NOTES on LINEAR ALGEBRA 1. Multilinear Forms and Determinants 3 1.1. Mutilinear Maps 3 1.2. the Symmetric Group 4 1.3. Symmetric
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Note on Bilinear Forms
A note on bilinear forms Darij Grinberg July 9, 2020 Contents 1. Introduction1 2. Bilinear maps and forms1 3. Left and right orthogonal spaces4 4. Interlude: Symmetric and antisymmetric bilinear forms 14 5. The morphism of quotients I 15 6. The morphism of quotients II 20 7. More on orthogonal spaces 24 1. Introduction In this note, we shall prove some elementary linear-algebraic properties of bi- linear forms. These properties generalize some of the standard facts about non- degenerate bilinear forms on finite-dimensional vector spaces (e.g., the fact that ? V? = V for a vector subspace V of a vector space A equipped with a nonde- generate symmetric bilinear form) to bilinear forms which may be degenerate. They are unlikely to be new, but I have not found them explored anywhere, whence this note. 2. Bilinear maps and forms We fix a field k. This field will be fixed for the rest of this note. The notion of a “vector space” will always be understood to mean “k-vector space”. The 1 A note on bilinear forms July 9, 2020 word “subspace” will always mean “k-vector subspace”. The word “linear” will always mean “k-linear”. If V and W are two k-vector spaces, then Hom (V, W) denotes the vector space of all linear maps from V to W. If S is a subset of a vector space V, then span S will mean the span of S (that is, the subspace of V spanned by S). We recall the definition of a bilinear map: Definition 2.1. -
1 Euclidean Vector Space and Euclidean Affi Ne Space
Profesora: Eugenia Rosado. E.T.S. Arquitectura. Euclidean Geometry1 1 Euclidean vector space and euclidean a¢ ne space 1.1 Scalar product. Euclidean vector space. Let V be a real vector space. De…nition. A scalar product is a map (denoted by a dot ) V V R ! (~u;~v) ~u ~v 7! satisfying the following axioms: 1. commutativity ~u ~v = ~v ~u 2. distributive ~u (~v + ~w) = ~u ~v + ~u ~w 3. ( ~u) ~v = (~u ~v) 4. ~u ~u 0, for every ~u V 2 5. ~u ~u = 0 if and only if ~u = 0 De…nition. Let V be a real vector space and let be a scalar product. The pair (V; ) is said to be an euclidean vector space. Example. The map de…ned as follows V V R ! (~u;~v) ~u ~v = x1x2 + y1y2 + z1z2 7! where ~u = (x1; y1; z1), ~v = (x2; y2; z2) is a scalar product as it satis…es the …ve properties of a scalar product. This scalar product is called standard (or canonical) scalar product. The pair (V; ) where is the standard scalar product is called the standard euclidean space. 1.1.1 Norm associated to a scalar product. Let (V; ) be a real euclidean vector space. De…nition. A norm associated to the scalar product is a map de…ned as follows V kk R ! ~u ~u = p~u ~u: 7! k k Profesora: Eugenia Rosado, E.T.S. Arquitectura. Euclidean Geometry.2 1.1.2 Unitary and orthogonal vectors. Orthonormal basis. Let (V; ) be a real euclidean vector space. De…nition. -
Bornologically Isomorphic Representations of Tensor Distributions
Bornologically isomorphic representations of distributions on manifolds E. Nigsch Thursday 15th November, 2018 Abstract Distributional tensor fields can be regarded as multilinear mappings with distributional values or as (classical) tensor fields with distribu- tional coefficients. We show that the corresponding isomorphisms hold also in the bornological setting. 1 Introduction ′ ′ ′r s ′ Let D (M) := Γc(M, Vol(M)) and Ds (M) := Γc(M, Tr(M) ⊗ Vol(M)) be the strong duals of the space of compactly supported sections of the volume s bundle Vol(M) and of its tensor product with the tensor bundle Tr(M) over a manifold; these are the spaces of scalar and tensor distributions on M as defined in [?, ?]. A property of the space of tensor distributions which is fundamental in distributional geometry is given by the C∞(M)-module isomorphisms ′r ∼ s ′ ∼ r ′ Ds (M) = LC∞(M)(Tr (M), D (M)) = Ts (M) ⊗C∞(M) D (M) (1) (cf. [?, Theorem 3.1.12 and Corollary 3.1.15]) where C∞(M) is the space of smooth functions on M. In[?] a space of Colombeau-type nonlinear generalized tensor fields was constructed. This involved handling smooth functions (in the sense of convenient calculus as developed in [?]) in par- arXiv:1105.1642v1 [math.FA] 9 May 2011 ∞ r ′ ticular on the C (M)-module tensor products Ts (M) ⊗C∞(M) D (M) and Γ(E) ⊗C∞(M) Γ(F ), where Γ(E) denotes the space of smooth sections of a vector bundle E over M. In[?], however, only minor attention was paid to questions of topology on these tensor products. -
Sisältö Part I: Topological Vector Spaces 4 1. General Topological
Sisalt¨ o¨ Part I: Topological vector spaces 4 1. General topological vector spaces 4 1.1. Vector space topologies 4 1.2. Neighbourhoods and filters 4 1.3. Finite dimensional topological vector spaces 9 2. Locally convex spaces 10 2.1. Seminorms and semiballs 10 2.2. Continuous linear mappings in locally convex spaces 13 3. Generalizations of theorems known from normed spaces 15 3.1. Separation theorems 15 Hahn and Banach theorem 17 Important consequences 18 Hahn-Banach separation theorem 19 4. Metrizability and completeness (Fr`echet spaces) 19 4.1. Baire's category theorem 19 4.2. Complete topological vector spaces 21 4.3. Metrizable locally convex spaces 22 4.4. Fr´echet spaces 23 4.5. Corollaries of Baire 24 5. Constructions of spaces from each other 25 5.1. Introduction 25 5.2. Subspaces 25 5.3. Factor spaces 26 5.4. Product spaces 27 5.5. Direct sums 27 5.6. The completion 27 5.7. Projektive limits 28 5.8. Inductive locally convex limits 28 5.9. Direct inductive limits 29 6. Bounded sets 29 6.1. Bounded sets 29 6.2. Bounded linear mappings 31 7. Duals, dual pairs and dual topologies 31 7.1. Duals 31 7.2. Dual pairs 32 7.3. Weak topologies in dualities 33 7.4. Polars 36 7.5. Compatible topologies 39 7.6. Polar topologies 40 PART II Distributions 42 1. The idea of distributions 42 1.1. Schwartz test functions and distributions 42 2. Schwartz's test function space 43 1 2.1. The spaces C (Ω) and DK 44 1 2 2.2. -
Glossary of Linear Algebra Terms
INNER PRODUCT SPACES AND THE GRAM-SCHMIDT PROCESS A. HAVENS 1. The Dot Product and Orthogonality 1.1. Review of the Dot Product. We first recall the notion of the dot product, which gives us a familiar example of an inner product structure on the real vector spaces Rn. This product is connected to the Euclidean geometry of Rn, via lengths and angles measured in Rn. Later, we will introduce inner product spaces in general, and use their structure to define general notions of length and angle on other vector spaces. Definition 1.1. The dot product of real n-vectors in the Euclidean vector space Rn is the scalar product · : Rn × Rn ! R given by the rule n n ! n X X X (u; v) = uiei; viei 7! uivi : i=1 i=1 i n Here BS := (e1;:::; en) is the standard basis of R . With respect to our conventions on basis and matrix multiplication, we may also express the dot product as the matrix-vector product 2 3 v1 6 7 t î ó 6 . 7 u v = u1 : : : un 6 . 7 : 4 5 vn It is a good exercise to verify the following proposition. Proposition 1.1. Let u; v; w 2 Rn be any real n-vectors, and s; t 2 R be any scalars. The Euclidean dot product (u; v) 7! u · v satisfies the following properties. (i:) The dot product is symmetric: u · v = v · u. (ii:) The dot product is bilinear: • (su) · v = s(u · v) = u · (sv), • (u + v) · w = u · w + v · w. -
Vector Differential Calculus
KAMIWAAI – INTERACTIVE 3D SKETCHING WITH JAVA BASED ON Cl(4,1) CONFORMAL MODEL OF EUCLIDEAN SPACE Submitted to (Feb. 28,2003): Advances in Applied Clifford Algebras, http://redquimica.pquim.unam.mx/clifford_algebras/ Eckhard M. S. Hitzer Dept. of Mech. Engineering, Fukui Univ. Bunkyo 3-9-, 910-8507 Fukui, Japan. Email: [email protected], homepage: http://sinai.mech.fukui-u.ac.jp/ Abstract. This paper introduces the new interactive Java sketching software KamiWaAi, recently developed at the University of Fukui. Its graphical user interface enables the user without any knowledge of both mathematics or computer science, to do full three dimensional “drawings” on the screen. The resulting constructions can be reshaped interactively by dragging its points over the screen. The programming approach is new. KamiWaAi implements geometric objects like points, lines, circles, spheres, etc. directly as software objects (Java classes) of the same name. These software objects are geometric entities mathematically defined and manipulated in a conformal geometric algebra, combining the five dimensions of origin, three space and infinity. Simple geometric products in this algebra represent geometric unions, intersections, arbitrary rotations and translations, projections, distance, etc. To ease the coordinate free and matrix free implementation of this fundamental geometric product, a new algebraic three level approach is presented. Finally details about the Java classes of the new GeometricAlgebra software package and their associated methods are given. KamiWaAi is available for free internet download. Key Words: Geometric Algebra, Conformal Geometric Algebra, Geometric Calculus Software, GeometricAlgebra Java Package, Interactive 3D Software, Geometric Objects 1. Introduction The name “KamiWaAi” of this new software is the Romanized form of the expression in verse sixteen of chapter four, as found in the Japanese translation of the first Letter of the Apostle John, which is part of the New Testament, i.e. -
A Symplectic Banach Space with No Lagrangian Subspaces
transactions of the american mathematical society Volume 273, Number 1, September 1982 A SYMPLECTIC BANACHSPACE WITH NO LAGRANGIANSUBSPACES BY N. J. KALTON1 AND R. C. SWANSON Abstract. In this paper we construct a symplectic Banach space (X, Ü) which does not split as a direct sum of closed isotropic subspaces. Thus, the question of whether every symplectic Banach space is isomorphic to one of the canonical form Y X Y* is settled in the negative. The proof also shows that £(A") admits a nontrivial continuous homomorphism into £(//) where H is a Hilbert space. 1. Introduction. Given a Banach space E, a linear symplectic form on F is a continuous bilinear map ß: E X E -> R which is alternating and nondegenerate in the (strong) sense that the induced map ß: E — E* given by Û(e)(f) = ü(e, f) is an isomorphism of E onto E*. A Banach space with such a form is called a symplectic Banach space. It can be shown, by essentially the argument of Lemma 2 below, that any symplectic Banach space can be renormed so that ß is an isometry. Any symplectic Banach space is reflexive. Standard examples of symplectic Banach spaces all arise in the following way. Let F be a reflexive Banach space and set E — Y © Y*. Define the linear symplectic form fiyby Qy[(^. y% (z>z*)] = z*(y) ~y*(z)- We define two symplectic spaces (£,, ß,) and (E2, ß2) to be equivalent if there is an isomorphism A : Ex -» E2 such that Q2(Ax, Ay) = ß,(x, y). A. Weinstein [10] has asked the question whether every symplectic Banach space is equivalent to one of the form (Y © Y*, üy). -
Multilinear Algebra
Appendix A Multilinear Algebra This chapter presents concepts from multilinear algebra based on the basic properties of finite dimensional vector spaces and linear maps. The primary aim of the chapter is to give a concise introduction to alternating tensors which are necessary to define differential forms on manifolds. Many of the stated definitions and propositions can be found in Lee [1], Chaps. 11, 12 and 14. Some definitions and propositions are complemented by short and simple examples. First, in Sect. A.1 dual and bidual vector spaces are discussed. Subsequently, in Sects. A.2–A.4, tensors and alternating tensors together with operations such as the tensor and wedge product are introduced. Lastly, in Sect. A.5, the concepts which are necessary to introduce the wedge product are summarized in eight steps. A.1 The Dual Space Let V be a real vector space of finite dimension dim V = n.Let(e1,...,en) be a basis of V . Then every v ∈ V can be uniquely represented as a linear combination i v = v ei , (A.1) where summation convention over repeated indices is applied. The coefficients vi ∈ R arereferredtoascomponents of the vector v. Throughout the whole chapter, only finite dimensional real vector spaces, typically denoted by V , are treated. When not stated differently, summation convention is applied. Definition A.1 (Dual Space)Thedual space of V is the set of real-valued linear functionals ∗ V := {ω : V → R : ω linear} . (A.2) The elements of the dual space V ∗ are called linear forms on V . © Springer International Publishing Switzerland 2015 123 S.R. -
18.700 JORDAN NORMAL FORM NOTES These Are Some Supplementary Notes on How to Find the Jordan Normal Form of a Small Matrix. Firs
18.700 JORDAN NORMAL FORM NOTES These are some supplementary notes on how to find the Jordan normal form of a small matrix. First we recall some of the facts from lecture, next we give the general algorithm for finding the Jordan normal form of a linear operator, and then we will see how this works for small matrices. 1. Facts Throughout we will work over the field C of complex numbers, but if you like you may replace this with any other algebraically closed field. Suppose that V is a C-vector space of dimension n and suppose that T : V → V is a C-linear operator. Then the characteristic polynomial of T factors into a product of linear terms, and the irreducible factorization has the form m1 m2 mr cT (X) = (X − λ1) (X − λ2) ... (X − λr) , (1) for some distinct numbers λ1, . , λr ∈ C and with each mi an integer m1 ≥ 1 such that m1 + ··· + mr = n. Recall that for each eigenvalue λi, the eigenspace Eλi is the kernel of T − λiIV . We generalized this by defining for each integer k = 1, 2,... the vector subspace k k E(X−λi) = ker(T − λiIV ) . (2) It is clear that we have inclusions 2 e Eλi = EX−λi ⊂ E(X−λi) ⊂ · · · ⊂ E(X−λi) ⊂ .... (3) k k+1 Since dim(V ) = n, it cannot happen that each dim(E(X−λi) ) < dim(E(X−λi) ), for each e e +1 k = 1, . , n. Therefore there is some least integer ei ≤ n such that E(X−λi) i = E(X−λi) i . -
(VI.E) Jordan Normal Form
(VI.E) Jordan Normal Form Set V = Cn and let T : V ! V be any linear transformation, with distinct eigenvalues s1,..., sm. In the last lecture we showed that V decomposes into stable eigenspaces for T : s s V = W1 ⊕ · · · ⊕ Wm = ker (T − s1I) ⊕ · · · ⊕ ker (T − smI). Let B = fB1,..., Bmg be a basis for V subordinate to this direct sum and set B = [T j ] , so that k Wk Bk [T]B = diagfB1,..., Bmg. Each Bk has only sk as eigenvalue. In the event that A = [T]eˆ is s diagonalizable, or equivalently ker (T − skI) = ker(T − skI) for all k , B is an eigenbasis and [T]B is a diagonal matrix diagf s1,..., s1 ;...; sm,..., sm g. | {z } | {z } d1=dim W1 dm=dim Wm Otherwise we must perform further surgery on the Bk ’s separately, in order to transform the blocks Bk (and so the entire matrix for T ) into the “simplest possible” form. The attentive reader will have noticed above that I have written T − skI in place of skI − T . This is a strategic move: when deal- ing with characteristic polynomials it is far more convenient to write det(lI − A) to produce a monic polynomial. On the other hand, as you’ll see now, it is better to work on the individual Wk with the nilpotent transformation T j − s I =: N . Wk k k Decomposition of the Stable Eigenspaces (Take 1). Let’s briefly omit subscripts and consider T : W ! W with one eigenvalue s , dim W = d , B a basis for W and [T]B = B. -
Lecture 6 — Generalized Eigenspaces & Generalized Weight
18.745 Introduction to Lie Algebras September 28, 2010 Lecture 6 | Generalized Eigenspaces & Generalized Weight Spaces Prof. Victor Kac Scribe: Andrew Geng and Wenzhe Wei Definition 6.1. Let A be a linear operator on a vector space V over field F and let λ 2 F, then the subspace N Vλ = fv j (A − λI) v = 0 for some positive integer Ng is called a generalized eigenspace of A with eigenvalue λ. Note that the eigenspace of A with eigenvalue λ is a subspace of Vλ. Example 6.1. A is a nilpotent operator if and only if V = V0. Proposition 6.1. Let A be a linear operator on a finite dimensional vector space V over an alge- braically closed field F, and let λ1; :::; λs be all eigenvalues of A, n1; n2; :::; ns be their multiplicities. Then one has the generalized eigenspace decomposition: s M V = Vλi where dim Vλi = ni i=1 Proof. By the Jordan normal form of A in some basis e1; e2; :::en. Its matrix is of the following form: 0 1 Jλ1 B Jλ C A = B 2 C B .. C @ . A ; Jλn where Jλi is an ni × ni matrix with λi on the diagonal, 0 or 1 in each entry just above the diagonal, and 0 everywhere else. Let Vλ1 = spanfe1; e2; :::; en1 g;Vλ2 = spanfen1+1; :::; en1+n2 g; :::; so that Jλi acts on Vλi . i.e. Vλi are A-invariant and Aj = λ I + N , N nilpotent. Vλi i ni i i From the above discussion, we obtain the following decomposition of the operator A, called the classical Jordan decomposition A = As + An where As is the operator which in the basis above is the diagonal part of A, and An is the rest (An = A − As). -
Calculus and Differential Equations II
Calculus and Differential Equations II MATH 250 B Linear systems of differential equations Linear systems of differential equations Calculus and Differential Equations II Second order autonomous linear systems We are mostly interested with2 × 2 first order autonomous systems of the form x0 = a x + b y y 0 = c x + d y where x and y are functions of t and a, b, c, and d are real constants. Such a system may be re-written in matrix form as d x x a b = M ; M = : dt y y c d The purpose of this section is to classify the dynamics of the solutions of the above system, in terms of the properties of the matrix M. Linear systems of differential equations Calculus and Differential Equations II Existence and uniqueness (general statement) Consider a linear system of the form dY = M(t)Y + F (t); dt where Y and F (t) are n × 1 column vectors, and M(t) is an n × n matrix whose entries may depend on t. Existence and uniqueness theorem: If the entries of the matrix M(t) and of the vector F (t) are continuous on some open interval I containing t0, then the initial value problem dY = M(t)Y + F (t); Y (t ) = Y dt 0 0 has a unique solution on I . In particular, this means that trajectories in the phase space do not cross. Linear systems of differential equations Calculus and Differential Equations II General solution The general solution to Y 0 = M(t)Y + F (t) reads Y (t) = C1 Y1(t) + C2 Y2(t) + ··· + Cn Yn(t) + Yp(t); = U(t) C + Yp(t); where 0 Yp(t) is a particular solution to Y = M(t)Y + F (t).