How to Form a Millisecond Magnetar ?

How to Form a Millisecond Magnetar ?

How to form a millisecond magnetar ? Magnetic field amplification in protoneutron stars Jérôme Guilet (CEA Saclay) collaborators Ewald Müller, Thomas Janka, Oliver Just (MPA Garching) Tomasz Rembiasz, Martin Obergaulinger, Pablo Cerda-Duran, Miguel-Angel Aloy (Valencia) Galactic magnetars Magnetars: Anomalous X-ray pulsars (AXP) Soft gamma repeater (SGR) Strong dipole magnetic field: 14 15 B ~ 10 -10 G Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 3/15 Outstanding explosions: millisecond magnetars ? Explosion kinetic energy : → Typical supernova 1051 ergs → Neutrino driven explosions ? → Rare hypernova (& GRB) 1052 ergs → Millisecond magnetar ? e.g. Burrows+07, Takiwaki+09,11 Bucciantini+09, Metzger+11, Obergaulinger+17 Total luminosity : → Typical supernova 1049 ergs → Superluminous supernovae 1051 ergs Light curves can be fitted by millisecond magnetar 14 15 - strong dipole magnetic field: B ~ 10 -10 G - fast rotation: P ~ 1-10 ms e.g. Kasen+10, Dessart+12, Nicholl+13, Inserra+13 Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 4/15 Impact of a strong magnetic field on the explosion Strong magnetic field: B ~ 1015 G + fast rotation (period of few milliseconds) => powerful jet-driven explosions ! e.g. Sibata+06, Burrows+07, Dessart+08, Takiwaki+09,11, Winteler+12, Obergaulinger+17 Burrows+07 See talk by Martin Obergaulinger But in 3D, jets can be unstable to kink instability Moesta+2014 Caveat: origin of the magnetic field is not explained Moesta+14 Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 5/15 Missing theoretical piece: magnetic field origin Huge range of magnetic field strength : → Initially « weak » magnetic field : ( ? ) → After compression by the core-collapse: ( ? ) → Magnetar strength : Amplification mechanism ? Magnetorotational instability (MRI) ? Convective dynamo ? Similar to accretion disks Similar to solar & planetary dynamos → application to protoneutron stars → need for numerical simulations of neutron stars Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 6/15 The magnetorotational instability (MRI) Hydrostatic MRI in its simplest form (ideal MHD): proto-neutron star Infalling matter Instability criterion Growth rate : (with ) → Fast growth for fast rotation Wavelength : → Short wavelength for weak magnetic field Impact of conditions specific to protoneutron stars ? → neutrinos → buoyancy (entropy & composition gradients) Radius (km) → spherical geometry Ott et al (2006) Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 7/15 Impact of neutrinos on the MRI: two regimes density scaleheight neutrino mean free path diffusive regime : neutrino viscosity optically thin regime : neutrino drag Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 8/15 Impact of neutrinos on the MRI: growth rate Viscous regime Neutrino drag regime ideal MRI viscous ideal « dragged » MRI MRI MRI Slow growth for weak initial Fast growth near surface magnetic field < 1012 G independently of field strength Guilet et al (2015) Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 9/15 MRI growth: different regimes Guilet et al (2015) Application to neutron star mergers : similar effects of neutrinos (Guilet et al 2017) Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 10/15 Numerical simulations: local models - Small box : at a radius r = 20 km size 4×4×1 km - Differential rotation => shearing periodic boundary conditions + - Entropy/composition gradients Obergaulinger+2009, Masada+2012, Fiducial parameters : Guilet+2015, Rembiasz+2015,2016 Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 11/15 Jérôme Guilet (CEA Saclay) – formation of millisecond of magnetars formation Saclay)– (CEA Guilet Jérôme Impact of stratification on the MRI Guilet & Müller(2015) unstable buoyancy unstable Magnetic energy units of (1015 G)2 buoyancy parameter color: azimuthal color: magnetic field magnetic stable stratification stratification stable 12 /15 Dependence on diffusion processes Magnetic energy units of (1015 G)2 Pm = viscosity/resistivity Behaviour at realistic values: very large magnetic Prandtl number Pm ? Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 13/15 Global models: geometry of the magnetic field ? Moesta+2015 : first simulation with large-scale magnetic field generation.. but started with magnetar strength dipolar field Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 14/15 Still a long way to go: from the small to the large scales Step 1: local MRI model Step 2: global simulations Step 3: hypernova & GRB jet 5 1 + 9 t 0 e l + i i u n i t G n a i c c u B ~ 1-5 km ~ 10-50 km ~ 105-106 km High Pm regime ? Magnetic field geometry ? Explosion diversity ? Neutrino drag regime ? MRI vs convective dynamo Energy, jet properties etc. ERC project MagBURST Raphaël Raynaud Matteo Bugli Thanks ! Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 15/15.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us