC Characteristics for identifcation of larval Cholevinae 1 Characteristics for identification of larval Cholevinae (Coleoptera: Leiodidae) SUSANNE PINTO (student number: 1308041) BSc Research Project Report, Biology, Leiden University, The Netherlands Research group: Terrestrial Zoology, Naturalis Biodiversity Center Supervised by Prof. Dr. M. (Menno) Schilthuizen (professor of Character Evolution & Biodiversity) Contact person for lab journal/raw data: [email protected] Format of the article: Systematic Entomology I. Abstract. Cholevinae (Kirby, 1837) is a subfamily of Leiodidae (Coleoptera). Cholevinae species live in caves or nests and tunnels of mammals and ants. These insects are non-specialised saprophagous beetles. The larvae feed from decaying animal matter, they eat the fungal spores and mycelium. The Cholevinae species have their own time schedule of when they feed on decaying matter. Some like ‘fresh’ decaying matter, others wait till there is hardly any matter left. These varied preferences could lead to different mouth and/or jaw developments. Other specifc morphologies are due to isolation. Living in caves or animal nests causes many morphological modifcations, these modifcations are called troglomorphic characteristics. Possible troglomorphic characteristics are: lengthening of appendages, loss of pigment, modifcation of eyes, modifed olfactory sensory organs, extra sensory structures and elongated legs (used as feelers). Identifcation of the species is not easy. The beetles and larvae are small to very small (0.8 – 9 mm), brown, grey or black. The differences between adult species are very subtle. This also applies to the larvae. The larvae have an elongated body, long legs, striking cerci and ten abdominal segments. It is known that the larvae of Cholevinae have three larval instars.
    [Show full text]
  • Biodiversity from Caves and Other Subterranean Habitats of Georgia, USA
    Kirk S. Zigler, Matthew L. Niemiller, Charles D.R. Stephen, Breanne N. Ayala, Marc A. Milne, Nicholas S. Gladstone, Annette S. Engel, John B. Jensen, Carlos D. Camp, James C. Ozier, and Alan Cressler. Biodiversity from caves and other subterranean habitats of Georgia, USA. Journal of Cave and Karst Studies, v. 82, no. 2, p. 125-167. DOI:10.4311/2019LSC0125 BIODIVERSITY FROM CAVES AND OTHER SUBTERRANEAN HABITATS OF GEORGIA, USA Kirk S. Zigler1C, Matthew L. Niemiller2, Charles D.R. Stephen3, Breanne N. Ayala1, Marc A. Milne4, Nicholas S. Gladstone5, Annette S. Engel6, John B. Jensen7, Carlos D. Camp8, James C. Ozier9, and Alan Cressler10 Abstract We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemism is high; of the troglobionts, 17 (33 % of those known from the state) are endemic to Georgia and seven (14 %) are known from a single cave. We identified three biogeographic clusters of troglobionts. Two clusters are located in the northwestern part of the state, west of Lookout Mountain in Lookout Valley and east of Lookout Mountain in the Valley and Ridge. In addition, there is a group of tro- globionts found only in the southwestern corner of the state and associated with the Upper Floridan Aquifer. At least two dozen potentially undescribed species have been collected from caves; clarifying the taxonomic status of these organisms would improve our understanding of cave biodiversity in the state.
    [Show full text]
  • The Beetles (Coleoptera) of the UC Landels-Hill Big Creek Reserve
    The Beetles (Coleoptera) of the UC Landels-Hill Big Creek Reserve Michael S. Caterino Santa Barbara Museum of Natural History [email protected] NOTES: 1. Where the species column is blank the taxon is as yet unidentified to species. 2. Source is collections made by Caterino unless indicated otherwise. (212 species – July, 2002) (300 species – Feb., 2003) (415 species – June, 2003) (437 species – August, 2003) FAMILY SUBFAMILY TRIBE GENUS SPECIES1 SOURCE2 Carabidae Metriini Metrius contractus Promecognathini Promecognathus Notiophilini Notiophilus S. Lew Cychrini Scaphinotus Cychrini Scaphinotus Carabini Calosoma Omini Omus Nebriini Nebria Trechini Trechus Loricerini Loricera Bembidiini Bembidion Bembidion Bembidion Bembidion Platynini Calathus ? Lebiini Lebia Harpalini Harpalus Harpalus Anisodactylus Dicheirus Pterostichini Pterostichus Pterostichus Pterostichus Amarini Amara Dytiscidae Agabus Agabus Agabus Stictotarsus ? ? Ptiliidae Nossidium Acrotrichus Ptenidium ? Hydraenidae Hydraena Hydraena Ochthebius Agyrtidae Necrophilus hydrophiloides Leiodidae Coloninae Colon Colon Leiodinae Sogdini Hydnobius Leiodini Ecarinosphaerula? Leiodes horni Leiodes paludicola Leiodes Leiodes Agathidiini Agathidium Agathidium Agathidium Cholevinae Anemadini Nemadus? Nemadus Cholevini Catops simplex Catops basilaris Catops Ptomaphagini Ptomaphagus Scydmaenidae Cephennium anophthalicum ? ? ? Silphidae Nicrophorinae Nicrophorus nigrita Nicrophorus guttula "Sikes, unpub" Silphinae Heterosilpha aenescens Staphylinidae Omaliinae Eusphalerini Eusphalerum
    [Show full text]
  • Fifty Years of Cave Arthropod Sampling: Techniques and Best Practices J
    International Journal of Speleology 48 (1) 33-48 Tampa, FL (USA) January 2019 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Fifty years of cave arthropod sampling: techniques and best practices J. Judson Wynne1*, Francis G. Howarth2, Stefan Sommer1, and Brett G. Dickson3 1Department of Biological Sciences, Merriam-Powell Center for Environmental Research, Northern Arizona University, Box 5640, Flagstaff, Arizona 86011, USA 2Department of Natural Sciences, Bernice P. Bishop Museum, 1525 Bernice St., Honolulu, Hawaii, 96817, USA 3Conservation Science Partners, 11050 Pioneer Trail, Suite 202, Truckee, CA 96161 and Lab of Landscape Ecology and Conservation Biology, Landscape Conservation Initiative, Northern Arizona University, Box 5694, Flagstaff, Arizona 86011, USA Abstract: Ever-increasing human pressures on cave biodiversity have amplified the need for systematic, repeatable, and intensive surveys of cave-dwelling arthropods to formulate evidence-based management decisions. We examined 110 papers (from 1967 to 2018) to: (i) understand how cave-dwelling invertebrates have been sampled; (ii) provide a summary of techniques most commonly applied and appropriateness of these techniques, and; (iii) make recommendations for sampling design improvement. Of the studies reviewed, over half (56) were biological inventories, 43 ecologically focused, seven were techniques papers, and four were conservation studies. Nearly one-half (48) of the papers applied systematic techniques. Few papers (24) provided enough information to repeat the study; of these, only 11 studies included cave maps. Most studies (56) used two or more techniques for sampling cave-dwelling invertebrates. Ten studies conducted ≥10 site visits per cave. The use of quantitative techniques was applied in 43 of the studies assessed.
    [Show full text]
  • Gap Analysis Final Report
    University of Primorska Science and Research Centre of Koper Institute for Biodiversity Studies WWF Project Reference No 9Z1387.05 “Protected Areas for a Living Planet – Dinaric Arc Ecoregion Project” Protected Area Gap Analysis (Final Report) Peter Glasnovi ć, BSc Boris Krystufek, PhD Andrej Sovinc, MSc Mileta Bojovi ć, BSc Deni Porej, PhD December 2009 WWF Dinaric Arc Ecoregion Project Protected Area Gap Analysis The Final Report by: University of Primorska Science and Research Centre of Koper Institute for Biodiversity Studies Garibaldijeva 1 6000 Koper Tel.: ++386 5 663 77 00, fax: ++386 5 663 77 10 E-mail: [email protected] Regional Scientific Coordinator: Peter Glasnovi ć, BSc; Boris Krystufek, PhD; Andrej Sovinc, MSc Cartography: Mileta Bojovi ć, BSc National Scientific Coordinators: Leon Kebe, BSc (Slovenia); Irina Zupan, MSc (Croatia); Senka Barudanovi ć, PhD (Bosnia and Herzegovina); Dragan Roganovi ć, PhD (Montenegro); Genti Kromidha, PhD (Albania) External experts: Boris Sket, PhD; Maja Zagmaister, PhD; Borut Štumberger, BSc WWF Mediterranean Programme Office: Director of Conservation Deni Porej, PhD Project Leader Stella Šatali ć, MSc Partners of the project: TNC (The Nature Conservancy), EuroNatur, Institute for Nature Conservation in Albania (Albania), University of Sarajevo – Faculty of Science (Bosnia and Herzegovina), State Institute for Nature Protection (Croatia), Institute for Nature Protection (Montenegro) 2 WWF Dinaric Arc Ecoregion Project Protected Area Gap Analysis Acknowledgments: Dragan Kova čevi ć, Banja Luka
    [Show full text]
  • FAMILY LEIODIDAE (Small Scavenger Beetles)
    FAMILY LEIODIDAE (Small scavenger beetles) S. Peck One hundred and twenty-four species of Leiodidae are known from Canada and Alaska. What are grouped here have been placed under many family names, but all share the derived (but difficult to see) character of a (usually) nearly enclosed gutter ringing the antennal articulation on the dorsal face of segments 7 and 9-10, or 8-10 in 11-segmented antennae and 7-9 in 10-segmented antennae, with internal sensory vesicles in some segments. The higher classification here employs five subfamilies and follows recent advances reported by Lawrence (1982a), Lawrence and Newton (1982), and Newton (1984). Members of Leiodidae are, for the most part, scavengers, both as larvae and adults, feeding on various decaying organic materials in usually moist forest or field habitats. The two biggest subfamilies are the Leiodinae and Cholevinae. The Leiodinae (= Anisotomidae, Agathidiidae), also called the round fungus beetles, are often globose and compact in body shape and many species are capable of contracting into a ball-like form. Some species are specialized for digging in soil where they feed on certain subterranean fungi; some are specialized predators of slime molds; and others feed on soft fungi or are more generally saprophagous (Wheeler 1984). The feeding habits of both adult and larval Coloninae (= Colonidae) are not known. The Cholevinae (= Catopidae, Leptodiridae), also called the small carrion beetles, are more elliptical in body shape and feed on carrion or dung, and some species are specialized occupants of ant nests, caves (but not in Canada), or the nests and burrows of vertebrates.
    [Show full text]
  • Variation in Arthropod Communities in Response to Urbanization: Seven Years of Arthropod Monitoring in a Desert City
    Variation in Arthropod Communities in Response to Urbanization: Seven Years of Arthropod Monitoring in a Desert City By: Christofer Bang, Stanley H. Faeth Bang, C. and Faeth, S.H. 2011. Variation in arthropod communities in response to urbanization: Seven years of arthropod monitoring in a desert city. Landscape and Urban Planning 103(3-4): 383-399. Made available courtesy of Elsevier: http://dx.doi.org/10.1016/j.landurbplan.2011.08.013 ***© Elsevier. Reprinted with permission. No further reproduction is authorized without written permission from Elsevier. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document. *** This is the author’s version of a work that was accepted for publication in Landscape and Urban Planning. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Landscape and Urban Planning, Volume 103, Issue 3-4, (2011) DOI: 10.1016/j.landurbplan.2011.08.013 Abstract: Continuous monitoring is essential to understand dynamics of biological communities in response to urbanization, and to provide guidance in landscape planning for conserving urban biodiversity. Arthropods serve this purpose because they are abundant and diverse in urban areas, and relatively easy to collect. Over seven years, in the Central Arizona Phoenix area, arthropod communities in three urban habitat categories were collected and compared to arthropods in natural desert using pitfall traps and non-parametric analyses.
    [Show full text]
  • Coleoptera: Leiodidae: Cholevinae)
    Zootaxa 3955 (1): 045–064 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3955.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:04C3DC7D-07DE-458A-8F0D-DB494AB1A8CB Comments on the biology of Sciodrepoides watsoni watsoni (Spence, 1813) with descriptions of larvae and pupa (Coleoptera: Leiodidae: Cholevinae) ALEKSANDRA KILIAN1,4 & ANNA MĄDRA2, 3 1Department of Biology, Evolution and Conservation of Invertebrates, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland. E-mail: [email protected] 2Natural History Collections, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland 3Laboratory of Criminalistics, Faculty of Law and Administration, Adam Mickiewicz University, Św. Marcin 90, 61-809 Poznań, Poland. E-mail:[email protected] 4Corresponding author Abstract The late-instar larva of Sciodrepoides watsoni watsoni is redescribed and the egg, first and second instar and pupa are de- scribed for the first time. Immature stages habitus, chaetotaxy, detailed illustrations and details of life cycle are provided. Previous descriptions of larva of S. watsoni are discussed. The structures of larvae of S. watsoni are compared with those of other known larvae of Cholevinae. Key words: Coleoptera, Staphylinoidea, Leiodidae, Cholevinae, egg, larva, pupa, chaetotaxy, Palaearctic Introduction Sciodrepoides watsoni (Spence, 1813) is the most widespread member of Cholevinae, present in 35 European and six Asian countries (Perreau 2004), inhabiting western and northern Asia to Japan and temperate zone of Northern America (Szymczakowski 1961). Although it is one of the most common and abundant necrophagous species (Mroczkowski 1978; Ulrich et al.
    [Show full text]
  • Coleoptera, Leiodidae, Cholevinae, Ptomaphagini)
    A peer-reviewed open-access journal ZooKeys 749:Ptomaphaginus 135–147 (2018) troglodytes sp. n., the first anophthalmic species of Ptomaphaginina... 135 doi: 10.3897/zookeys.749.24964 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Ptomaphaginus troglodytes sp. n., the first anophthalmic species of Ptomaphaginina from China (Coleoptera, Leiodidae, Cholevinae, Ptomaphagini) Michel Perreau1, Jan Růžička2 1 IUT Paris Diderot, Université Paris Diderot, Sorbonne Paris cité, case 7139, 5 rue Thomas Mann, 75205 Paris cedex 13, France 2 Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00 Praha – Suchdol, Czech Republic Corresponding author: Jan Růžička ([email protected]) Academic editor: A. Casale | Received 12 March 2018 | Accepted 26 March 2018 | Published 10 April 2018 http://zoobank.org/9871B1CA-12D2-4C2F-BF7E-3E4F012ADB2B Citation: Perreau M, Růžička J (2018) Ptomaphaginus troglodytes sp. n., the first anophthalmic species of Ptomaphaginina from China (Coleoptera, Leiodidae, Cholevinae, Ptomaphagini). ZooKeys 749: 135–147. https://doi. org/10.3897/zookeys.749.24964 Abstract Ptomaphaginus troglodytes sp. n., the first anophthalmic species of Ptomaphaginus Portevin, 1914 is de- scribed from two close caves in Libo Karst, south Guizhou Province, China. Keywords Anophthalmy, China, Guizhou Province, new species, troglobiomorphy Introduction Ptomaphagini is, after Leptodirini, the richest tribe of Cholevinae in species living in subterranean environment (caves or other subterranean habitats). Unlike Leptodi- rini, in which all species except a few dozen are anophthalmic, cave-dwelling species of Ptomaphagini are at most microphthalmic, a single species is fully anophthalmic. The tribe is presently divided into three subtribes: Baryodirina, Ptomaphagina, and Ptomaphaginina (Perreau 2000).
    [Show full text]
  • The Underground Fauna of Agyrtidae and the Subfamily Cholevinae of Leiodidae (Coleoptera) in Eastern Shikoku, Southwest Japan
    Elytra, Tokyo, New Series, 2 (2): 267–278 December 31, 2012 Underground Fauna of Agyrtidae and Leiodidae 267 The Underground Fauna of Agyrtidae and the Subfamily Cholevinae of Leiodidae (Coleoptera) in Eastern Shikoku, Southwest Japan, with a Summary of the Habitat Diversity of Some Japanese Cholevines 1) 2) 3) Masaaki NISHIKAWA , Yasuhiko HAYASHI , Masataka YOSHIDA 4) and Yoshifumi FUJITANI 1) Kashiwagaya 1112–16, Ebina, 243–0402 Japan 2) Suimeidai 3–1–73, Kawanishi, 666–0116 Japan 3) Myôdô-chô 1–295–1, Tokushima, 770–0047 Japan 4) Yoshimune 137, Kita-ku, Okayama, 701–1143 Japan Abstract Agyrtid and cholevine leiodid beetles collected using baited deep-soil traps in eastern Shikoku, Southwest Japan, are recorded. The structure of the traps and the operation in the field are presented. Apteroloma discicolle discicolle (LEWIS), Catops hilleri KRAATZ, C. miensis miensis NA- KANE, Mesocatops japonicus (JEANNEL), Sciodrepoides tsukamotoi NAKANE, and Ptomaphagus (Pto- maphagus) kuntzeni SOKOLOWSKI were collected from underground non-cave habitats for the first time. The performance of the trap is discussed, and the beetles collected are discussed in relation to their habitat diversity. The dispersal of cave-dwelling cholevines in Shikoku is briefly described using a model species, Catops hisamatsui. Introduction A soil-dwelling beetle fauna may consist of a combination of litter-dwelling, soil-limited endoge- an and hypogean beetles and cave-dwelling beetles. So-called cave-dwelling beetles are well known to also occur habitats other than caves; e.g., in the upper hypogean zone, narrow spaces of fractured rocks, and in colluvial and talus slopes (GIACHINO et al., 1998).
    [Show full text]