<<

How to form a millisecond ?

Magnetic field amplification in protoneutron

Jérôme Guilet (CEA Saclay)

collaborators Ewald Müller, Thomas Janka, Oliver Just (MPA Garching)

Tomasz Rembiasz, Martin Obergaulinger, Pablo Cerda-Duran, Miguel-Angel Aloy (Valencia)

Galactic

Magnetars: Anomalous X-ray (AXP) (SGR)

Strong dipole :

B ~ 1014-1015 G

Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 3/15 Outstanding explosions: millisecond magnetars ?

Explosion kinetic energy : → Typical 1051 ergs → driven explosions ? → Rare (& GRB) 1052 ergs → Millisecond magnetar ? e.g. Burrows+07, Takiwaki+09,11 Bucciantini+09, Metzger+11, Obergaulinger+17

Total : → Typical supernova 1049 ergs → Superluminous supernovae 1051 ergs

Light curves can be fitted by millisecond magnetar

- strong dipole magnetic field: B ~ 1014-1015 G

- fast rotation: P ~ 1-10 ms e.g. Kasen+10, Dessart+12, Nicholl+13, Inserra+13

Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 4/15 Impact of a strong magnetic field on the explosion

Strong magnetic field: B ~ 1015 G

+ fast rotation (period of few milliseconds)

=> powerful jet-driven explosions !

e.g. Sibata+06, Burrows+07, Dessart+08, Takiwaki+09,11, Winteler+12, Obergaulinger+17 Burrows+07 See talk by Martin Obergaulinger

But in 3D, jets can be unstable to kink instability

Moesta+2014

Caveat: origin of the magnetic field is not explained Moesta+14

Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 5/15 Missing theoretical piece: magnetic field origin

Huge range of magnetic field strength : → Initially « weak » magnetic field : ( ? )

→ After compression by the core-collapse: ( ? )

→ Magnetar strength :

Amplification mechanism ?

Magnetorotational instability (MRI) ? Convective dynamo ?

Similar to disks Similar to solar & planetary dynamos → application to protoneutron stars → need for numerical simulations of stars

Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 6/15 The magnetorotational instability (MRI)

Hydrostatic MRI in its simplest form (ideal MHD): proto-neutron Infalling matter

Instability criterion

Growth rate : (with )

→ Fast growth for fast rotation

Wavelength :

→ Short wavelength for weak magnetic field

Impact of conditions specific to protoneutron stars ? → → buoyancy (entropy & composition gradients) Radius (km) → spherical geometry Ott et al (2006)

Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 7/15 Impact of neutrinos on the MRI: two regimes

density scaleheight

neutrino mean free path diffusive regime : neutrino viscosity

optically thin regime : neutrino drag

Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 8/15 Impact of neutrinos on the MRI: growth rate

Viscous regime Neutrino drag regime

ideal MRI viscous ideal « dragged » MRI MRI MRI

Slow growth for weak initial Fast growth near surface magnetic field < 1012 G independently of field strength

Guilet et al (2015)

Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 9/15 MRI growth: different regimes

Guilet et al (2015)

Application to mergers : similar effects of neutrinos (Guilet et al 2017)

Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 10/15 Numerical simulations: local models

- Small box : at a radius r = 20 km size 4×4×1 km

- Differential rotation => shearing periodic boundary conditions +

- Entropy/composition gradients

Obergaulinger+2009, Masada+2012, Fiducial parameters : Guilet+2015, Rembiasz+2015,2016

Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 11/15 Impact of stratification on the MRI

unstable buoyancy stable stratification color: azimuthal magnetic field 2 y ) g r G

e 5 1 n 0 e

1 c ( i

t f e o

n s g t i a n M u

buoyancy parameter Guilet & Müller (2015)

Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 12/15 Dependence on diffusion processes

Magnetic energy units of (1015 G)2

Pm = viscosity/resistivity

Behaviour at realistic values: very large magnetic Prandtl number Pm ?

Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 13/15 Global models: geometry of the magnetic field ?

Moesta+2015 : first simulation with large-scale magnetic field generation.. but started with magnetar strength dipolar field

Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 14/15 Still a long way to go: from the small to the large scales

Step 1: local MRI model Step 2: global simulations Step 3: hypernova & GRB jet 5 1 + 9 t 0 e l + i i u n i t G n a i c c u B

~ 1-5 km ~ 10-50 km ~ 105-106 km High Pm regime ? Magnetic field geometry ? Explosion diversity ?

Neutrino drag regime ? MRI vs convective dynamo Energy, jet properties etc.

ERC project MagBURST Raphaël Raynaud Matteo Bugli

Thanks !

Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 15/15