The Yale Artificial Intelligence Project: a Brief Historv J Stephen Slade

Total Page:16

File Type:pdf, Size:1020Kb

The Yale Artificial Intelligence Project: a Brief Historv J Stephen Slade AI Magazine Volume 8 Number 4 (1987) (© AAAI) The Yale Artificial Intelligence Project: A Brief Historv J Stephen Slade n AI lab is like a greenhouse. have considered a range of topics This overview of the Yale Artificial Intelli- A Researchers develop new ideas related to reasoning including non- gence Project serves as an introduction to and plant them in programs. The pro- monotonic logic, planning with Scientific Datalink’s microfiche publica- grams are cultivated, hybridized, nur- incomplete knowledge, and reasoning tion of Yale AI Technical Reports tured. The weaker ideas die out. The about space and time. stronger ideas are grafted onto new l Cognition and Programming. Elliot stock and serve as the basis of hearty Soloway, and David Barstow before new strains. him, have undertaken a scientific At Yale, there has been a traditional inquiry focused on the task of pro- summer seminar series at which grad- gramming itself. How could a com- uate students present their unprepos- puter automatically write programs? sessing theories to the vocal and criti- How do people learn to program? cal review of their colleagues. The How can a computer program help tenor of these discussions is conveyed people learn to write better programs? by their title: “The Friday Fights.” l Cognitive Science All the work at Such occasions provide the Yale the Yale AI Project could be termed researcher opportunities for both part of cognitive science. We have had pruning and growth. Cultivation by a long association with members of candor is the standard. This level of the Yale Psychology Department, peer review has also been experienced especially Robert Abelson and John by colloquium speakers. Many visi- Black. Psychologists-faculty, visi- tors to the lab were unprepared for the tors, graduate students-have actively onslaught. By now though, Yale’s rep- contributed to the AI research efforts, utation for open debate has led many testing and refining theories of human speakers to agree to disagree. cognitive processing. Ideas and theories grow through this process of natural selection. The Cognitive Modelling best are represented here, in this col- lection of technical reports from the The Yale AI Project began in 1974 past dozen years. These reports are when Roger Schank and Chris Ries- our harvest-the results of twelve beck came from the Stanford AI Lab, intense years of work by a large crop via the Istituto per gli Studi Semantici of researchers. e Cognitivi in Castagnola, Switzer- In the present article, we survey land, to join the Yale Computer Sci- this collection, which is now made ence Department. available on microfiche through Sci- The faculty at Yale, especially Alan entific Datalink. The work falls into Perlis and Martin Schultz, were very several areas. supportive of the establishment of an AI lab. Robert Abelson, in the Psy- l Cognitive Modelling This category is quite broad, and is used here to chology Department, had a long- describe the work of Roger Schank standing interest in AI and had and his students. It includes natural already begun collaboration with language processing, models of human Schank Graduate students were memory organization, learning, and quickly drawn into the work. Jim explanation. Meehan, Wendy Lehnert, Rich Cullingford, and Gerry DeJong were l Spatial and Temporal Reasoning. among the first students involved. Drew McDermott and his students WINTER 1987 67 The main research tool was a DEC In the latter case, even the most Inference.CD included a process PDP-10, equipped with custom-built objective researcher may find himself model for determining the implicit Sugarman CRT’s and Yale’s own full- tailoring the examples to just those meaning of a sentence. screen “E” editor, courtesy of Ned cases which he knows the program Ambiguity. The same word can Irons. can handle. Finally, the experimental have a variety of meanings. (“John The focus of the initial research was paradigm implicit in this approach gave Mary a kiss.” versus “John gave natural language processing. At Stan- requires the researcher to build an Mary a book.“) The CD paradigm ford, Schank had developed the actual computer program. The pro- provided a means of distinguishing MARGIE system (Schank 1975) with gram is the crucible in which theories among multiple word senses. his students Goldman, Rieger, and are tested and molded. Without a pro- As the domain of concepts expand- Riesbeck. MARGIE was used to gram, many of the unstated supposi- ed in the subsequent years, new types demonstrate the effectiveness of con- tions in a theory are never revealed or of knowledge representations were ceptual dependency (CD) as a lan- examined. In writing a program, the developed These included primitives guage-free, canonical meaning repre- researcher must confront these for social acts, attitudes, and objects, sentation MARGIE would read an assumptions. as well as larger knowledge structures English sentence, using Riesbeck’s . Psychological Process Model. The built from these primitives, such as expectation-based parser to build a MARGIE program was a cognitive scripts, plans, goals, memory organi- CD form which represented the simulation. Not only did it try to per- zation packets (MOPS), thematic orga- meaning of the sentence MARGIE form tasks that people perform, but it nization packets (TOPS), and explana- would then make inferences based on tried to simulate the manner in which tion patterns (XPs). the meaning of the input sentence the human mind works. By compari- One additional feature of the using Rieger’s inferencing program. son, a computer chess program which MARGIE system that carried over to Finally, the results of the initial parse, exhaustively searches ahead several Yale researchers was the habit of giv- as well as the inferences, could be moves may be able to play a fine game ing programs names of people. From converted back into natural language of chess, but it is unrealistic to con- SAM and ELI through BORIS and with Goldman’s generator program, sider such a program a model of the CYRUS, this convention has been fre- producing paraphrases in either way in which a person plays chess. quently adopted. English or German. The underlying process model in The MARGIE program, though con- MARGIE comprised three stages: Scripts, Plans, Goals, sidered a toy system, was an effective parsing, inferencing, and generation. and Understanding and productive model for the ensuing This basic triad has been the founda- The Yale AI research reports begin research projects. There were several tion for the subsequent generations of with SAM, the Script Applier Mecha- salient characteristics of MARGIE programs. The primary focus has been nism, the first computer program to that have developed as themes in Yale on integrating the three processes to understand stories in context. cognitive modelling research through allow more interaction with memory. MARGIE had been able to understand to the present. In recent years, the role of memory simple sentences in terms of the l Task Orientation. An AI program has transcended the specific natural actions or states which they repre- should address a specific, real-world language concerns and has come to sented. However, connected text-a task. The program should model encompass learning and explanation story-could cause a problem if the something that a person actually does, processes. This development can be series of actions and states could not rather than an artificial abstraction of viewed as a natural evolution of the be connected through simple infer- intelligent behavior. MARGIE’s tasks original central inference process. ences. How can a program infer con- included reading, paraphrase, and . Canonical Representation of text? Two brief stories illustrate the translation. Subsequent programs Knowledge. The heart of the MARGIE problem. have created stories, answered ques- system was the conceptual dependen- John picked up a rock. John threw tions, summarized stories, skimmed cy knowledge representation system. the rock at Mary. The rock hit stories, professed opinions, related old CD provided a means of representing Mary. stories to new ones, and engaged in actions and states in a canonical, lan- conversations. There are several rea- guage independent fashion. A concept In this first case, the actions are causally linked. A reader can infer the sons for choosing real tasks. First, represented using the dozen CD prim- connections from one action to anoth- these tasks are in the realm of the itives might be expressed in any num- er and build a causal chain based on possible-people provide an existence ber of ways in any number of lan- the inferences associated with each proof. Second, the researcher has tan- guages. More specifically, CD action. For example, picking up an gible ways of assessing the results of addressed a broad range of problems object can enable a person to propel the program through comparisons associated with meaning in language. that object. with human performance Third, the Translation, Synonymy and Para- John went to a restaurant. He researcher has a ready supply of data. phrase CD insured an identical rep- It is preferable for a program to use resentation for two different sen- ordered a lobster. He paid the real data instead of canned examples. tences having the same meaning. check and left. 68 AI MAGAZINE This second story demonstrates Granger built a parsing module that was not about earthquakes at all, but that some causal chains are derived could infer the meaning of unknown concerned the tragic shooting death of from context. In this case, the reader words from context. the Mayor of San Francisco. FRUMP can infer a lot about what John did at SAM had a small repertoire of had taken the lead sentence literally: the restaurant simply because the scripts, and would read news stories in “San Francisco was shaken by the reader knows a lot about restaurants.
Recommended publications
  • Narrative Intelligence
    From: AAAI Technical Report FS-99-01. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved. Narrative Intelligence Michael Mateas Phoebe Sengers Computer Science Department Media Arts Research Studies Carnegie Mellon University Institut fuer Medienkommunikation 5000 Forbes Avenue GMD Pittsburgh, PA 15213 Schloss Birlinghoven [email protected] D-53754 Sankt Augustin Germany [email protected] to sentences around it, to prior experience, and to some larger context, the group's work quickly became focused Introduction on understanding narratives. In a series of programs, they developed a theory of the knowledge structures necessary People are narrative animals. As children, our caretakers to understand textual narratives. The story-understanding immerse us in stories: fairy tales, made-up stories, favorite system SAM (Cullingford 1981) used scripts to capture the stories, "Read me a story!" Even when barely verbal, we notion of a stereotyped situations or contexts. The scripts begin to tell our own proto-stories. "Phoebe! Pizza! captured the typical causal connections holding in a Phoebe! Pizza!" was the excited story of a 2-year-old stereotyped situation. The story-understanding system friend Addie when one of us happened to arrive PAM (Wilensky 1981) and the story-generation system simultaneously with the pizza delivery man. This story TAIL-SPIN (Meehan 1977) both incorporated a notion of means, approximately, "Can you believe it? Phoebe and the goals held by characters in a narrative and the various pizza came into the house at the same time!" As children, means they have to accomplish these goals. Other work in narrative frameworks become an important part of the way this group included a model of ideologically-biased we learn to approach the world (Nelson 1989).
    [Show full text]
  • Letters to the Editor
    AI Magazine Volume 12 Number 3 (1991) (© AAAI) Letters q Editor: system-centered research. First, the the other does. No theorist is going Thank you for the opportunity to split between the neats and scruffies to spend his or her time attempting respond to the letters by Jim Hendler, is old and institutionalized, as to bring precision to a mess of hacks, James Herbsleb and Mike Wellman Hendler points out. Few researchers kludges and “knowledge,” and no regarding my survey of the Eighth are trained in both camps. Second, system builder is apt to find the National Conference on Artificial the pathologies that researchers in attempt informative. MAD does not Intelligence (AI Magazine, Volume 12, AAAI-90 themselves attributed to mean business as usual with occa- No. 1). The letters raise many inter- focusing on just one aspect did, in sional collaborative meetings. esting points that can be roughly fact, arise. Third, the expected advan- hfAn means assessing environmen- classified as questioning the validity tages of merging systems and models tal factors that affect behavior; of the survey and questioning the did, in fact, materialize (although the modelling the causal relationships proposed MAD methodology. Mike sample was very small). Wellman between a system’s design, its envi- Wellman says, “As Cohen acknowl- says that just because I didn’t see ronment, and its behavior; designing edges, a serious problem with the system-centered and model-centered or redesigning a system (or part of a survey is that the AAAI conference research reported together, doesn’t system); predicting how the system proceedings do not accurately repre- mean it wasn’t there; I say that I will behave; running experiments to sent the field.” Actually, I did not found pathoIogies (e.g., see my sec- test the predictions; explaining unex- acknowledge that AAAI is not repre- tions Models Without Systems and pected results and modifying modeis sentative; I just raised the possibility.
    [Show full text]
  • A Linguistic and Conceptual Study of American Public Discourse
    Beyond the Issues: A Linguistic and Conceptual Study of American Public Discourse by Pamela Sue Morgan B.A. (University of Tulsa) 1974 B.A. (University of Arizona) 1976 M.A. (University of California, Santa Barbara) 1981 M.A. (University of California, Berkeley) 1993 Ph.D. (University of California, Santa Barbara) 1985 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Linguistics in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor George Lakoff, Co-Chair Professor Eve Sweetser, Co-Chair Professor Robin Lakoff Professor David Collier Spring 1998 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Beyond the Issues: A Linguistic and Conceptual Study of American Public Discourse © 1998 by Pamela Sue Morgan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The dissertation of Pamela Sue Morgan is approved: Date 18 /f?8 Co-Chair Date ^ /h^. Date o =oJ2 ^ ^ ' ? £ s' Date University of California, Berkeley Spring 1998 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Abstract Beyond the Issues: A Linguistic and Conceptual Study of American Public Discourse by Pamela Sue Morgan Doctor of Philosophy in Linguistics University of California, Berkeley Professor George Lakoff, Co-Chair Professor Eve Sweetser, Co-Chair Cultural cognitive models (CCMs) are learned and shared by members of cultural communities and serve as shortcuts to the presentation and understanding of communicative events, including public discourse. They are made up of "frames," here defined as prototypical representations of recurrent cultural experiences or historical references that contain culturally-agreed-upon sets of participants, event scenarios, and evaluations.
    [Show full text]
  • The Bias-Variance Tradeoff
    The Bias-Variance Tradeoff: How Data Science Can Inform Educational Debates Shayan Doroudi Abstract In addition to providing a set of techniques to analyze educational data, I claim that data science as a field can provide broader insights to education research. In partic- ular, I show how the bias-variance tradeoff from machine learning can be formally generalized to be applicable to several prominent educational debates, including de- bates around learning theories (cognitivist vs. situativist and constructivist theories) and pedagogy (direct instruction vs. discovery learning). We then look to see how various data science techniques that have been proposed to navigate the bias-variance tradeoff can yield insights for productively navigating these educational debates going forward. Keywords: bias-variance tradeoff, learning theories, direct instruction, discovery learning, re- search methods, epistemology, artificial intelligence, machine learning Introduction In recent years, data science and machine learning have been used to make sense of various forms of educational data. Educational data science can enhance our understanding of learning and teaching; give insights to teachers, students, and administrators about learning happening in the 1 classroom; and lead to the creation of data-driven adaptive learning systems. However, I claim that machine learning and data science have more to offer than a set of techniques that can be applied to educational data. Theoretical concepts and principles in machine learning can provide broader insights to education research. In particular, in this paper, I show that the bias-variance tradeoff from machine learning can provide a new lens with which to view prominent educational debates. The field of education is filled with seemingly perennial debates that have important implications on the nature of educational research and practice.
    [Show full text]
  • Origins of the American Association for Artificial Intelligence
    AI Magazine Volume 26 Number 4 (2006)(2005) (© AAAI) 25th Anniversary Issue The Origins of the American Association for Artificial Intelligence (AAAI) Raj Reddy ■ This article provides a historical background on how AAAI came into existence. It provides a ratio- nale for why we needed our own society. It pro- vides a list of the founding members of the com- munity that came together to establish AAAI. Starting a new society comes with a whole range of issues and problems: What will it be called? How will it be financed? Who will run the society? What kind of activities will it engage in? and so on. This article provides a brief description of the consider- ations that went into making the final choices. It also provides a description of the historic first AAAI conference and the people that made it happen. The Background and the Context hile the 1950s and 1960s were an ac- tive period for research in AI, there Wwere no organized mechanisms for the members of the community to get together and share ideas and accomplishments. By the early 1960s there were several active research groups in AI, including those at Carnegie Mel- lon University (CMU), the Massachusetts Insti- tute of Technology (MIT), Stanford University, Stanford Research Institute (later SRI Interna- tional), and a little later the University of Southern California Information Sciences Insti- tute (USC-ISI). My own involvement in AI began in 1963, when I joined Stanford as a graduate student working with John McCarthy. After completing my Ph.D. in 1966, I joined the faculty at Stan- ford as an assistant professor and stayed there until 1969 when I left to join Allen Newell and Herb Simon at Carnegie Mellon University Raj Reddy.
    [Show full text]
  • Honorary President of Conference Tosiyasu L
    Program Committee Honorary President of Conference Tosiyasu L. Kunii, University of Aizu, Japan Conference Co-Chairs Barbara Gorayska, City University of Hong Kong, HK Jacob L. Mey, Odense University, Denmark Publication Chair Jonathon P. Marsh, Hong Kong University, HK Proceedings Editors Jonathon P. Marsh, Hong Kong University, HK Chrystopher L. Nehaniv, University of Aizu, Japan Barbara Gorayska, City University of Hong Kong, HK International Program Committee (The preceding and) Hugh Applewhite, Pi&down Technologies, USA Betty Lindsay, Novell Corporation, USA Frank Biocca, University of North Carolina, USA Roger Lindsay, Oxford-Brookes University, UK Bruce L. Blum, Johns Hopkins University, USA Alec McHoul, Murdoch University, Australia Ho Mun Chan, City University of Hong Kong, HK John Nealon, Oxford-Brookes University, UK Orville L. Clubb, City University of Hong Kong, HK Rolf Pfeifer, University Zurich-Zrchel, Switzerland Chris Colbourn, University of Southampton, UK Herbert Pick, University of Minnesota, USA Kevin Cox, City University of Hong Kong, HK Tony Roberts, University of Southampton, UK Will Fitzgerald, ZntellAgent Systems, USA Roger Schank, Inst. for the Learning Sciences, USA Laurence Goldstein, Hong Kong University, HK Colin T. Schmidt, Sorbonne University, France David Good, Cambridge University, UK John Sillince, University of London, UK Hartmut Haberland, Roskilde University, Denmark John Spinks, Hong Kong University, HK Wolfgang A. Halang, Fern University, Germany Hiroshi Tamura, Kyoto Inst. of Technology, Japan Stevan Hamad, University of Southampton, UK Peter Thomas, University of the West of England, UK Douglas Herrmann, Indiana State University Steven Tripp, University of Aizu, Japan Richard Janney, University of Munich, Germany Jacques J. Vidal, University of California at Los Benny Karpatschoff, Copenhagen Univ., Denmark Angeles, USA & University of Aizu, Japan Alex Kass, Northwestern University, USA William S.Y.
    [Show full text]
  • A Computational Model of Knowledge-Intensive Problem
    A Computational Model of Knowledge-Intensive Learning and Problem Solving1 Agnar Aamodt Knowledge Engineering Laboratory, ELAB-RUNIT, SINTEF N-7034 Trondheim-NTH, Norway and Department of Electrical Engineering and Computer Science University of Trondheim [email protected] Abstract. If knowledge-based systems are to become more competent and robust in solving real world problems, they need to be able to adapt to an evolving domain and a changing environment. This paper proposes a computational model - a framework -for knowledge-intensive problem solving and learning from experience. The model has been instantiated in an architecture for knowledge-intensive case- based reasoning and learning called CREEK (Case-based Reasoning through Extensive Expert Knowledge). The importance of a thorough, extensive knowledge model to support the reasoning and learning processes is emphasized. In case-based reasoning a problem is solved by retrieving a similar past problem case, and using this case in solving the new problem. Learning becomes a process of extracting relevant information from a problem just solved, and integrating the new case into the existing case-base. The computational model presented combines case-based learning and reasoning with model-based and rule-based methods. The type of problems addressed are problems within open, weak theory domains. Keywords: Machine Learning, Knowledge modelling, Case-Based Reasoning. 1. Introduction 1.1. General Knowledge acquisition for high quality, expert level, knowledge-based systems is a difficult and time consuming effort. Such systems are aimed at solving complex real world problems - like medical diagnosis, fault-finding and repair in industrial processes, design of technical production equipment, planning of financial investments.
    [Show full text]
  • CONFERENCE ANNOUNCEMENTS Aran, Ohio State University; Dr
    The FINITE STRING Newsletter Calls for Papers FUTURE COMPUTING SYSTEMS tatively differentiate between present capabilities and This Journal will begin publication quarterly in spring research requirements. Practitioners have been selected 1985. Research and survey papers are sought with stra- and invited to present papers on their work by confer- tegic and futures themes in all areas of computing includ- ence chairpersons in conjunction with keynote speakers. ing: device technology, machine architecture, software This will be an annual conference structured to encour- engineering, human-computer interface, artificial intelli- age maximum interaction between participants during gence, robotics, and socio-economic impacts. Contact sessions and social events. Conference attendance is Dr. M.L.G. Shaw limited. Exhibits will be open to the public. Department of Computer Science FEATURED SPEAKERS York University Among the notable speakers with expertise in the area of North York, Canada M3J 1P3 artificial intelligence, the agenda will include Dr. W. (416) 667-3928 Bledsoe, MCC; Brig. Gen. P. Bouchard, Vice Comman- der, Aeronautical Systems Division; Dr. B. Chandrasek- CONFERENCE ANNOUNCEMENTS aran, Ohio State University; Dr. M. Fox, CMU; Dr. T. Garvey, SRI; Dr. V. Lesser, University of Massachusetts; THE SEVENTH ANNUAL CONFERENCE OF THE COGNITIVE SCIENCE SOCIETY Prof. D. Michie, University of Edinburgh; Prof. J. A. Robinson, Syracuse University; Dr. W. Rouse, Georgia 15-17 August 1985 Institute of Technology; Dr. E. Sacerdoti, Teknowledge; University of California, Irvine Dr. M. Stefik, Xerox PARC; and Dr. E. Taylor, TRW The goal of the annual conference of the Cognitive Company. Science Society is to provide a forum for the presentation SELECTED SESSIONS of interdisciplinary scientific results in the various disci- - Avionics plines that comprise Cognitive Science, including Cogni- - Decision Support Systems tive Psychology, Artificial Intelligence, Linguistics, - Expert Systems and Building Tools Neurobiology, and Philosophy.
    [Show full text]
  • Menachem “Kemi” Jona
    Menachem “Kemi” Jona School of Education and Social Policy & Department of Electrical Engineering and Computer Science Northwestern University 2120 Campus Drive Evanston, IL 60208 Office: (847) 467-4885 / Mobile: (847) 567-1248 [email protected] EDUCATION Doctor of Philosophy in Computer Science 1995 Northwestern University Advisor: Roger Schank; Committee: Allan Collins, Larry Birnbaum Dissertation title: “Representing and applying teaching strategies in computer-based learning-by-doing tutors” Graduate Studies 1988-1989 Department of Computer Science Yale University Bachelor of Science (with honors) 1988 University of Wisconsin - Madison Majors: Computer Science & Psychology EMPLOYMENT Northwestern University 2004-present Research Professor, Learning Sciences and Computer Science Research Associate Professor, Learning Sciences and Computer Science Director, Office of Science, Technology, Engineering, and Math Partnerships (2006-) Learning Strategist, School of Continuing Studies Learning Strategist, Center for Talent Development Research Fellow, NSF Center for Curriculum Materials in Science Carnegie Mellon University 2002-2005 Consulting Associate Professor, School of Computer Science and The Center for the Learning Sciences Director of Academic Programs, West Coast Campus (2002-2003) Socratic Arts 2002-2004 Executive Vice President eCornell 2001-2002 Vice President, Program Development Cognitive Arts Senior Vice President-Design 2001 Senior Design Architect 1998-2001 The Institute for the Learning Sciences Northwestern University Research Assistant Professor, Dept. of Computer Science 1995-1998 Research Associate & Project Manager 1993-1995 Northwestern University 1991-1992 Teaching Assistant Yale University 1988-1989 Teaching Assistant HONORS • CENIC 2013 Innovations in Networking Award presented by the Corporation for Education Network Initiatives in California for Remote Online Lab Network, 3/12/13. • Evanston Catalyst Award presented by Evanston-Northwestern MashUp, 9/19/12.
    [Show full text]
  • 1 PLANTILLA R5 Tend SHANK
    UniversitatUniversitat dede Barcelona.Barcelona. InstitutInstitut dede CiènciesCiències dede l’Educaciól’Educació Roger Schank. What We Know about Learning: How We Must Change the School Experience <Article> What we know about learning: How we must change the school experience. Dr. Roger Schank Submission date: 10/04/2010 Publication date: 19/07/2010 //About the author Dr. Roger Schank was the Founder of the renowned Institute for the Learning Sciences at Northwestern University, where he is John P. Evans Professor Emeritus in Computer Science, Education and Psychology. He was Professor of computer science and psychology at Yale University and Director of the Yale Artificial Intelligence Project. He was a visiting professor at the University of Paris VII, an Assistant Professor of Computer Science and Linguistics at Stanford University and research fellow at the Institute for Semantics and Cognition in Switzerland. He also served as the Distinguished Career Professor in the School of Computer Science at Carnegie Mellon University. He is a fellow of the AAAI and was founder of the Cognitive Science Society and co-founder of the Journal of Cognitive Science. He holds a Ph.D. in linguistics from University of Texas. In 1994, he founded Cognitive Arts Corporation, a company that designs and builds high quality multimedia simulations for use in corporate training and for online university-level courses. The latter were built in partnership with Columbia University. In 2002 he founded Socratic Arts, a company that is devoted to making high quality e-learning affordable for both businesses and schools. He is the author of more than 20 books on learning, language, artificial intelligence, education, memory, reading, e-learning, and story telling.
    [Show full text]
  • Inteligência Artificial
    Inteligência Artificial ESTUDOS AVANÇADOS 35 (101), 2021 5 No canal da Inteligência Artificial – Nova temporada de desgrenhados e empertigados FABIO GAGLIARDI COZMAN I Desgrenhados e empertigados CONSTRUÇÃO de inteligências artificiais sempre esteve cercada de contro- vérsias, não apenas sobre seus limites, mas também sobre quais os obje- A tivos a perseguir. Parece haver dois estilos fundamentalmente diferentes de abordagem em Inteligência Artificial (IA): de um lado, um estilo empírico, fortemente respaldado por observações sobre a biologia e psicologia de seres vivos, e pronto para abraçar arquiteturas complicadas que emergem da interação de muitos módulos díspares; de outro lado, um estilo analítico e sustentado por princípios gerais e organizadores, interessado em concepções abstratas da inte- ligência e apoiado em argumentos matemáticos e lógicos. Por volta de 1980 os termos scruffy e neat foram cunhados para se referir respectivamente a esses dois estilos de trabalho. Robert P. Abelson (1981) apresentou aparentemente a pri- meira publicação que discute os dois termos, atribuindo a distinção a um colega não nomeado, mas, segundo Abelson, facilmente identificável – que, segundo a literatura, deve ser Roger Schank (Nilsson, 2009). Os termos scruffy e neat não são exatamente elogiosos; de certa forma, cada um desses termos é especialmente adequado para ser usado por um time contra o outro. Os scruffies são desgrenhados, perdidos em sistemas de confusa complexidade. Os neats são empertigados, teorizando em torres de marfim e desconectados dos detalhes do mundo real. Abelson identifica essas atitudes ge- rais em muitas atividades humanas, em arte, em política, em ciência. Há pessoas que favorecem resultados obtidos por meio de experimentos, não se impor- tando se soluções fogem de rotinas preestabelecidas, enquanto outras pessoas buscam ordem e harmonia em teoria amplas.
    [Show full text]
  • Edward Feigenbaum 1994 ACM Turing Award Recipient
    Edward Feigenbaum 1994 ACM Turing Award Recipient Interviewed by: Don Knuth Recorded: April 4, and May 2, 2007 Mountain View, California This transcript, and the video interview on which it is based, is copyright by the Computer History Museum and the ACM is using it by their generous permission. © 2007 Computer History Museum CHM Reference number: X3897.2007 DK: Don Knuth, the interviewer EF: Edward (Ed) Feigenbaum, the 1994 ACM Turing Award Recipient DK: Hello, everyone. My name is Don Knuth. Today [April 4, 2007] I have the great privilege e of interviewing Ed Feigenbaum for oral history where we hope to reach people generations from now and also people of today. I’m going to try to ask a zillion questions about things that I wish I could have asked people who unfortunately are dead now so that students and general scientific people, people with general interest in the world, historians and so on in the future will have some idea as to what Ed was really like even though none of us are going to be around forever. Now this is the second part of a two- phase study. Ed grilled me a couple weeks ago and now it’s my turn to do him. I hope I can do half as well as he did for me. I’d like to get right into it -- But first of all sort of for organization, my plan -- who knows if it’ll carry it out -- is to do a little bit first that’s chronological, in order to set the scenes for his whole life.
    [Show full text]