Global Histone Modification Profiling Reveals the Epigenomic Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Global Histone Modification Profiling Reveals the Epigenomic Dynamics Zhao et al. Clinical Epigenetics (2016) 8:34 DOI 10.1186/s13148-016-0201-x RESEARCH Open Access Global histone modification profiling reveals the epigenomic dynamics during malignant transformation in a four-stage breast cancer model Quan-Yi Zhao1†, Pin-Ji Lei1†, Xiaoran Zhang3, Jun-Yi Zheng1, Hui-Yi Wang1, Jiao Zhao2, Yi-Ming Li2, Mei Ye2, Lianyun Li1, Gang Wei3* and Min Wu1* Abstract Background: Epigenetic regulation has emerged to be the critical steps for tumorigenesis and metastasis. Multiple histone methyltransferase and demethylase have been implicated as tumor suppressors or oncogenes recently. But the key epigenomic events in cancer cell transformation still remain poorly understood. Methods: A breast cancer transformation model was established via stably expressing three oncogenes in primary breast epithelial cells. Chromatin immunoprecipitation followed by the next-generation sequencing of histone methylations was performed to determine epigenetic events during transformation. Western blot, quantitative RT-PCR, and immunostaining were used to determine gene expression in cells and tissues. Results: Histones H3K9me2 and me3, two repressive marks of transcription, decrease in in vitro breast cancer cell model and in vivo clinical tissues. A survey of enzymes related with H3K9 methylation indicated that KDM3A/ JMJD1A, a demethylase for H3K9me1 and me2, gradually increases during cancer transformation and is elevated in patient tissues. KDM3A/JMJD1A deficiency impairs the growth of tumors in nude mice and transformed cell lines. Genome-wide ChIP-seq analysis reveals that the boundaries of decreased H3K9me2 large organized chromatin K9 modifications (LOCKs) are enriched with cancer-related genes, such as MYC and PAX3. Further studies show that KDM3A/JMJD1A directly binds to these oncogenes and regulates their transcription by removing H3K9me2 mark. Conclusions: Our study demonstrates reduction of histones H3K9 me2 and me3, and elevation of KDM3A/JMJD1A as important events for breast cancer, and illustrates the dynamic epigenomic mechanisms during breast cancer transformation. Keywords: H3K9 methylation, Epigenomics, Breast cancer transformation, KDM3A, Transcription regulation Background implicated in cancer as well. Early studies have shown that Recent advances in epigenetics and epigenomics have re- histone modification patterns can be used to predict tumor vealed that epigenetic abnormality is one of the critical phenotypes and the risk of cancer recurrence [8–10]. His- causesfortumorigenesis[1–5]. DNA methylation inhibi- tone acetylation and deacetylation have been extensively tors have already used for cancer treatment [6, 7]. Besides studied and histone deacetylases (HDACs) are frequently DNA methylation, abnormality of histone methylation is reported to inhibit the expression of tumor suppressors [11]. Inhibitors of histone deacetylase (HDAC) are proved * Correspondence: [email protected]; [email protected] to be useful in clinical cancer treatment [11]. However, the †Equal contributors 3CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for relationship between cancer and other histone modifica- Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China tions, such as histone methylation, is still not conclusive. 1Department of Biochemistry and Molecular Biology, College of Life Sciences, Histone methylation usually occurs on lysines and argi- Wuhan University, Wuhan 430072Hubei, China Full list of author information is available at the end of the article nines, and each site has three different forms [12, 13]. In © 2016 Zhao et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Zhao et al. Clinical Epigenetics (2016) 8:34 Page 2 of 15 comparison with acetylation, histone methylation and de- (RAS (V12)), the engineered primary cell will extend life methylation have more complicated regulatory steps, mak- span, become immortalized, and finally gain tumorigenic ing them promising drug targets [1, 14]. Recently, several capacity, which is considered to represent different stages well-studied histone methyltransferases emerged to be key of tumor cell transformation [33, 34]. Considering the dif- regulators in multiple cancer types. For example, enhancer ficulties in studying human cancers, the in vitro model still of zeste 2 polycomb repressive complex 2 subunit (EZH2), serves as one of the best platforms to study the molecular the major enzyme for H3K27me3, was demonstrated as an mechanisms of tumor transformation. Recently, profiling oncogene in prostate cancer [15]. Its mutation has also been of global gene expression in the above model has provided frequently found in lymphoma [16, 17]. An enzymatic in- valuable information for tumor transformation study and hibitor of EZH2 was shown to inhibit lymphoma cell prolif- suggested a link between malignant transformation to de- eration in a mouse model [18]. SET domain containing 2 differentiation [35]. But due to the difficulty in making the (SETD2) is the major H3K36me3 methyltransferase in model, no epigenetic study was reported. mammalian cells and frequently mutated in clear cell kidney In this study, we took advantage of the in vitro tumor carcinoma, acute leukemia, gliomas, and other cancers [2, transformation model and made a series of transformed 19–22]. H3K36me3 catalyzed by SETD2 is required for gen- cell lines starting from human primary mammary cell ome stability and DNA repair process after damage [23–25]. (HMC). By combining biochemical and epigenomic ap- Myeloid/lymphoid or mixed-lineage leukemia 1-4 (MLL1- proaches, we demonstrate that histones H3K9me2 and 4), the methyltransferases for H3K4, was found to be mu- H3K9me3 decrease during breast cancer transformation tated in multiple types of cancers [2, 4]. On the other hand, and contribute to the process with different mechanisms. demethylation is another critical aspect for the dynamic Furthermore, we identified that KDM3A/JMJD1A, an regulation of histone methylation. Clinical studies from dif- H3K9me2 demethylase, is responsible for the H3K9me2 ferent groups found that the demethylases of H3K9me2 and reduction and critical for breast tumor transformation. me3, such as lysine (K)-specific demethylase 3A (KDM3A, also known as JMJD1A or JHDM2A) and lysine (K)-specific Results demethylase 4A/B/C (KDM4A/B/C), are highly expressed Gene expression profile of tumor transformation model in cancer tissues and regulate tumorigenesis [26–29]. More- mimics clinical samples over, KDM4A was reported to induce site-specific copy gain To study the underlying mechanisms of breast cancer and DNA re-replication and promote cellular transform- transformation, we utilized an established cell-based ation by inhibiting p53 signaling [26, 30]. A histone H3K4 transformation model [34, 35]. Large T antigen, TERT, demethylase, lysine (K)-specific demethylase 5A (KDM5A), and RAS (V12) were stably expressed in human primary is involved in the cancer cell drug tolerance [31]. All these mammary cell respectively via retroviral infection. Four information suggests that histone methylation is critical in cell lines were generated for following studies, namely the genesis and development of multiple cancer types. HMC-p6 (human primary mammary cell, passage 6), However, the molecular mechanisms of these enzymes in HMC-L (HMC with large T stable expression), HMC-LT tumorigenesis still remain elusive. (HMC with large T and TERT stable expression), and The early diagnosis and treatment are the most effect- HMC-LTR (HMC with large T, TERT, and HRAS (V12) ive ways to cure cancer. But we are still lack of good stable expression) (Additional file 1: Figure S1A, B). markers and drugs for precision medicine. During trans- HMC-p6 and HMC-LT can be passaged for 1 and formation, the epigenetic programs in cells change dra- 2 months, respectively, and HMC-LT is immortalized matically, helping them to survive and gain growth (Additional file 1: Figure S1C). Only HMC-LTR can form advantage [1, 3]. Along with the development of func- colonies in soft agar and grow into tumors in nude mice tional genomics, some studies have investigated the dy- (Additional file 1: Figure S1D). These observations are in namic changes during differentiation [32], but the full accordance with previously reported results [34]. epigenetic dynamics at the genome-wide scale during Based on their ability in proliferation and tumorigenicity, transformation are still not known. However, due to the the four cell lines are considered to represent different individual variation, cell heterogeneity, and limited transformation stages. To further confirm the validity of sample size, patient tissues are difficult for mechanistic the tumor cell model, we clustered the transformed cell studies. Thus, a transformation model with clean back- lines with clinical samples based on their expression pro- ground and high reproducibility is required. More than a files of differentially expressed genes (DEGs). Gene expres-
Recommended publications
  • Systematic Knockdown of Epigenetic Enzymes Identifies a Novel Histone Demethylase PHF8 Overexpressed in Prostate Cancer with An
    Oncogene (2012) 31, 3444–3456 & 2012 Macmillan Publishers Limited All rights reserved 0950-9232/12 www.nature.com/onc ORIGINAL ARTICLE Systematic knockdown of epigenetic enzymes identifies a novel histone demethylase PHF8 overexpressed in prostate cancer with an impact on cell proliferation, migration and invasion M Bjo¨rkman1,PO¨stling1,2,VHa¨rma¨1, J Virtanen1, J-P Mpindi1,2, J Rantala1,4, T Mirtti2, T Vesterinen2, M Lundin2, A Sankila2, A Rannikko3, E Kaivanto1, P Kohonen1, O Kallioniemi1,2,5 and M Nees1,5 1Medical Biotechnology, VTT Technical Research Centre of Finland, and Center for Biotechnology, University of Turku and A˚bo Akademi University, Turku, Finland; 2Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland and 3HUSLAB, Department of Urology, University of Helsinki, Helsinki, Finland Our understanding of key epigenetic regulators involved in finger proteins like PHF8, are activated in subsets of specific biological processes and cancers is still incom- PrCa’s and promote cancer relevant phenotypes. plete, despite great progress in genome-wide studies of the Oncogene (2012) 31, 3444–3456; doi:10.1038/onc.2011.512; epigenome. Here, we carried out a systematic, genome- published online 28 November 2011 wide analysis of the functional significance of 615 epigenetic proteins in prostate cancer (PrCa) cells. We Keywords: prostate cancer; epigenetics; histone used the high-content cell-spot microarray technology and demethylase; migration; invasion; PHF8 siRNA silencing of PrCa cell lines for functional screening of cell proliferation, survival, androgen receptor (AR) expression, histone methylation and acetylation. Our study highlights subsets of epigenetic enzymes influencing different cancer cell phenotypes.
    [Show full text]
  • Identification of Multiple Risk Loci and Regulatory Mechanisms Influencing Susceptibility to Multiple Myeloma
    Corrected: Author correction ARTICLE DOI: 10.1038/s41467-018-04989-w OPEN Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma Molly Went1, Amit Sud 1, Asta Försti2,3, Britt-Marie Halvarsson4, Niels Weinhold et al.# Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. 1234567890():,; We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregu- lation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight into the biological basis of MM. Correspondence and requests for materials should be addressed to K.H. (email: [email protected]) or to B.N. (email: [email protected]) or to R.S.H. (email: [email protected]). #A full list of authors and their affliations appears at the end of the paper. NATURE COMMUNICATIONS | (2018) 9:3707 | DOI: 10.1038/s41467-018-04989-w | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04989-w ultiple myeloma (MM) is a malignancy of plasma cells consistent OR across all GWAS data sets, by genotyping an Mprimarily located within the bone marrow.
    [Show full text]
  • A Silent Exonic SNP in Kdm3a Affects Nucleic Acids Structure but Does Not Regulate Experimental Autoimmune Encephalomyelitis
    A Silent Exonic SNP in Kdm3a Affects Nucleic Acids Structure but Does Not Regulate Experimental Autoimmune Encephalomyelitis Alan Gillett1, Petra Bergman1, Roham Parsa1, Andreas Bremges2, Robert Giegerich2, Maja Jagodic1* 1 Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden, 2 Center for Biotechnology and Faculty of Technology, Bielefeld University, Bielefeld, Germany Abstract Defining genetic variants that predispose for diseases is an important initiative that can improve biological understanding and focus therapeutic development. Genetic mapping in humans and animal models has defined genomic regions controlling a variety of phenotypes known as quantitative trait loci (QTL). Causative disease determinants, including single nucleotide polymorphisms (SNPs), lie within these regions and can often be identified through effects on gene expression. We previously identified a QTL on rat chromosome 4 regulating macrophage phenotypes and immune-mediated diseases including experimental autoimmune encephalomyelitis (EAE). Gene analysis and a literature search identified lysine-specific demethylase 3A (Kdm3a) as a potential regulator of these phenotypes. Genomic sequencing determined only two synonymous SNPs in Kdm3a. The silent synonymous SNP in exon 15 of Kdm3a caused problems with quantitative PCR detection in the susceptible strain through reduced amplification efficiency due to altered secondary cDNA structure. Shape Probability Shift analysis predicted that the SNP often affects RNA folding; thus, it may impact protein translation. Despite these differences in rats, genetic knockout of Kdm3a in mice resulted in no dramatic effect on immune system development and activation or EAE susceptibility and severity. These results provide support for tools that analyze causative SNPs that impact nucleic acid structures. Citation: Gillett A, Bergman P, Parsa R, Bremges A, Giegerich R, et al.
    [Show full text]
  • Downregulation of Mir-335 Exhibited an Oncogenic Effect Via Promoting KDM3A/YAP1 Networks in Clear Cell Renal Cell Carcinoma
    Cancer Gene Therapy https://doi.org/10.1038/s41417-021-00335-3 ARTICLE Downregulation of miR-335 exhibited an oncogenic effect via promoting KDM3A/YAP1 networks in clear cell renal cell carcinoma 1 1 1 1 1 1 1 Wenqiang Zhang ● Ruiyu Liu ● Lin Zhang ● Chao Wang ● Ziyan Dong ● Jiasheng Feng ● Mayao Luo ● 1 1 1 1 Yifan Zhang ● Zhuofan Xu ● Shidong Lv ● Qiang Wei Received: 23 December 2020 / Revised: 3 March 2021 / Accepted: 26 March 2021 © The Author(s) 2021. This article is published with open access Abstract Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancer affecting many people worldwide. Although the 5-year survival rate is 65% in localized disease, after metastasis, the survival rate is <10%. Emerging evidence has shown that microRNAs (miRNAs) play a crucial regulatory role in the progression of ccRCC. Here, we show that miR- 335, an anti-onco-miRNA, is downregulation in tumor tissue and inhibited ccRCC cell proliferation, invasion, and migration. Our studies further identify the H3K9me1/2 histone demethylase KDM3A as a new miR-335-regulated gene. We show that KDM3A is overexpressed in ccRCC, and its upregulation contributes to the carcinogenesis and metastasis of fi 1234567890();,: 1234567890();,: ccRCC. Moreover, with the overexpression of KDM3A, YAP1 was increased and identi ed as a direct downstream target of KDM3A. Enrichment of KDM3A demethylase on YAP1 promoter was confirmed by CHIP-qPCR and YAP1 was also found involved in the cell growth and metastasis inhibitory of miR-335. Together, our study establishes a new miR-335/ KDM3A/YAP1 regulation axis, which provided new insight and potential targeting of the metastasized ccRCC.
    [Show full text]
  • Histone Methylation Regulation in Neurodegenerative Disorders
    International Journal of Molecular Sciences Review Histone Methylation Regulation in Neurodegenerative Disorders Balapal S. Basavarajappa 1,2,3,4,* and Shivakumar Subbanna 1 1 Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; [email protected] 2 New York State Psychiatric Institute, New York, NY 10032, USA 3 Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA 4 New York University Langone Medical Center, Department of Psychiatry, New York, NY 10016, USA * Correspondence: [email protected]; Tel.: +1-845-398-3234; Fax: +1-845-398-5451 Abstract: Advances achieved with molecular biology and genomics technologies have permitted investigators to discover epigenetic mechanisms, such as DNA methylation and histone posttransla- tional modifications, which are critical for gene expression in almost all tissues and in brain health and disease. These advances have influenced much interest in understanding the dysregulation of epigenetic mechanisms in neurodegenerative disorders. Although these disorders diverge in their fundamental causes and pathophysiology, several involve the dysregulation of histone methylation- mediated gene expression. Interestingly, epigenetic remodeling via histone methylation in specific brain regions has been suggested to play a critical function in the neurobiology of psychiatric disor- ders, including that related to neurodegenerative diseases. Prominently, epigenetic dysregulation currently brings considerable interest as an essential player in neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS) and drugs of abuse, including alcohol abuse disorder, where it may facilitate connections between genetic and environmental risk factors or directly influence disease-specific Citation: Basavarajappa, B.S.; Subbanna, S.
    [Show full text]
  • The Emerging Role of Histone Lysine Demethylases in Prostate Cancer
    Crea et al. Molecular Cancer 2012, 11:52 http://www.molecular-cancer.com/content/11/1/52 REVIEW Open Access The emerging role of histone lysine demethylases in prostate cancer Francesco Crea1*, Lei Sun3, Antonello Mai4, Yan Ting Chiang1, William L Farrar3, Romano Danesi2 and Cheryl D Helgason1,5* Abstract Early prostate cancer (PCa) is generally treatable and associated with good prognosis. After a variable time, PCa evolves into a highly metastatic and treatment-refractory disease: castration-resistant PCa (CRPC). Currently, few prognostic factors are available to predict the emergence of CRPC, and no curative option is available. Epigenetic gene regulation has been shown to trigger PCa metastasis and androgen-independence. Most epigenetic studies have focused on DNA and histone methyltransferases. While DNA methylation leads to gene silencing, histone methylation can trigger gene activation or inactivation, depending on the target amino acid residues and the extent of methylation (me1, me2, or me3). Interestingly, some histone modifiers are essential for PCa tumor- initiating cell (TIC) self-renewal. TICs are considered the seeds responsible for metastatic spreading and androgen- independence. Histone Lysine Demethylases (KDMs) are a novel class of epigenetic enzymes which can remove both repressive and activating histone marks. KDMs are currently grouped into 7 major classes, each one targeting a specific methylation site. Since their discovery, KDM expression has been found to be deregulated in several neoplasms. In PCa, KDMs may act as either tumor suppressors or oncogenes, depending on their gene regulatory function. For example, KDM1A and KDM4C are essential for PCa androgen-dependent proliferation, while PHF8 is involved in PCa migration and invasion.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • A Network Inference Approach to Understanding Musculoskeletal
    A NETWORK INFERENCE APPROACH TO UNDERSTANDING MUSCULOSKELETAL DISORDERS by NIL TURAN A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy College of Life and Environmental Sciences School of Biosciences The University of Birmingham June 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Musculoskeletal disorders are among the most important health problem affecting the quality of life and contributing to a high burden on healthcare systems worldwide. Understanding the molecular mechanisms underlying these disorders is crucial for the development of efficient treatments. In this thesis, musculoskeletal disorders including muscle wasting, bone loss and cartilage deformation have been studied using systems biology approaches. Muscle wasting occurring as a systemic effect in COPD patients has been investigated with an integrative network inference approach. This work has lead to a model describing the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. This model has shown for the first time that oxygen dependent changes in the expression of epigenetic modifiers and not chronic inflammation may be causally linked to muscle dysfunction.
    [Show full text]
  • The Histone Demethylase KDM3A Regulates the Transcriptional Program of the Androgen Receptor in Prostate Cancer Cells
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 18), pp: 30328-30343 Research Paper The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells Stephen Wilson1, Lingling Fan2, Natasha Sahgal3, Jianfei Qi2, Fabian V. Filipp1 1Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, Merced, CA, USA 2Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA 3Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom Correspondence to: Fabian V. Filipp, email: [email protected] Keywords: cancer systems biology, epigenomics, ChIP-Seq, oncogene, prostate cancer Received: July 18, 2016 Accepted: September 09, 2016 Published: March 03, 2017 Copyright: Wilson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The lysine demethylase 3A (KDM3A, JMJD1A or JHDM2A) controls transcriptional networks in a variety of biological processes such as spermatogenesis, metabolism, stem cell activity, and tumor progression. We matched transcriptomic and ChIP- Seq profiles to decipher a genome-wide regulatory network of epigenetic control by KDM3A in prostate cancer cells. ChIP-Seq experiments monitoring histone 3 lysine 9 (H3K9) methylation marks show global histone demethylation effects of KDM3A. Combined assessment of histone demethylation events and gene expression changes presented major transcriptional activation suggesting that distinct oncogenic regulators may synergize with the epigenetic patterns by KDM3A.
    [Show full text]
  • The Histone H3K9 Demethylase KDM3A Promotes Anoikis by Transcriptionally Activating Pro-Apoptotic Genes BNIP3 and BNIP3L
    University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2016-07-29 The histone H3K9 demethylase KDM3A promotes anoikis by transcriptionally activating pro-apoptotic genes BNIP3 and BNIP3L Victoria E. Pedanou University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Bioinformatics Commons, Cancer Biology Commons, and the Cell Biology Commons Repository Citation Pedanou VE, Gobeil S, Tabaries S, Simone TM, Zhu LJ, Siegel PM, Green MR. (2016). The histone H3K9 demethylase KDM3A promotes anoikis by transcriptionally activating pro-apoptotic genes BNIP3 and BNIP3L. Open Access Articles. https://doi.org/10.7554/eLife.16844. Retrieved from https://escholarship.umassmed.edu/oapubs/2779 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. 1 2 The histone H3K9 demethylase KDM3A promotes anoikis by transcriptionally activating 3 pro-apoptotic genes BNIP3 and BNIP3L 4 5 6 Victoria E. Pedanou1,2, Stéphane Gobeil3, Sébastien Tabariès4, Tessa M. Simone1,2, Lihua Julie 7 Zhu1,5, Peter M. Siegel4 and Michael R. Green1,2* 8 9 1Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical 10 School, Worcester, United States; 2Howard Hughes Medical Institute, Chevy Chase, United 11 States; 3Department of Molecular Medicine, Université Laval, Quebec City, Canada and Centre 12 de recherche du CHU de Québec, CHUL, Québec PQ, Canada; 4Department of Medicine, 13 Goodman Cancer Research Centre, McGill University, Montreal, Canada; 5Programs in 14 Molecular Medicine and Bioinformatics and Integrative Biology, University of Massachusetts 15 Medical School, Worcester, United States.
    [Show full text]
  • Genetic Investigation in Non-Obstructive Azoospermia: from the X Chromosome to The
    DOTTORATO DI RICERCA IN SCIENZE BIOMEDICHE CICLO XXIX COORDINATORE Prof. Persio dello Sbarba Genetic investigation in non-obstructive azoospermia: from the X chromosome to the whole exome Settore Scientifico Disciplinare MED/13 Dottorando Tutore Dott. Antoni Riera-Escamilla Prof. Csilla Gabriella Krausz _______________________________ _____________________________ (firma) (firma) Coordinatore Prof. Carlo Maria Rotella _______________________________ (firma) Anni 2014/2016 A la meva família Agraïments El resultat d’aquesta tesis és fruit d’un esforç i treball continu però no hauria estat el mateix sense la col·laboració i l’ajuda de molta gent. Segurament em deixaré molta gent a qui donar les gràcies però aquest són els que em venen a la ment ara mateix. En primer lloc voldria agrair a la Dra. Csilla Krausz por haberme acogido con los brazos abiertos desde el primer día que llegué a Florencia, por enseñarme, por su incansable ayuda y por contagiarme de esta pasión por la investigación que nunca se le apaga. Voldria agrair també al Dr. Rafael Oliva per haver fet possible el REPROTRAIN, per haver-me ensenyat moltíssim durant l’època del màster i per acceptar revisar aquesta tesis. Alhora voldria agrair a la Dra. Willy Baarends, thank you for your priceless help and for reviewing this thesis. També voldria donar les gràcies a la Dra. Elisabet Ars per acollir-me al seu laboratori a Barcelona, per ajudar-me sempre que en tot el què li he demanat i fer-me tocar de peus a terra. Ringrazio a tutto il gruppo di Firenze, che dal primo giorno mi sono trovato come a casa.
    [Show full text]
  • Rare Genetic Variants in the Gene Encoding Histone Lysine
    Kato et al. Translational Psychiatry (2020) 10:421 https://doi.org/10.1038/s41398-020-01107-7 Translational Psychiatry ARTICLE Open Access Rare genetic variants in the gene encoding histone lysine demethylase 4C (KDM4C)andtheir contributions to susceptibility to schizophrenia and autism spectrum disorder Hidekazu Kato 1,ItaruKushima 1,2,DaisukeMori 1,3,AkiraYoshimi4, Branko Aleksic 1, Yoshihiro Nawa 1, Miho Toyama1, Sho Furuta1, Yanjie Yu1, Kanako Ishizuka 1, Hiroki Kimura1,YukoArioka 1,5, Keita Tsujimura 1,6, Mako Morikawa1, Takashi Okada1,ToshiyaInada1, Masahiro Nakatochi 7, Keiko Shinjo8, Yutaka Kondo 8, Kozo Kaibuchi9, Yasuko Funabiki10,RyoKimura11,ToshimitsuSuzuki 12,13, Kazuhiro Yamakawa12,13, Masashi Ikeda 14, Nakao Iwata 14, Tsutomu Takahashi15,16,MichioSuzuki15,16,YukoOkahisa17, Manabu Takaki 17,JunEgawa18, Toshiyuki Someya18 and Norio Ozaki 1 Abstract Dysregulation of epigenetic processes involving histone methylation induces neurodevelopmental impairments and has been implicated in schizophrenia (SCZ) and autism spectrum disorder (ASD). Variants in the gene encoding lysine demethylase 4C (KDM4C) have been suggested to confer a risk for such disorders. However, rare genetic variants in KDM4C have not been fully evaluated, and the functional impact of the variants has not been studied using patient- derived cells. In this study, we conducted copy number variant (CNV) analysis in a Japanese sample set (2605 SCZ and 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; 1141 ASD cases, and 2310 controls). We found evidence for significant associations between CNVs in KDM4C and SCZ (p = 0.003) and ASD (p = 0.04). We also observed a significant association between deletions in KDM4C and SCZ (corrected p = 0.04). Next, to explore the contribution of single nucleotide variants in KDM4C, we sequenced the coding exons in a second sample set (370 SCZ and 192 ASD cases) and detected 18 rare missense variants, including p.D160N within the JmjC domain of KDM4C.
    [Show full text]