Können Computer Denken?

Total Page:16

File Type:pdf, Size:1020Kb

Können Computer Denken? Philosophie / Informatik / Sprachwissenschaft Sekundarstufe II Können Computer denken? „Künstliche Intelligenz“ als Thema für einen fächerübergreifenden Unterricht Unterrichtsmodul 2: Schlüsselproblem Sprachverstehen Amt für Schule 1996 Freie und Hansestadt Hamburg Behörde für Schule, Jugend und Berufsbildung Freie und Hansestadt Hamburg Behörde für Schule, Jugend und Berufsbildung Amt für Schule Können Computer denken? „Künstliche Intelligenz“ als Thema für einen fächerübergreifenden Unterricht Unterrichtsmodul 2: Schlüsselproblem Sprachverstehen Fachreferenten: Dr. Uwe Heinrichs Amt für Schule S 13 Ulrich Polzin Amt für Schule S 13/33 Verfasser: Reinhard Golecki Gymnasium Klosterschule Hamburg, 1996 (PDF-Version März 2000) Inhaltsverzeichnis Unterrichtsmodul 2: Schlusselproblem¨ Sprachverstehen 5 Einfuhrung¨ 5 1 Wort-fur-Wort-¨ Ubersetzungen¨ 9 2 Syntax, Semantik, Pragmatik 15 3 Formale Systeme 19 4 Exkurs: Aussagenlogik 24 5 Formale Grammatiken 34 6 Automatische Syntaxanalyse: ein einfacher Parser 43 7 Maschinelle Ubersetzung¨ 52 8 Sprache, Denken, Welt 64 9 Sprechen ist Handeln 68 10 Formale Repr¨asentation der Semantik und Pragmatik 71 11 Kommunikation 78 Schlußbemerkung 91 Anhang 94 A Semantik und ihre formale Repr¨asentation 95 A.1 Zur Bedeutung von Bedeutung“ . 95 ” A.1.1 Philosophie und Logik . 99 A.1.2 Linguistik . 111 A.1.3 Psychologie . 119 A.1.4 Resumee¨ . 123 A.2 Klassische“ KI-Semantik: Netze, Rahmen, Skripte . 124 ” A.3 Kritische Einw¨ande . 130 A.4 Neuere Ans¨atze aus der Linguistik und Sprachphilosophie . 134 A.4.1 Montague-Grammatik . 135 A.4.2 Diskursrepr¨asentationstheorie . 140 A.4.3 Situationssemantik . 142 A.5 Offene Probleme der maschinellen Sprachverarbeitung . 146 B Literatur 152 B.1 Kommentierte Literaturhinweise . 152 B.2 Literaturverzeichnis . 156 Unterrichtsmodul 2 Schlusselproblem¨ Sprachverstehen Die Umgangssprache ist ein Teil des menschlichen Organismus und nicht weniger kompliziert als dieser. Ludwig Wittgenstein Einfuhrung¨ Gibt es etwas, wodurch sich der Mensch von allen anderen Tieren unterscheidet, qualita- tiv und nicht bloß graduell, als besonderes Merkmal, nicht nur als einzigartige Verbindung und Kombination auch sonst anzutreffender? Mit einer positiven Antwort l¨auft man leicht Gefahr, sich zu blamieren, denn genauere Studien der Primaten haben gezeigt: Auch Tie- re verhalten sich intelligent“, sie k¨onnen lernen, planen, Werkzeuge herstellen (auch auf ” Vorrat“, zum sp¨ateren Gebrauch), erworbenes Wissen weitergeben, soziale und politi- ” ” sche“ Koalitionen bilden, inklusive List und T¨auschung; es wird dann schwer, Begriffe wie Denken“, Bewußtsein“, Selbstbewußtsein“ anders als graduell zu verwenden. Es gibt ” ” ” allerdings eine (bisher) recht unbestrittene Kandidatin fur¨ eine positive Antwort (und mit ihr stehen andere Anw¨arter wie Gestaltung der Umwelt, Moral, Religion, Wissen um den Tod, im engen Zusammenhang1), die Sprache. Was ist das Besondere der menschlichen Sprache? Nach Buhler¨ gibt es drei wesentli- che Leistungen der Sprache: Ausdruck, Appell und Darstellung. Uber¨ die beiden ersten verfugen¨ auch die Kommunikationssysteme der Tiere: Angst- und Schmerzensschreie, Balz- und Warnrufe; eine Katze kann schnurren und so lange um die Beine streichen, bis man das Futter holt. Aber k¨onnen Tiere etwas darstellen? Darstellungen k¨onnen analog (etwa eine Skizze) oder digital 2 sein (z. B. die Buchstabenfolge r-o-s-e und die Wortfolge auf dieser Sei- te). Analoge Darstellungen kommen vereinzelt auch im Tierreich vor (z. B. der Bienentanz, 1Und nicht zuletzt auch das Projekt der Aufkl¨arung: Das Interesse an Mundigkeit¨ schwebt nicht bloß ” vor, es kann a priori eingesehen werden. Das, was uns aus Natur heraushebt, ist n¨amlich der einzige Sachverhalt, den wir seiner Natur nach kennen k¨onnen: die Sprache. Mit ihrer Struktur ist Mundigkeit¨ fur¨ uns gesetzt“ (Jurgen¨ Habermas (1968), S. 163). 2Es werden diskrete (und fur¨ sich bedeutungslose) Elemente aus einer endlichen Menge (Phoneme, Buchstaben) zu bedeutungsvollen Einheiten kombiniert, die wiederum zu (potentiell unendlich vielen) neuen Einheiten kombiniert werden k¨onnen. Eine solche Darstellung beruht nicht auf einer Ahnlichkeit¨ mit dem Dargestellten, und bei ihr k¨onnen schon kleine Anderungen¨ der Komponenten oder ihrer Reihenfolge 5 durch den Art, Richtung und Entfernung einer Nahrungsquelle dargestellt werden), aber – und das ist die entscheidende These – nur im menschlichen Bereich finden beide Kom- ” munikationsformen Anwendung“3, und das heißt, daß die menschlichen Sprachen Zei- ” chensysteme und Verst¨andigungsmittel zugleich sind.“4 Diese Verbindung pragmatischer und semantischer Aspekte mit einer syntaktischen Struktur, diese diskrete Unendlichkeit ” bedeutungsvoller Ausdrucke“¨ 5 ist es, was die menschliche Sprache wohl grunds¨atzlich von der tierischen Kommunikation unterscheidet6 und was sie so leistungsf¨ahig macht: • es k¨onnen Worte und S¨atze gebildet werden, die nie vorher gebildet wurden und dennoch von anderen verstanden werden (Kreativit¨at) • M¨oglichkeit der Negation und damit auch der Beschreibung logischer Verh¨altnisse wie wenn – dann“, entweder – oder“ ” ” • M¨oglichkeit situationsunabh¨angiger und kontrafaktischer Beschreibungen, Unabh¨an- gigkeit der Kommunikation von Raum und Zeit und von bestimmten Reizen • weitgehende Ubertragbarkeit¨ von einem Medium in ein anderes (Laute, Schriften, Gesten) • Tradierung von Erfahrungen und Sichtweisen auch ohne pers¨onlichen Kontakt, Ler- nen durch sprachliche Instruktionen • die Sprache selbst kann Thema der Sprache sein Ungeachtet strittiger (m¨oglicherweise niemals kl¨arbarer) Fragen nach der zeitlichen und logischen Priorit¨at ist die menschliche Sprache dadurch so eng mit der Kulturentwicklung, der artspezifischen Intelligenz und dem Denken der Menschen verbunden, daß Sprachver- stehen (d. h. im Geschriebenen oder Gesagten das Gemeinte erkennen) in vielerlei Hinsicht auch ein Schlusselproblem¨ fur¨ die KI und damit eine besonders interessante Zuspitzung der Frage K¨onnen Computer denken?“ darstellt. Im Bereich der kognitiven KI, nach deren ” Selbstverst¨andinis die Entwicklung intelligenter“ Computer auch ein Beitrag zur Erfor- ” schung der Intelligenz- und Denkprozesse des Menschen ist, zeigt sich das nicht zuletzt in der nicht verebbenden Diskussion um die beiden zentralen Gedankenexperimente der KI, Turing-Test (vgl. im Unterrichtsmodul 1 den Abschnitt 3 und Searles Chinesisch- ” Zimmer“ (vgl. die Abschnitte 5 und 6 vom Teil 2 dieser Heftreihe), die das Sprachverstehen jeweils in den Mittelpunkt stellen und mit denen Sinn und Erfolg dieses Unternehmens entweder be- oder widerlegt werden sollen. große Unterschiede bewirken. Die Bedeutung der einzelnen Einheiten ist im gewissen Sinne willkurlich¨ bzw. konventionell und kann sich ¨andern. Auf diesen Eigenschaften (Diskretheit, Dualit¨at, Produktivit¨at, Arbitrarit¨at) beruhen wesentlich die Flexibilit¨at, Vielseitigkeit und Effizienz der (menschlichen) Sprache (vgl. John Lyons (1983), S. 27–31). 3Paul Watzlawick, Janet H. Beavin & Don D. Jackson (1969), S. 63. 4Claude Hagege` (1987), S. 109. 5Noam Chomsky (1981), S. 45. 6Dem widersprechen die bekannten Experimente, Menschenaffen z. B. die Taubstummensprache oder den Umgang mit unterschiedlich geformten und gef¨arbten abstrakten Symbolen beizubringen, nicht un- bedingt. Erstens benutzen sie diese Zeichensysteme nicht untereinander (schon gar nicht in der Natur), zweitens sind die Ergebnisse widerspruchlich¨ und kontrovers. Zwar zeigt sich ein gewisses Symbolverst¨and- nis, aber fur¨ die (uber¨ unmittelbare Bedurfnisse¨ und Reize hinausgehende) Mitteilung von Sachverhalten und das Verst¨andnis fur¨ eine Syntax scheint es unuberwindbare¨ Grenzen zu geben. M¨oglicherweise zeigt sich aber auch hier, daß uns unsere n¨achsten Verwandten n¨aher sind als wir denken und daß auch Sprach- beherrschung nur ein gradueller Unterschied ist. 6 Aber auch in der technischen KI, deren Anspruche¨ einerseits niedriger (es soll eine be- stimmte Leistung maschinell erbracht werden, egal ob der Mensch das auch so macht), andererseits aber auch h¨oher sind (es sollen marktreife Produkte entwickelt werden), spie- len Naturlichsprachliche¨ Systeme“ eine große Rolle: als Schnittstelle zwischen Mensch ” und Maschine, als Erkl¨arungskomponente bei Expertensystemen, bei interaktiven Me- ” dien“ zum Aufbau von Benutzermodellen“ (welche Vorkenntnisse, Eigenschaften, Inter- ” essen hat vermutlich der jeweilige Anwender?), bei Auskunfts- und Dialogsystemen, bei der Datenbankrecherche, zur automatischen Text- und Spracherfassung usw. usf. (vgl. den Abschnitt 3.2 vom Teil 1 dieser Heftreihe). Im Anwendungsbereich besteht insbesondere ein großer Bedarf an maschineller Uberset-¨ zung (z. B. technische Dokumentationen, Handbucher,¨ Amtssprachen der EU). Der Ver- such der Realisierung – ermuntert durch die großen Erfolge maschineller Entschlusselung¨ von Geheimcodes (ENIGMA) – war in den funfziger¨ und sechziger Jahren das erste gran- diose Scheitern der maschinellen Sprachverarbeitung. Es wurde entdeckt, wie unzul¨anglich Ans¨atze an der Oberfl¨ache“ von Sprachen sind, welche große Bedeutung das syntaktische, ” semantische und pragmatische Wissen und K¨onnen der an der Kommunikation Beteiligten z. B. bei der kaum bewußten Behandlung von Mehrdeutigkeiten ist, und wie schwer es ist, diesen Hintergrund explizit zu machen und zu formalisieren. Zusammen mit ¨ahnlichen Problemen in anderen Anwendungsbereichen fuhrte¨ das dazu, daß die Repr¨asentation von Wissen“ und das formale Operieren darauf
Recommended publications
  • Letters to the Editor
    AI Magazine Volume 12 Number 3 (1991) (© AAAI) Letters q Editor: system-centered research. First, the the other does. No theorist is going Thank you for the opportunity to split between the neats and scruffies to spend his or her time attempting respond to the letters by Jim Hendler, is old and institutionalized, as to bring precision to a mess of hacks, James Herbsleb and Mike Wellman Hendler points out. Few researchers kludges and “knowledge,” and no regarding my survey of the Eighth are trained in both camps. Second, system builder is apt to find the National Conference on Artificial the pathologies that researchers in attempt informative. MAD does not Intelligence (AI Magazine, Volume 12, AAAI-90 themselves attributed to mean business as usual with occa- No. 1). The letters raise many inter- focusing on just one aspect did, in sional collaborative meetings. esting points that can be roughly fact, arise. Third, the expected advan- hfAn means assessing environmen- classified as questioning the validity tages of merging systems and models tal factors that affect behavior; of the survey and questioning the did, in fact, materialize (although the modelling the causal relationships proposed MAD methodology. Mike sample was very small). Wellman between a system’s design, its envi- Wellman says, “As Cohen acknowl- says that just because I didn’t see ronment, and its behavior; designing edges, a serious problem with the system-centered and model-centered or redesigning a system (or part of a survey is that the AAAI conference research reported together, doesn’t system); predicting how the system proceedings do not accurately repre- mean it wasn’t there; I say that I will behave; running experiments to sent the field.” Actually, I did not found pathoIogies (e.g., see my sec- test the predictions; explaining unex- acknowledge that AAAI is not repre- tions Models Without Systems and pected results and modifying modeis sentative; I just raised the possibility.
    [Show full text]
  • The Bias-Variance Tradeoff
    The Bias-Variance Tradeoff: How Data Science Can Inform Educational Debates Shayan Doroudi Abstract In addition to providing a set of techniques to analyze educational data, I claim that data science as a field can provide broader insights to education research. In partic- ular, I show how the bias-variance tradeoff from machine learning can be formally generalized to be applicable to several prominent educational debates, including de- bates around learning theories (cognitivist vs. situativist and constructivist theories) and pedagogy (direct instruction vs. discovery learning). We then look to see how various data science techniques that have been proposed to navigate the bias-variance tradeoff can yield insights for productively navigating these educational debates going forward. Keywords: bias-variance tradeoff, learning theories, direct instruction, discovery learning, re- search methods, epistemology, artificial intelligence, machine learning Introduction In recent years, data science and machine learning have been used to make sense of various forms of educational data. Educational data science can enhance our understanding of learning and teaching; give insights to teachers, students, and administrators about learning happening in the 1 classroom; and lead to the creation of data-driven adaptive learning systems. However, I claim that machine learning and data science have more to offer than a set of techniques that can be applied to educational data. Theoretical concepts and principles in machine learning can provide broader insights to education research. In particular, in this paper, I show that the bias-variance tradeoff from machine learning can provide a new lens with which to view prominent educational debates. The field of education is filled with seemingly perennial debates that have important implications on the nature of educational research and practice.
    [Show full text]
  • Inteligência Artificial
    Inteligência Artificial ESTUDOS AVANÇADOS 35 (101), 2021 5 No canal da Inteligência Artificial – Nova temporada de desgrenhados e empertigados FABIO GAGLIARDI COZMAN I Desgrenhados e empertigados CONSTRUÇÃO de inteligências artificiais sempre esteve cercada de contro- vérsias, não apenas sobre seus limites, mas também sobre quais os obje- A tivos a perseguir. Parece haver dois estilos fundamentalmente diferentes de abordagem em Inteligência Artificial (IA): de um lado, um estilo empírico, fortemente respaldado por observações sobre a biologia e psicologia de seres vivos, e pronto para abraçar arquiteturas complicadas que emergem da interação de muitos módulos díspares; de outro lado, um estilo analítico e sustentado por princípios gerais e organizadores, interessado em concepções abstratas da inte- ligência e apoiado em argumentos matemáticos e lógicos. Por volta de 1980 os termos scruffy e neat foram cunhados para se referir respectivamente a esses dois estilos de trabalho. Robert P. Abelson (1981) apresentou aparentemente a pri- meira publicação que discute os dois termos, atribuindo a distinção a um colega não nomeado, mas, segundo Abelson, facilmente identificável – que, segundo a literatura, deve ser Roger Schank (Nilsson, 2009). Os termos scruffy e neat não são exatamente elogiosos; de certa forma, cada um desses termos é especialmente adequado para ser usado por um time contra o outro. Os scruffies são desgrenhados, perdidos em sistemas de confusa complexidade. Os neats são empertigados, teorizando em torres de marfim e desconectados dos detalhes do mundo real. Abelson identifica essas atitudes ge- rais em muitas atividades humanas, em arte, em política, em ciência. Há pessoas que favorecem resultados obtidos por meio de experimentos, não se impor- tando se soluções fogem de rotinas preestabelecidas, enquanto outras pessoas buscam ordem e harmonia em teoria amplas.
    [Show full text]
  • Edward Feigenbaum 1994 ACM Turing Award Recipient
    Edward Feigenbaum 1994 ACM Turing Award Recipient Interviewed by: Don Knuth Recorded: April 4, and May 2, 2007 Mountain View, California This transcript, and the video interview on which it is based, is copyright by the Computer History Museum and the ACM is using it by their generous permission. © 2007 Computer History Museum CHM Reference number: X3897.2007 DK: Don Knuth, the interviewer EF: Edward (Ed) Feigenbaum, the 1994 ACM Turing Award Recipient DK: Hello, everyone. My name is Don Knuth. Today [April 4, 2007] I have the great privilege e of interviewing Ed Feigenbaum for oral history where we hope to reach people generations from now and also people of today. I’m going to try to ask a zillion questions about things that I wish I could have asked people who unfortunately are dead now so that students and general scientific people, people with general interest in the world, historians and so on in the future will have some idea as to what Ed was really like even though none of us are going to be around forever. Now this is the second part of a two- phase study. Ed grilled me a couple weeks ago and now it’s my turn to do him. I hope I can do half as well as he did for me. I’d like to get right into it -- But first of all sort of for organization, my plan -- who knows if it’ll carry it out -- is to do a little bit first that’s chronological, in order to set the scenes for his whole life.
    [Show full text]
  • Ten Years of the AAAI Mobile Robot Competition and Exhibition Looking Back and to the Future
    AI Magazine Volume 23 Number 1 (2002) (© AAAI) Articles Ten Years of the AAAI Mobile Robot Competition and Exhibition Looking Back and to the Future Tucker Balch and Holly A. Yanco ■ Summer 2001 marked the tenth AAAI Mobile Pete Bonasso recalls that the entertainment Robot Competition and Exhibition. A decade of industry had laid some of the groundwork for contests and exhibitions have inspired innovation the contest by building expectations and and research in AI robotics. Here we look back at excitement about robots in many people’s the origins of the contest and how it evolved. We imaginations. Characters such as Star Trek’s also reflect on how the contest has served as an COMMANDER DATA and BISHOP,the “artificial per- arena for important debates in the AI and robotics communities. The article closes with a speculative son” in James Cameron’s Aliens, made us all look forward to the next decade of AAAI robot think about what might be possible. The con- competitions. crete idea for a competition took root after a panel at AAAI-1991 on household robots. “Neats and scruffies alike were mesmerized by the animal-like responses of the robots demon- strated there,” says Bonasso. “At the end of “This won’t be a slick, polished competi- that panel, a bunch of us got with Tom to talk tion. There will be a certain amount of up the idea of a competition.”1 chaos, but I can guarantee there will be a Then-president of the AAAI, Patrick Hayes, lot of excitement and enthusiasm.” hoped the contest would highlight the “cogni- —Tom Dean, 1992 tive possibilities for mobile robots” and demonstrate “the long-standing symbiotic relationship between AI and robots” (Dean n 1992, Tom Dean and Pete Bonasso con- and Bonasso 1993).
    [Show full text]
  • Cyc: a Midterm Report
    AI Magazine Volume 11 Number 3 (1990) (© AAAI) Articles The majority of work After explicating the need for a large common- We have come a in knowledge repre- sense knowledge base spanning human consen- long way in this . an sentation has dealt sus knowledge, we report on many of the lessons time, and this article aversion to with the technicali- learned over the first five years of attempting its presents some of the ties of relating predi- construction. We have come a long way in terms lessons learned and a addressing cate calculus to of methodology, representation language, tech- description of where the problems niques for efficient inferencing, the ontology of other formalisms we are and briefly the knowledge base, and the environment and that arise in and with the details infrastructure in which the knowledge base is discusses our plans of various schemes being built. We describe the evolution of Cyc for the coming five actually for default reason- and its current state and close with a look at our years. We chose to representing ing. There has almost plans and expectations for the coming five years, focus on technical been an aversion to including an argument for how and why the issues in representa- large bodies addressing the prob- project might conclude at the end of this time. tion, inference, and of knowledge lems that arise in ontology rather than actually represent- infrastructure issues with content. ing large bodies of knowledge with content. such as user interfaces, the training of knowl- However, deep, important issues must be edge enterers, or existing collaborations and addressed if we are to ever have a large intelli- applications of Cyc.
    [Show full text]
  • Artificial Intelligence
    Artificial intelligence From open-encyclopedia.com - the free encyclopedia. Copyright © 2004-2005 This article is about modelling human thought with computers,. For other uses of the term AI, see Ai. Introduction Although there is no clear definition of AI (not even of intelligence), it can be described as the attempt to build machines that think and act like humans, that are able to learn and to use their knowledge to solve problems on their own.A 'by- product' of the intensive studies of the human brain by AI researchers is a far better understanding of how it works. The human brain consists of 10 to 100 billion neurons, each of which is connected to between 10 and 10,000 others through synapses. The single brain cell is comparatively slow (compared to a microprocessor) and has a very simple function: building the sum of its inputs and issuing an output, if that sum exceeds a certain value. Through its highly parallel way of operation, however, the human brain achieves a performance that has not been reached by computers yet; and even at the current speed of development in that field, we still have about twenty years until the first supercomputers will be of equal power. In the meantime, a number of different approaches are tried to build models of the brain, with different levels of success. The only test for intelligence there is, is the Turing Test. A thinking machine has yet to be built. 2. Why the current approach of AI is wrong These following thoughts do not deal with technical problems of AI, nor am I going to prove that humans are the only intelligent species (exactly the opposite, see section 5).
    [Show full text]
  • INNOVATION and E-LEARNING 00Prelimselearning14 9 04.Qxp 16/09/2004 12:51 Page Ii
    00PrelimsElearning14_9_04.qxp 16/09/2004 12:51 Page i INNOVATION AND E-LEARNING 00PrelimsElearning14_9_04.qxp 16/09/2004 12:51 Page ii This page intentionally left blank 00PrelimsElearning14_9_04.qxp 16/09/2004 12:51 Page iii Innovation and E-Learning E-BUSINESS FOR AN EDUCATIONAL ENTERPRISE By IAN ROFFE UNIVERSITY OF WALES PRESS CARDIFF 2004 00PrelimsElearning14_9_04.qxp 16/09/2004 12:51 Page iv © Ian Roffe, 2004 British Library Cataloguing-in-Publication Data. A catalogue record for this book is available from the British Library. ISBN 0–7083–1757–X All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without clearance from the University of Wales Press, 10 Columbus Walk, Brigantine Place, Cardiff, CF10 4UP. Website: www.wales.ac.uk/press The right of Ian Roffe to be identified as author of this work has been asserted by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988. Printed in Great Britain by Cambridge Printing, Cambridge 00PrelimsElearning14_9_04.qxp 16/09/2004 12:51 Page v I Siân, Huw ac Elin 00PrelimsElearning14_9_04.qxp 16/09/2004 12:51 Page vi This page intentionally left blank 00PrelimsElearning14_9_04.qxp 16/09/2004 12:51 Page vii Contents Preface ix Acknowledgements xiii 1 The educational enterprise 1 2 E-learning in small and medium-sized enterprises 22 3 The extension of learning 46 4 Learning and teaching with technology 67 5 E-learning and computer technologies 94 6 Implementation 120 7 Competitive strategy 141 8 Innovation 168 9 Markets and marketing 194 10 Quality, value assurance and value enhancement 221 11 Professional development 244 12 Evaluation 266 Endnote 286 Glossary 292 References 298 Index 318 00PrelimsElearning14_9_04.qxp 16/09/2004 12:51 Page viii This page intentionally left blank 00PrelimsElearning14_9_04.qxp 16/09/2004 12:51 Page ix Preface Educational enterprise conveys all the actions to develop education in a creative and businesslike way.
    [Show full text]
  • Sample Chapter
    A01_SERG3644_07_SE_FM.indd Page 7 21/08/14 10:08 PM/207/PH01494/9780132613644_SERGIOVANNI/SERGIOVANNI_A_REFLECTIVE_PRACTICE_PERSPECT user ... Preface verywhere you look there is someone with an easy solution for improving schools. “Research says” if you put these principles in place—if you teach, E manage, or supervise using this list of behaviors—all will be well. Careers are built, journals are filled, and, for some with entrepreneurial bents, fortunes are amassed as the “solutions” are proposed. The engine that drives this grand solutions machine is our search for simple answers. This searching, we fear, drives us to think in the rationalistic tradition about our work, to make unwarranted assumptions about the linearity and predictability that exist in the world, and to overestimate the tightness of links between research and practice. The result is the adoption of management theories and leadership prac- tices that look great on paper, sound compelling when heard, and maybe even make us feel good, but that don’t fit the actual world of schooling very well. The term rationalistic is chosen over rational or irrational deliberately, for what is often thought to be irrational is actually rational, and vice versa. Winograd and Flores (1986) sort the differences as follows: In calling it [traditional theory] “rationalistic” we are not equating it with “rational.” We are not interested in a defense of irrationality or a mystic appeal to nonrational intuition. The rationalistic tradition is distinguished by its narrow focus on certain aspects of rationality which often lead to attitudes and activities that are not rational when viewed in a broader perspective.
    [Show full text]
  • Probing Learning Scientists' Beliefs About Learning and Science
    Probing Learning Scientists’ Beliefs About Learning and Science Shayan Doroudi (1) (2), University of California, Irvine, [email protected] Kenneth Holstein (1), Carnegie Mellon University, [email protected] Petr Johanes (1), Stanford University, [email protected] Abstract: The learning sciences have experienced a proliferation of research paradigms over the last several decades, resulting in a complex theoretical and methodological landscape. Based on our readings of prior debates in the literature, we identified nine frameworks or dimensions that have been used to characterize differences among learning scientists. To better understand this complex landscape, we interviewed 22 learning scientists and analyzed their responses using qualitative coding methods. This paper presents a cross-section of that analysis, focusing on the limitations of existing frameworks in capturing important nuances in researchers’ beliefs. The findings reveal a variety of ways learning scientists resist particular frameworks. Overall, these findings paint a picture of a field evolving towards a largely pragmatic view of learning research. Introduction In 1991, the Fifth Conference on Artificial Intelligence and Education was re-named the Fifth International Conference of the Learning Sciences (later re-branded as the First ICLS). Two years later, the Sixth World Conference on Artificial Intelligence in Education was held, and in 1996, the Second International Conference on the Learning Sciences. A community had fractured. Two new communities had formed. The reasons behind this fracturing lay, at least in part, in different notions of what it means to learn and to study learning. As an interdisciplinary field, the learning sciences are rife with varied beliefs about the nature of learning and the nature of science.
    [Show full text]
  • Computational Philosophy of Science
    Computational Philosophy of Science Copyrighted Material Computational Philosophy of Science Paul Thagard A Bradford Book The MIT Press Cambridge, Massachusetts London, England Copyrighted Material First MIT Press paperback edition, 1993 © 1988 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. This book was set in Palatino by Aseo Trade Typesetting Ltd., Hong Kong, and printed and bound by Halliday Lithograph in the United States of America. Library of Congress Cataloging-in-Publication Data Thagard, Paul Computational philosophy of science/Paul Thagard. p. em. II A Bradford book." Bibliography: p. Includes index. ISBN 0-262-20068-6 (HB), 0-262-70048-4 (PB) 1. Science-Philosophy. 2. Psychology. 3. Artificial intelligence. I. Title. Q175.T479 1988 501-dc19 87-21892 Copyrighted Material For Ziva Copyrighted Material Contents Preface xi Acknowledgments X III Chapter 1 Computation and the Philosophy of Science 1 1.1. A New Approach 1 1.2. Artificial Intelligence, Psychology, and Historical Philosophy of Science 2 1.3. Why Write Programs? 4 1.4. Psychologism 7 1.5. Overview 8 1.6. Summary 9 Chapter 2 The Structure of Scientific Knowledge 11 2.1. Structure and Process 11 2.2. Scientific Knowledge 12 2.3. Structure and Process in PI 15 2.3.1. Knowledge Representation 15 2.3.2. Problem Solving 19 2.3.3. Induction 27 2.3.4. Limitations of PI 29 2.4. &pressive and Procedural Equivalence 30 2.5.
    [Show full text]
  • 18 Unconventional Essays on the Nature of Mathematics 18 Unconventional Essays on the Nature of Mathematics
    18 Unconventional Essays on the Nature of Mathematics 18 Unconventional Essays on the Nature of Mathematics Reuben Hersh Editor Reuben Hersh Department of Mathematics and Statistics University of New Mexico Albuquerque, NM USA Cover illustration: Photographs of three contributing authors: Alfréd Rényi, Gian-Carlo Rota, and Leslie A. White. Mathematics Subject Classification MSC 2000: 01A05 51–03 Library of Congress Control Number: 2005925514 ISBN-10: 0-387-25717-9 Printed on acid-free paper. ISBN-13: 978-0387-25717-4 © 2006 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in con- nection with reviews or scholarly analysis. Use in connection with any form of infor- mation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. (SPI/EB) 987654321 springeronline.com Contents Introduction by Reuben Hersh ........................................................................... vii About the Authors............................................................................................
    [Show full text]