
How to form a millisecond magnetar ? Magnetic field amplification in protoneutron stars Jérôme Guilet (CEA Saclay) collaborators Ewald Müller, Thomas Janka, Oliver Just (MPA Garching) Tomasz Rembiasz, Martin Obergaulinger, Pablo Cerda-Duran, Miguel-Angel Aloy (Valencia) Galactic magnetars Magnetars: Anomalous X-ray pulsars (AXP) Soft gamma repeater (SGR) Strong dipole magnetic field: 14 15 B ~ 10 -10 G Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 3/15 Outstanding explosions: millisecond magnetars ? Explosion kinetic energy : → Typical supernova 1051 ergs → Neutrino driven explosions ? → Rare hypernova (& GRB) 1052 ergs → Millisecond magnetar ? e.g. Burrows+07, Takiwaki+09,11 Bucciantini+09, Metzger+11, Obergaulinger+17 Total luminosity : → Typical supernova 1049 ergs → Superluminous supernovae 1051 ergs Light curves can be fitted by millisecond magnetar 14 15 - strong dipole magnetic field: B ~ 10 -10 G - fast rotation: P ~ 1-10 ms e.g. Kasen+10, Dessart+12, Nicholl+13, Inserra+13 Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 4/15 Impact of a strong magnetic field on the explosion Strong magnetic field: B ~ 1015 G + fast rotation (period of few milliseconds) => powerful jet-driven explosions ! e.g. Sibata+06, Burrows+07, Dessart+08, Takiwaki+09,11, Winteler+12, Obergaulinger+17 Burrows+07 See talk by Martin Obergaulinger But in 3D, jets can be unstable to kink instability Moesta+2014 Caveat: origin of the magnetic field is not explained Moesta+14 Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 5/15 Missing theoretical piece: magnetic field origin Huge range of magnetic field strength : → Initially « weak » magnetic field : ( ? ) → After compression by the core-collapse: ( ? ) → Magnetar strength : Amplification mechanism ? Magnetorotational instability (MRI) ? Convective dynamo ? Similar to accretion disks Similar to solar & planetary dynamos → application to protoneutron stars → need for numerical simulations of neutron stars Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 6/15 The magnetorotational instability (MRI) Hydrostatic MRI in its simplest form (ideal MHD): proto-neutron star Infalling matter Instability criterion Growth rate : (with ) → Fast growth for fast rotation Wavelength : → Short wavelength for weak magnetic field Impact of conditions specific to protoneutron stars ? → neutrinos → buoyancy (entropy & composition gradients) Radius (km) → spherical geometry Ott et al (2006) Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 7/15 Impact of neutrinos on the MRI: two regimes density scaleheight neutrino mean free path diffusive regime : neutrino viscosity optically thin regime : neutrino drag Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 8/15 Impact of neutrinos on the MRI: growth rate Viscous regime Neutrino drag regime ideal MRI viscous ideal « dragged » MRI MRI MRI Slow growth for weak initial Fast growth near surface magnetic field < 1012 G independently of field strength Guilet et al (2015) Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 9/15 MRI growth: different regimes Guilet et al (2015) Application to neutron star mergers : similar effects of neutrinos (Guilet et al 2017) Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 10/15 Numerical simulations: local models - Small box : at a radius r = 20 km size 4×4×1 km - Differential rotation => shearing periodic boundary conditions + - Entropy/composition gradients Obergaulinger+2009, Masada+2012, Fiducial parameters : Guilet+2015, Rembiasz+2015,2016 Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 11/15 Jérôme Guilet (CEA Saclay) – formation of millisecond of magnetars formation Saclay)– (CEA Guilet Jérôme Impact of stratification on the MRI Guilet & Müller(2015) unstable buoyancy unstable Magnetic energy units of (1015 G)2 buoyancy parameter color: azimuthal color: magnetic field magnetic stable stratification stratification stable 12 /15 Dependence on diffusion processes Magnetic energy units of (1015 G)2 Pm = viscosity/resistivity Behaviour at realistic values: very large magnetic Prandtl number Pm ? Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 13/15 Global models: geometry of the magnetic field ? Moesta+2015 : first simulation with large-scale magnetic field generation.. but started with magnetar strength dipolar field Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 14/15 Still a long way to go: from the small to the large scales Step 1: local MRI model Step 2: global simulations Step 3: hypernova & GRB jet 5 1 + 9 t 0 e l + i i u n i t G n a i c c u B ~ 1-5 km ~ 10-50 km ~ 105-106 km High Pm regime ? Magnetic field geometry ? Explosion diversity ? Neutrino drag regime ? MRI vs convective dynamo Energy, jet properties etc. ERC project MagBURST Raphaël Raynaud Matteo Bugli Thanks ! Jérôme Guilet (CEA Saclay) – formation of millisecond magnetars 15/15.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages15 Page
-
File Size-