Anti-Cryptococcal Signaling in NK Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Organismic Interactions
Poster Category 4: Organismic Interactions PR4.1 Co‐cultivations of fungi: microscopic analysis and influence on protein production Isabelle Benoit[1,2] Arman Vinck[1] Jerre van Veluw[1] Han A.B. Wösten[1] Ronald P. de Vries[2] 1Utrecht University 2CBS‐KNAW During their natural life cycle most fungi encounter other microorganisms and live in mixed communities with complex interactions, such as symbiosis or competition. Industrial fermentations, on purpose or by accident, can also result in mixed cultures. Fungal co‐cultivations have been previously described for the production of specific enzymes, however, little is known about the interactions between two species that are grown together. A. niger and A. oryzae are two of the most important industrial fungi worldwide and both have a long history of strain improvement to optimize enzyme and metabolite production. Co‐cultivation of these two Aspergilli with each other and with the ascomycete phytopathogen Magnaporthe grisea, and the basidiomycete white rot fungus Phanerochaete chrysosporium, has recently been described by our group (Hu et al, 2010). Total secreted protein, enzymatic activities related to plant biomass degradation and growth phenotype were analyzed from cultures on wheat bran demonstrating positive effects of the co‐cultivation compared to the individual cultivations. In a follow‐up study the morphology and mechanism of the interaction is addressed using microscopy and proteomics. Data from this study will be presented. Reference Hu et al. International Biodeterioration & Biodegradation 65 (2011) PR4.2 A novel effector secreted by the anthracnose pathogen Colletotrichum truncatum is required for the transition from biotrophy to necrotrophy in fungal pathogens Vijai Bhadauria[1] Sabine Banniza[1] Vandenberg Albert[1] Selvaraj Gopalan[2] Wei Yangdou[3] 1. -
Ogundeji Adepemi Msc Thesis
The epidemiology and antifungal sensitivity of clinical Cryptococcus neoformans and Cryptococcus gattii isolates from Bloemfontein, South Africa Ogundeji, Adepemi Olawunmi Submitted in accordance with the requirements for the degree Magister Scientiae in the Department of Microbial, Biochemical and Food Biotechnology Faculty of Natural and Agricultural Sciences University of the Free State Bloemfontein South Africa Supervisor: Dr. O.M. Sebolai Co-supervisors: Prof. C.H. Pohl, Prof. J.L.F. Kock and Prof. J. Albertyn June 2013 i ACKNOWLEDGEMENTS I wish to thank the following people, who; in some way contributed to the successful completion of this dissertation. In addition, everyone else in-between, whom because of space limitation, I may have omitted. To all of you, I’m eternally grateful. Professional acknowledgements: Dr. O.M. Sebolai, for accepting me into his group, for his excellent supervision and mentorship and interest in my overall development. Thank you for teaching me how to be a critical researcher. It is much appreciated. Prof. C.H. Pohl, for her friendship and support. Special thanks for all the thought- provoking discussions. I have learned a lot from you. Prof. J.L.F. Kock, for his invaluable comments and immense passion for research, which is truly inspiring. Prof. J. Albertyn, for his encouragement and support and for sharing his immense molecular studies knowledge. Prof. M.S. Smit, thank you for allowing me to use your facilities. Mr. S. Collett, for preparation of figures. Mrs. A. van Wyk, for her friendship and motherly love. Thank you for also organising all the wonderful retreats. ii My fellow students in laboratories 28 and 49, for making the laboratory a convivial place to work. -
Unusual Non-Saccharomyces Yeasts Isolated from Unripened Grapes Without Antifungal Treatments
fermentation Article Unusual Non-Saccharomyces Yeasts Isolated from Unripened Grapes without Antifungal Treatments José Juan Mateo, Patricia Garcerà and Sergi Maicas * Departament de Microbiologia i Ecologia, Universitat de València, 46100 Burjassot, Spain; [email protected] (J.J.M.); [email protected] (P.G.) * Correspondence: [email protected]; Tel.: +34-96-354-3214 Received: 25 March 2020; Accepted: 19 April 2020; Published: 21 April 2020 Abstract: There a lot of studies including the use of non-Saccharomyces yeasts in the process of wine fermentation. The attention is focused on the first steps of fermentation. However, the processes and changes that the non-Saccharomyces yeast populations may have suffered during the different stages of grape berry ripening, caused by several environmental factors, including antifungal treatments, have not been considered in depth. In our study, we have monitored the population dynamics of non-Saccharomyces yeasts during the ripening process, both with biochemical identification systems (API 20C AUX and API ID 32C), molecular techniques (RFLP-PCR) and enzymatic analyses. Some unusual non-Saccharomyces yeasts have been identified (Metschnikowia pulcherrima, Aureobasidium pullulans, Cryptococcus sp. and Rhodotorula mucilaginosa). These yeasts could be affected by antifungal treatments used in wineries, and this fact could explain the novelty involved in their isolation and identification. These yeasts can be a novel source for novel biotechnological uses to be explored in future work. Keywords: yeast; non-Saccharomyces; grape berry; population dynamics; ripening; wine 1. Introduction Grape berries microbiota refers to all species of filamentous fungus, yeast and bacteria that have been found in grape berries, in vineyard soil or in wine. -
Fetal Bovine Serum-Triggered Titan Cell Formation and Growth Inhibition Are Unique
bioRxiv preprint doi: https://doi.org/10.1101/435842; this version posted October 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dylag, Colon-Reyes, and Kozubowski 1 2 3 4 Fetal bovine serum-triggered Titan cell formation and growth inhibition are unique 5 to the Cryptococcus species complex 6 7 Mariusz Dylaga,b, Rodney Colon-Reyesa, and Lukasz Kozubowskia* 8 aDepartment of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, US, 9 bInstitute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland 10 11 Address for correspondence to 12 Lukasz Kozubowski, [email protected] 13 14 15 16 17 1 bioRxiv preprint doi: https://doi.org/10.1101/435842; this version posted October 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dylag, Colon-Reyes, and Kozubowski 18 ABSTRACT 19 In the genus Cryptococcus, C. neoformans and C. gattii stand out by the number of virulence 20 factors that allowed those fungi to achieve evolutionary success as pathogens. Among the factors 21 contributing to cryptococcosis is a peculiar morphological transition to form giant (Titan) cells. 22 Formation of Titans has been described in vitro. However, it remains unclear whether non-C. 23 neoformans/non-C. gattii species are capable of titanisation. Based on a survey of several 24 basidiomycetous yeasts, we propose that titanisation is unique to C. neoformans and C. gattii. In 25 addition, we find that under in vitro conditions that induce titanisation, fetal bovine serum (FBS) 26 possesses activity that inhibits growth of C. -
Genetic and Biochemical Characterization of Yeasts Isolated from Antarctic Soil Samples
DOI 10.1007/s00300-017-2102-7 Genetic and biochemical characterization of yeasts isolated from Antarctic soil samples Aneta M. Białkowska1 · Katarzyna M. Szulczewska1 · Joanna Krysiak1 · Tomasz Florczak1 · Ewa Gromek1 · Hassan Kassassir3 · Józef Kur2 · Marianna Turkiewicz1 Abstract The Polish Arctowski Station is situated in the karyotypes were investigated in C. gilvescens (pro tem maritime Antarctic on the western shore of Admiralty Bay G. gilvescens), Cryptococcus saitoi (pro tem Naganishia and encompasses terrestrial habitats which are not perma- globosa), Cryptococcus gastricus (pro tem Goffeauzyma nently covered by ice, in contrast to more than 90% of the gastrica), and Cryptococcus albidus (pro tem Naganishia island’s surface area. Over the past several decades, stud- albida). In addition, plate tests showed Antarctic yeasts ies exploring the soils of those habitats have revealed a to be a potential source of biotechnologically important considerable diversity of bacteria, filamentous fungi, and, enzymes. This study in biodiversity, presenting physiologi- to a lesser extent, yeasts; however, characterization of this cal and molecular characterization of psychrotolerant yeast complex microbiome, especially at the molecular level, strains isolated from the soils of western Admiralty Bay, is still far from satisfactory. The isolates were assigned to contributes to a better understanding of the microbial ecol- their respective genera and species based on genetic analy- ogy of this unique ecosystem. sis of the D1/D2 and ITS1-5.8S-ITS2 regions of rDNA. In the studied soil samples, the most abundant microorgan- Keywords Antarctic yeasts · Enzymatic potential · isms belonged to the genera Cryptococcus, Rhodotorula, Genome size · Ploidy · King George Island and Debaryomyces. Physiological and biochemical analy- sis of Cryptococcus gilvescens (pro tempore Goffeauzyma gilvescens) and Rhodotorula mucilaginosa showed only a Introduction limited level of intraspecies diversity. -
Towards an Integrated Phylogenetic Classification of the Tremellomycetes
http://www.diva-portal.org This is the published version of a paper published in Studies in mycology. Citation for the original published paper (version of record): Liu, X., Wang, Q., Göker, M., Groenewald, M., Kachalkin, A. et al. (2016) Towards an integrated phylogenetic classification of the Tremellomycetes. Studies in mycology, 81: 85 http://dx.doi.org/10.1016/j.simyco.2015.12.001 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-1703 available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 81: 85–147. Towards an integrated phylogenetic classification of the Tremellomycetes X.-Z. Liu1,2, Q.-M. Wang1,2, M. Göker3, M. Groenewald2, A.V. Kachalkin4, H.T. Lumbsch5, A.M. Millanes6, M. Wedin7, A.M. Yurkov3, T. Boekhout1,2,8*, and F.-Y. Bai1,2* 1State Key Laboratory for Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; 2CBS Fungal Biodiversity Centre (CBS-KNAW), Uppsalalaan 8, Utrecht, The Netherlands; 3Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig 38124, Germany; 4Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia; 5Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA; 6Departamento de Biología y Geología, Física y Química Inorganica, Universidad Rey Juan Carlos, E-28933 Mostoles, Spain; 7Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden; 8Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China *Correspondence: F.-Y. -
Addis Ababa University School of Graduate Studies
ADDIS ABABA UNIVERSITY SCHOOL OF GRADUATE STUDIES DEPARTMENT OF MICROBIAL, CELLULAR AND MOLECULAR BIOLOGY ISOLATION OF OLEAGINOUS YEASTS AND OPTIMIZATION OF SINGLE CELL OIL FOR BIODIESEL PRODUCTION BY TAMENE MILKESSA JIRU SUPERVISOR DAWIT ABATE (PHD) MAY, 2017 ADDIS ABABA ADDIS ABABA UNIVERSITY SCHOOL OF GRADUATE STUDIES ISOLATION OF OLEAGINOUS YEASTS AND OPTIMIZATION OF SINGLE CELL OIL FOR BIODIESEL PRODUCTION By Tamene Milkessa Jiru A Thesis submitted to School of Graduate Studies of the Addis Ababa University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (PhD) in Biology (Applied Microbiology) Approved by Examining Board Name Signature Dr. Gurja Belay Chairperson ------------------------------- Dr. Dawit Abate Advisor --------------------------------- Prof. James Chukwuma External Examiner -------------------------------- Dr. Amare Gessesse Internal Examiner -------------------------------- Abstract Oleaginous yeasts are known to produce oil with high potential as source of biodiesel. In this study, 340 yeast colonies were isolated from 200 samples that were collected from natural sources in Ethiopia. All the yeast isolates were screened using Sudan III staining for oil production. Among these, 18 were selected as possible oleaginous yeasts. Identification of the 18 isolates was done using morphological and physiological methods as well as sequencing of the internal transcribed spacer regions (ITS; ITS 1, ITS 2 and the intervening 5.8S rRNA gene), and the D1/D2 domain of the 26S rRNA gene. Molecular phylogenetic analyses indicate that isolates PY39, SY89 and SY94 are species of Cryptococcus curvatus, Rhodosporidium kratochvilovae and Rhodotorula dairenensis, respectively, while the rest (SY09, SY18, SY20, PY21, PY23, PY25, SY30, PY32, SY43, PY44, SY52, PY55, PY61, SY75, and PY86) were identified as Rhodotorula mucilaginosa. -
Cryptococcus Randhawai Sp. Nov., a Novel Anamorphic Basidiomycetous Yeast Isolated from Tree Trunk Hollow of Ficus Religiosa (Peepal Tree) from New Delhi, India
Antonie van Leeuwenhoek (2010) 97:253–259 DOI 10.1007/s10482-009-9406-8 ORIGINAL PAPER Cryptococcus randhawai sp. nov., a novel anamorphic basidiomycetous yeast isolated from tree trunk hollow of Ficus religiosa (peepal tree) from New Delhi, India Zia U. Khan • Suhail Ahmad • Ferry Hagen • Jack W. Fell • Tusharantak Kowshik • Rachel Chandy • Teun Boekhout Received: 16 September 2009 / Accepted: 8 December 2009 / Published online: 20 December 2009 Ó Springer Science+Business Media B.V. 2009 Abstract A novel anamorphic Cryptococcus spe- ethylamine. With respect to C. friedmannii, it differed cies is described, which was isolated in New Delhi in growth temperature, ability to assimilate lactose, (India) from decaying wood of a tree trunk hollow of raffinose, L-rhamnose, myo-inositol, and inability to Ficus religiosa. On the basis of sequence analysis of utilize citrate. Furthermore, our isolate also differed the D1/D2 domains of the 26S rRNA gene and the from C. cerealis in growth temperature, presence of internally transcribed spacer (ITS)-1 and ITS-2 capsule and inability to assimilate L-sorbose. In view region sequences, the isolate belonged to the Cryp- of the above phenotypic differences and unique tococcus albidus cluster (Filobasidiales, Tremello- rDNA sequences, we consider that our isolate repre- mycetes) and was closely related to Cryptococcus sents a new species of Cryptococcus, and therefore, a saitoi, Cryptococcus cerealis and Cryptococcus new species, Cryptococcus randhawai is proposed for friedmannii with 98% sequence identity. Phenotypi- this taxon. The type strain J11/2002 has been cally, the species differed from C. saitoi with respect deposited in the culture collection of the Centraalbu- to growth temperature (up to 37oC), presence of a reau voor Schimmelcultures (CBS10160) and CABI thin capsule, ability to grow in the absence of Biosciences (IMI 393306). -
12 Tremellomycetes and Related Groups
12 Tremellomycetes and Related Groups 1 1 2 1 MICHAEL WEIß ,ROBERT BAUER ,JOSE´ PAULO SAMPAIO ,FRANZ OBERWINKLER CONTENTS I. Introduction I. Introduction ................................ 00 A. Historical Concepts. ................. 00 Tremellomycetes is a fungal group full of con- B. Modern View . ........................... 00 II. Morphology and Anatomy ................. 00 trasts. It includes jelly fungi with conspicuous A. Basidiocarps . ........................... 00 macroscopic basidiomes, such as some species B. Micromorphology . ................. 00 of Tremella, as well as macroscopically invisible C. Ultrastructure. ........................... 00 inhabitants of other fungal fruiting bodies and III. Life Cycles................................... 00 a plethora of species known so far only as A. Dimorphism . ........................... 00 B. Deviance from Dimorphism . ....... 00 asexual yeasts. Tremellomycetes may be benefi- IV. Ecology ...................................... 00 cial to humans, as exemplified by the produc- A. Mycoparasitism. ................. 00 tion of edible Tremella fruiting bodies whose B. Tremellomycetous Yeasts . ....... 00 production increased in China alone from 100 C. Animal and Human Pathogens . ....... 00 MT in 1998 to more than 250,000 MT in 2007 V. Biotechnological Applications ............. 00 VI. Phylogenetic Relationships ................ 00 (Chang and Wasser 2012), or extremely harm- VII. Taxonomy................................... 00 ful, such as the systemic human pathogen Cryp- A. Taxonomy in Flow -
Antarctic Cryptoendolithic Fungal Communities Are Highly Adapted and Dominated by Lecanoromycetes and Dothideomycetes
UC Riverside UC Riverside Previously Published Works Title Antarctic Cryptoendolithic Fungal Communities Are Highly Adapted and Dominated by Lecanoromycetes and Dothideomycetes. Permalink https://escholarship.org/uc/item/6mz7d3wf Authors Coleine, Claudia Stajich, Jason E Zucconi, Laura et al. Publication Date 2018 DOI 10.3389/fmicb.2018.01392 License https://creativecommons.org/licenses/by-nc-sa/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California fmicb-09-01392 June 28, 2018 Time: 15:50 # 1 ORIGINAL RESEARCH published: 29 June 2018 doi: 10.3389/fmicb.2018.01392 Antarctic Cryptoendolithic Fungal Communities Are Highly Adapted and Dominated by Lecanoromycetes and Dothideomycetes Claudia Coleine1,2, Jason E. Stajich2*, Laura Zucconi1, Silvano Onofri1, Nuttapon Pombubpa2, Eleonora Egidi3, Ashley Franks4,5, Pietro Buzzini6 and Laura Selbmann1,7 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy, 2 Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States, 3 Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia, 4 Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia, 5 Centre for Future Landscapes, La Trobe University, Melbourne, VIC, Australia, 6 Department of Agricultural, Food and Environmental Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Perugia, -
DNA Barcoding Analysis of More Than 1000 Marine Yeast Isolates Reveals Previously Unrecorded Species
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.29.273490; this version posted August 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. DNA barcoding analysis of more than 1000 marine yeast isolates reveals previously unrecorded species Chinnamani PrasannaKumar*1,2, Shanmugam Velmurugan2,3, Kumaran Subramanian4, S. R. Pugazhvendan5, D. Senthil Nagaraj3, K. Feroz Khan2,6, Balamurugan Sadiappan1,2, Seerangan Manokaran7, Kaveripakam Raman Hemalatha8 1Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa-403004, India 2Centre of Advance studies in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu- 608502, India 3Madawalabu University, Bale, Robe, Ethiopia 4Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Tamil Nadu-600119, India. 5Department of Zoology, Arignar Anna Government Arts College, Cheyyar, Tamil Nadu- 604407, India 6Research Department of Microbiology, Sadakathullah Appa College, Rahmath Nagar, Tirunelveli Tamil Nadu -627 011 7Center for Environment & Water, King Fahd University of Petroleum and Minerals, Dhahran-31261, Saudi Arabia 8Department of Microbiology, Annamalai university, Annamalai Nagar, Chidambaram, Tamil Nadu- 608 002, India Corresponding author email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.29.273490; this version posted August 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. -
Draft Genome Analysis of Trichosporonales Species That Contribute to the Taxonomy of the Genus Trichosporon and Related Taxa
Med. Mycol. J. Vol.Med. 60, Mycol.51-57, 2019 J. Vol. 60 (No. 2) , 2019 51 ISSN 2185-6486 Review Draft Genome Analysis of Trichosporonales Species That Contribute to the Taxonomy of the Genus Trichosporon and Related Taxa Masako Takashima1 and Takashi Sugita2 1 Japan Collection of Microorganisms, RIKEN BioResource Research Center 2 Department of Microbiology, Meiji Pharmaceutical University ABSTRACT Many nomenclatural changes, including proposals of new taxa, have been carried out in fungi to adapt to the “One fungus = One name” (1F = 1N) principle. In yeasts, while some changes have been made in response to 1F = 1N, most have resulted from two other factors: i) an improved understanding of biological diversity due to an increase in number of known species, and ii) progress in the methods for analyzing and evaluating biological diversity. The method for constructing a backbone tree, which is a basal tree used to infer phylogeny, has also progressed from single-gene trees to multi-locus trees and further, to genome trees. This paper describes recent advances related to the contribution of genomic data to taxonomy, using the order Trichosporonales as an example. Key words : backbone tree, classification, identification, Trichosporon, Trichosporonales (formerly Trichosporon vanderwaltii)andHaglerozyma Introduction (formerly Trichosporon chiarellii). Cryptococcus curvatus and C. humicola were transferred to Cutaneotrichosporon and In The Yeasts, A Taxonomic Study, 5 th ed., which was Vanrija, respectively. According to the classification proposed published in 2011, the genus Trichosporon (Trichosporonales, by Lui et al. (2015), species formerly identified as Basidiomycota) included 37 species1). Some species of the Trichosporon belonged to one family, the Trichosporonaceae.