Ecological Status of Medicinal Plants of Chalsa Forest Range Under

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Status of Medicinal Plants of Chalsa Forest Range Under International Journal of Herbal Medicine 2017; 5(5): 196-215 E-ISSN: 2321-2187 P-ISSN: 2394-0514 IJHM 2017; 5(5): 196-215 Ecological status of medicinal plants of Chalsa forest Received: 17-07-2017 Accepted: 18-08-2017 range under Jalpaiguri division, West Bengal, India Anup Kumar Sarkar Assistant Professor, Department Anup Kumar Sarkar, Manas Dey and Mallika Mazumder of Botany, Dukhulal Nibran Chandra College, Aurangabad, Murshidabad, West Bengal, Abstract India The use of Traditional plant in the treatment of disease has shown a good interest in the last few decades. Different types of human communities traditionally use such medicinal plants. As the forest regions are Manas Dey rich in medicinal plants, people collect such plants from forest vigourously. Excess harvest of such plants Assistant Teacher, Jurapani or their propagule may results the extinction of the species from the forest, which may led to the change High School, Dhupguri, in entire forest vegetation. Considering this view point in mind, a phytosociological survey has been Jalpaiguri, West Bengal, India. carried out on naturally occurring medicinal plants of the Chalsa Forest Range. The present paper throws light on the description and uses of certain species of medicinally important plants along with their Mallika Mazumder ecological status in this forest. Post Graduate Student, Department of Botany, Raiganj University, Uttar Dinajpur, Keywords: Medicinal plants, Traditional knowledge, Phytosociology, Community Index, Threatened, West Bengal, India Conservation 1. Introduction Chalsa Forest Range, a Himalayan foot hill forest range, represents one of the unique biodiversity region of world which is under little but continual disturbance by biological and anthropogenic factors. It is situated in Malbazar Subdivision of district Jalpaiguri, West Bengal, India. Vegetation of the forest is unique in the Nature. The forest is characterized by dense vegetation and a rich wild life. The forest range is very close to the river Jaldhaka. In addition Mithi river, Raidak river and Diana river are also very close to the forest range. Jaldhaka basin in the Chalsa region created some excellent habitats which have rich biodiversity that contains diverse assemblage of herbs, shrubs, trees, animals and microbes. The range is 535 ft from sea level. The soil is fertile in nature and strongly acidic. The o o o o temperature of this area varies from 20 C to 32 C during summer and from 8 C to 22 C during winter. Most of the area of this forest range is wet annual and humid. The forest is more or less homogenous in composition with admixed type of tree species. The forest is famous for some timber vegetation like Shorea robusta Gaertn., Lagerstromia speciosa Pers., Terminalia belerica Roxb., Chuckrasia tabularis A. Juss., Terminalia tomentosa Roth., Sterculia villosa [1] Roxb., Persea fructifera Kosterm., Beilschmiedia roxburghiana Nees., etc. However there is no reliable study on different types of non-timber plants, their habitat, ecology and phytosociology. The forest range is also a house of endemic and exotic medicinal plants. The plants having various proprieties, which are useful in our day to day life. Some are used as medicine, while some are consumed as edible nutritious vegetables or fruits. Different tribal communities belonging to the villages adjacent to such forest are dependent upon the forest resources for their day to day livelihood practice. Many of the traditional healers, Kabiraj, Bez, also collect the medicinal plants for treatment of various diseases. In the process they collect the roots, rhizomes, bulbs, flowers, bark, fruits and other medicinally important parts of the plants for extracting drugs and unused parts of the plants were left in the forest. In this way, sometimes they destroy the important medicinal plants. Present paper deals with the occurrence of valuable medicinal herbaceous and shrubby plants in the study area and their ecological and phytosociological aspects. Many of the plant species were used by people for medicinal purposeS which was documented [2] in anient literature including Charak Samhita and Sushruta Samhita . It can be stated that existence of human on planet earth depends on diverse species of plants for its medicinal and Correspondence other beneficial properties. The world health organization estimates that about 80% of the Anup Kumar Sarkar population of most developing countries relies on herbal medicines for their primary Assistant Professor, Department healthcare need. About 80% of human population in India is using herbal medicine to care of Botany, Dukhulal Nibran [3] Chandra College, Aurangabad, different kind of diseases .Different types of plants are used to cure different types of Murshidabad, West Bengal, disease. Some herbal alternatives assist prevention of the secondary complications of the India disease. ~ 196 ~ International Journal of Herbal Medicine Since medicinal plants and its derivatives continue to play a animal communities. However a little cares was taken only major role in the in medical therapy, it is of utmost for traditionally used medicinal plants. Thus, this study aims importance to conserve these resources for the sake of at assessing the species composition, diversity, mankind and future generations. For this regular ecological Phytosociological and Ecological characteristics of herbs and monitoring of such plants in any vegetation including forest shrub communities. patches is obligatory. Phytosociological evaluation of the medicinal plant species is 2. Materials and Methods very important aspect in the field of forestry as well as in 2.1 Description of Study Site other scientific studies like conservation, management and The present study has been carried out in four beat forests of bioprospecting of phytoresources. Information on changes in Chalsa Forest Range of Jalpaiguri Forest Division, West the herb and shrub layer of any forest ecosystem or natural Bengal, India, The forest beats are named as Panjhora Beat, ecosystem may be useful to assess present-day issues of Nagrakata Beat, Sipchu Beat and Kharia Bandor Beat. management relating to sustainability and biodiversity in Vegetation of the forest is unique in the world as most of its forestry and nature conservation[4].In present days the lack of plants are evergreen and semi-evergreen. It consists of lots of proper ecological knowledge can seriously hinder the floristically diverse plants, of which some of them are rare, conservation and sustainable use of non-timber plant species, endangered and threatened. The flora shows much more especially in the face of anthropogenic threats including diversity with the change in topography. The vegetation overexploitation[5].Herbs and shrubs are associated with a varies considerably with the change in altitude, soil, humidity, wide variety of organisms, and are increasingly recognized to rainfall and presence of water passages called Jhora. The play an important role in controlling food chain and topography ranges between riverine to slightly hilly. ecological stability. Such plants provide food and shelter to to Fig 1: Map of the Forest Beats of Chalsa Forest range. ~ 197 ~ International Journal of Herbal Medicine Table 1: Topographical and Climatic characteristics Organic Organic Available Total Available Available Name of the Forest beat Area(Ha) Type of Soil pH C (%) Matter (%) N (%) N (%) P205 (ppm) K20 (ppm) Panjhora Beat 2255.92 Dry 4.90 1.057 2.709 0.040 0.130 36.73 26 Nagrakata Beat 2148.85 Dry 4.75 1.715 2.955 0.043 0.145 57.39 55 Sipchu Beat 1757.58 Wet 5.12 1.571 2.906 0.035 0.135 53.35 50 Kharia Bandor 387.26 Wet 5.35 0.378 0.240 0.021 0.091 18.36 51 2.2 Field Investigation and Data Collection dominance is the height value of a species with respect to the The composition of standing shrub and herb vegetation data sum of coverage of the rest of the species in the area. of Chalsa forest range was investigated in between the January 2015 and February 2017.A total of 64 quadrates 16 in each of four forest beats were selected which were laid at 100 m interval along 1000 m long line transects having quadrate size of 20m x 20m (400 m2) following Esmailzadeh et al. We further systematically placed five 2m×2m shrub quadrates (f) Abundance: It is the study of the number of individuals of (one at the centre and the other four at the corners) to different species in the community per unit area. By quadrates investigate shrubs, and five 1m×1m herb quadrates were fixed method, samplings are made at random at several places and to the upper left corner of each shrub quadrate to investigate the number of individuals of each species was summed up for herbs in each plot. Overall 64 plots, including, 320 shrub all the quadrates divided by the total number of quadrates in quadrates and 320 herb quadrates from natural forest sites. which the species occurred. It is represented by the equation: Plant species found within each sampling plot were photographed and identified by their vernacular and scientific names using various book and internet. Knowledgeable persons of communities and traditional herbal healers were contacted and information was collected through interviews, (g) Importance Value Index: This index is used to determine observations and discussions held during field survey through the overall importance of each species in the community well prepared questionnaires. In order to analyze the diversity structure. In calculating this index, the percentage values of of vegetation Frequency, Relative frequency, density and the relative frequency, relative density and relative dominance Relative density were calculated. Importance Value Index was (Relative Height/Length) are summed up together and this calculated by adding Relative frequency Relative density and value is designated as the Importance Value Index or IVI of Relative Height [6-9]. the species. IVI= Relative Frequency + Relative Density + Relative (a) Frequency (%): This term refers to the degree of Height/Length dispersion of individual species in an area and usually expressed in terms of percentage.
Recommended publications
  • An Annotated Checklist of the Angiospermic Flora of Rajkandi Reserve Forest of Moulvibazar, Bangladesh
    Bangladesh J. Plant Taxon. 25(2): 187-207, 2018 (December) © 2018 Bangladesh Association of Plant Taxonomists AN ANNOTATED CHECKLIST OF THE ANGIOSPERMIC FLORA OF RAJKANDI RESERVE FOREST OF MOULVIBAZAR, BANGLADESH 1 2 A.K.M. KAMRUL HAQUE , SALEH AHAMMAD KHAN, SARDER NASIR UDDIN AND SHAYLA SHARMIN SHETU Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh Keywords: Checklist; Angiosperms; Rajkandi Reserve Forest; Moulvibazar. Abstract This study was carried out to provide the baseline data on the composition and distribution of the angiosperms and to assess their current status in Rajkandi Reserve Forest of Moulvibazar, Bangladesh. The study reports a total of 549 angiosperm species belonging to 123 families, 98 (79.67%) of which consisting of 418 species under 316 genera belong to Magnoliopsida (dicotyledons), and the remaining 25 (20.33%) comprising 132 species of 96 genera to Liliopsida (monocotyledons). Rubiaceae with 30 species is recognized as the largest family in Magnoliopsida followed by Euphorbiaceae with 24 and Fabaceae with 22 species; whereas, in Lilliopsida Poaceae with 32 species is found to be the largest family followed by Cyperaceae and Araceae with 17 and 15 species, respectively. Ficus is found to be the largest genus with 12 species followed by Ipomoea, Cyperus and Dioscorea with five species each. Rajkandi Reserve Forest is dominated by the herbs (284 species) followed by trees (130 species), shrubs (125 species), and lianas (10 species). Woodlands are found to be the most common habitat of angiosperms. A total of 387 species growing in this area are found to be economically useful. 25 species listed in Red Data Book of Bangladesh under different threatened categories are found under Lower Risk (LR) category in this study area.
    [Show full text]
  • Medicinal Properties of Arabica Coffee (Coffea Arabica) Oil: an Date Published Online: 25/11/2020; Overview
    www.als-journal.com/ ISSN 2310-5380/ November 2020 Review Article Advancements in Life Sciences – International Quarterly Journal of Biological Sciences ARTICLE INFO Open Access Date Received: 08/07/2020; Date Revised: 15/09/2020; Medicinal Properties of Arabica coffee (Coffea arabica) Oil: An Date Published Online: 25/11/2020; Overview Authors’ Affiliations: 1. Department Khalid M. AL-Asmari1*, Isam M. Abu Zeid1,2#, Atef M. Al-Attar1,2# of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box Abstract 8023 Jeddah - Saudi Arabia offee is one of the massive tropical crops in developing countries and historically understudied in subjects 2. Princess Dr. Najla of crop nutrition and administration. Arabian coffee (Coffea arabica) plant belongs to the genus Coffea in Bint Saud Al-Saud Center for Excellence C the Rubiaceae family. It is known as the most widely recognized Coffea species created comprehensively Research in summing up to over 75% of the all-out Coffea creation. Its compounds are a complex mixture of different Biotechnology, King chemicals that have many health benefits. The usage of various parts of a coffee plant, along with its oil is Abdulaziz University, Jeddah - Saudi Arabia verified for the manufacturing of ancient medicines that helped in curing a number of ailments. These traditional # These authors uses were scientifically proven by many studies including psychoactive responses, neurological and metabolic contributed equally to this work disorders. Coffee oil consists mainly of triglycerol and fatty acids along with antioxidants. It also possesses some biologically active fatty acids that are anti-cancerous, anti-inflammatory, anti-bacterial, anti-diabetic and anti- *Corresponding Author: atherosclerotic in nature.
    [Show full text]
  • In Silico Analysis of Phytochemicals from Coffea Arabica Against
    In Silico Analysis of Phytochemicals From Coffea arabica Against Haemophilus influenzae Causing Conjunctivitis ABSTRACT: Phytochemicals are secondary metabolites obtained from plants through various metabolic pathways . It has been reported that Coffea arabica plant extract is used to cure conjunctivitis. The plant extract contains different phytochemicals. Conjunctivitis is caused by Haemophilus influenzae. One of the key enzymes involved in its biochemical pathway is shikimate dehydrogenase. The molecular docking of the phytochemicals with the enzyme was studied using Biovia Discovery Studio. The strength of the interaction was evaluated based on -CDocker energy and -CDocker interaction energy. High positive values for both the parameters indicated that out of different phytochemicals ,caffeine and cholorogenic acid can effectively deactivate the shikimate dehydrogenase enzyme thereby interrupting the life cycle of Haemophilus influenza. KEY WORDS: Phytochemical, Biovia, Discovery studio, Coffea arabica,Haemophilus influenzae. 1. INTRODUCTION: The faster and developed life styles affects the health of an individual. Now a day’s lifestyles are an important factor for health. According to WHO 60% health factor directly related with way of living [1]. Millions of people follow unhealthy lifestyle like unhealthy diet, smoking, alcohol consuming, drug abuse, stress and so on. Hence, they are encountered with illness, disability and problems like joint pain, cardiovascular disease, hypertension, overweight, skin lesions, low vision and low hearing problems in early age. A little change in way of living can prevent these diseases from annexing our society [2]. Vagbhatta's Astangahrdayam gives information about how plants are used for curing disease [3].Medicinal plants are the major constituents of indigenous natural medicine, modern medicine, food supplements, bioactive principles, pharmaceutical intermediates and synthetic drugs [4].Medicinal plants are used for the preparation of drugs from Sumerian clay slab from Nagpur approximately 5000 years old.
    [Show full text]
  • A Sketch on the Vegetation and Its Components of Mahananda Wildlife Sanctuary, Darjeeling District, West Bengal, India
    Pleione 8(2): 320 - 330. 2014. ISSN: 0973-9467 © East Himalayan Society for Spermatophyte Taxonomy A sketch on the vegetation and its components of Mahananda Wildlife Sanctuary, Darjeeling District, West Bengal, India T. K. Paul1 and Anant Kumar Central National Herbarium, Botanical Survey of India, Howrah-711 103, West Bengal, India 1Corresponding author: E-mail: [email protected] [Received 11.10.2014; Revised 14.12.2014; Accepted 16.12.2014; Published 31.12.2014] Abstract The present paper deals on the vegetation and its components of Mahananda Wildlife Sanctuary in Darjeeling district of West Bengal. Key words: Mahananda wildlife Sanctuary, vegetation, floristic components. INTRODUCTION India, with an area of 32, 87, 263 km2 has more than 6, 92, 027 km2 under forest cover (India State of Forest Report 2011). The country is one of the twelve identified centers of origin of number of taxa which represent a wide array of Biodiversity. It is also a megadiversity country covering four Global Biodiversity Hotspots (Himalaya, Indo-Burma, Western Ghats & Sri Lanka and Sundaland) and several gene centers (Sen Sarkar & Roy 2012; Conservation International 2014). There are approximately 4.90 % of the total geographical area has been put under a program of conservation. As on November, 2014 there are 103 National Parks, 525 Wildlife Sanctuaries, 60 Conservation Reserves and 4 Community Reserves covering an area of 158645.05 km2 of the total geographical area of India (www. wiienvis.nic.in). Wildlife Sanctuaries are the natural protected areas and the main objectives of establishing sanctuaries are to provide in-situ conservation, which would help the biota to support all its life supporting system in a holistic manner.
    [Show full text]
  • Global Conservation Strategy for Coffee Genetic Resources
    2017 GLOBAL CONSERVATION STRATEGY FOR COFFEE GENETIC RESOURCES Paula Bramel Sarada Krishnan Daniela Horna Brian Lainoff Christophe Montagnon ™ TABLE OF EXECUTIVE SUMMARY .................. 5 CONTENTS INTRODUCTION ...................... 8 STATUS OF THE MAJOR EX SITU ........... 20 COFFEE COLLECTIONS VISITS TO COFFEE EX SITU AND IN SITU SITES ... 26 FOFIFA Kianjavato Coffee Research Station, Madagascar ................................ 27 Kenya Coffee Research Institute ................... 30 Choche Field Genebank (Ethiopian Biodiversity Institute) ................... 33 Centre National de la Recherche Agronomique (CNRA) Coffee Genebank ............... 34 Centro Agronomico Tropical de Investigacion y Ensenanza (CATIE) ................ 36 Centro National de Investigaciones de Café (CENICAFE), Manizales, Colombia ............. 39 Instituto Agronomico do Parana (IAPAR), Londrina, Brazil ............................. 40 Central coffee research institute (CCRI), india ........... 42 Visit to other sites ............................ 44 Summary of site visits ......................... 44 GLOBAL STRATEGY TO SECURE CONSERVATION .. 48 AND USE OF COFFEE GENETIC RESOURCES FOR THE LONG TERM REFERENCES ........................ 58 ANNEXES .......................... 62 I Acronmyns ............................... 63 II List of Coffee Species ......................... 64 III Coffee Ex Situ Field Collections (Previously Reported) ....... 69 IV Acknowledgements ......................... 71 STATUS OF THE MAJOR EX SITU COFFEE COLLECTIONS | 3 4 | INTRODUCTION GLOBAL
    [Show full text]
  • Atlas of Pollen and Plants Used by Bees
    AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer.
    [Show full text]
  • Revisiting the Status of Cultivated Plant Species Agrobiodiversity in India: an Overview ANURUDH K SINGH* 2924, Sector-23, Gurgaon, Haryana, India 122 017
    Proc Indian Natn Sci Acad 83 No. 1 March 2017 pp. 151-174 Printed in India. DOI: 10.16943/ptinsa/2016/v82/48406 Review Article Revisiting the Status of Cultivated Plant Species Agrobiodiversity in India: An Overview ANURUDH K SINGH* 2924, Sector-23, Gurgaon, Haryana, India 122 017 (Received on 14 March 2016; Revised on 20 May 2016; Accepted on 16 June 2016) A revisit to the literature on cultivated plant species agrobiodiversity in India revealed that the floristic diversity is represented by 17,926 species of angiosperm, while Indian agriculture cultivates 811 plant species and harbours more than 900 wild relatives of the cultivated plant species distributed over 10 (+ 1) biogeographic regions of the the country, significantly higher than commonly cited in the literature. Further, it revealed the role of Indian communities in domestication to cultivation of around 215 economically important plant species, and adaption of around 600 exotic crop species. Based on new evidence, several species require inclusion and others deletion, and many need further investigations to resolve the issue on country of their origin. Cultivation of crop species in diverse natural and man-made agroecological systems for centuries has generated a huge amount of genetic diversity in a large number of crop species, maintained by the farmers in the form of landraces or farmer’s varieties, and conserved as collections/accessions in the national agricultural research system. Keywords: Agrobiodiversity; Domestication; Cultivation; Genetic Diversity; Wild Relatives
    [Show full text]
  • Status of Medicinal Plants in Mpcas and Adjoining Areas in Terai-Duars Region of West Bengal, India
    Plant Archives Volume 20 No. 2, 2020 pp. 4833-4844 e-ISSN:2581-6063 (online), ISSN:0972-5210 STATUS OF MEDICINAL PLANTS IN MPCAS AND ADJOINING AREAS IN TERAI-DUARS REGION OF WEST BENGAL, INDIA Kishor Biswas1, Chandra Ghosh2* and A.P. Das3 1P.G. Department of Botany, Darjeeling Govt. College, Darjeeling, West Bengal, India. 2*Department of Tea Science, University of North Bengal, Darjeeling, West Bengal, India. 3Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, India (Formerly of University of North Bengal). Abstract Terai-Duars belt is covered by the IUCN recognised Himalaya Hotspot for biodiversity conservation and is rich in medicinally important herbs, shrubs and trees. The area is home to numerous rare and threatened species also. The present investigation recorded occurrence of 397 species of medicinally important plants belonging to 283 genera and 96 families, including 9 spp. of pteridophytes. Most of the recorded plants were herbs and found to be used medicinally and few for their aromatic property. Of these, 38 species were recognized as threatened ones. Comparison with previous report nicely showed fruitfulness of establishing the MPCAs to conserve threatened medicinal and accompanying non-medicinal plants those required conservational attention. It also suggests proper conservation strategies to protect this important green wealth of the country. Key words: Medicinal Plants, Terai, Duars, Conservation, MPCAs. Introduction shrubby-scrubs, savannah type tall grasslands etc. (Mukerjee 1965; Sikdar 1984; Mohanta 2004; Das et al., Terai–Duars region of West Bengal is lying at the 2010; Sarkar & Das 2017). But, in recent decades, feet of Eastern Himalaya and extended from Nepal to plantations (monoculture and mixed plantation of both Assam.
    [Show full text]
  • Coffee Plant the Coffee Plant Makes a Great Indoor, Outdoor Shade, Or Office Plant
    Coffee Plant The coffee plant makes a great indoor, outdoor shade, or office plant. Water when dry or the plant will let you know when it droops. Do not let it sit in water so tip over the pot if you over water the plant. Preform the finger test to check for dryness. When the plant is dry about an inch down, water thoroughly. The plant will stay pot bound about two years at which time you will transplant and enjoy a beautiful ornamental plant. See below. Coffea From Wikipedia, the free encyclopedia This article is about the biology of coffee. For the beverage, see Coffee. Coffea Coffea arabica trees in Brazil Scientific classification Kingdom: Plantae (unranked): Angiosperms (unranked): Eudicots (unranked): Asterids Order: Gentianales Family: Rubiaceae Subfamily: Ixoroideae Tribe: Coffeeae[1] Genus: Coffea L. Type species Coffea arabica L.[2] Species Coffea ambongensis Coffea anthonyi Coffea arabica - Arabica Coffee Coffea benghalensis - Bengal coffee Coffea boinensis Coffea bonnieri Coffea canephora - Robusta coffee Coffea charrieriana - Cameroonian coffee - caffeine free Coffea congensis - Congo coffee Coffea dewevrei - Excelsa coffee Coffea excelsa - Liberian coffee Coffea gallienii Coffea liberica - Liberian coffee Coffea magnistipula Coffea mogeneti Coffea stenophylla - Sierra Leonian coffee Coffea canephora green beans on a tree in Goa, India. Coffea is a large genus (containing more than 90 species)[3] of flowering plants in the madder family, Rubiaceae. They are shrubs or small trees, native to subtropical Africa and southern Asia. Seeds of several species are the source of the popular beverage coffee. After their outer hull is removed, the seeds are commonly called "beans".
    [Show full text]
  • Fl. China 19: 90–92. 2011. 18. COFFEA Linnaeus, Sp. Pl. 1
    Fl. China 19: 90–92. 2011. 18. COFFEA Linnaeus, Sp. Pl. 1: 172. 1753. 咖啡属 ka fei shu Chen Tao (陈涛); Charlotte M. Taylor Cafe Adanson. Shrubs or small trees, unarmed, often resinous on young growth; lateral branches usually spreading horizontally. Raphides absent. Leaves opposite or rarely in whorls of 3, distichous at least on lateral branches, often with foveolate and/or pilosulous doma- tia; stipules persistent, shortly united around stem, generally triangular, sometimes aristate. Inflorescences axillary, in each axil with 1 to several capitate to fasciculate, 1- to several-flowered cymes, these sessile to shortly pedunculate, bracteate; bracts often fused in cupulate pairs (i.e., forming a calyculus). Flowers sessile or shortly pedicellate, bisexual, monomorphic. Calyx limb obsolete or occasionally truncate or 4–6-toothed. Corolla white or pink, salverform or funnelform, inside glabrous or villous in throat; lobes 4–9, convolute in bud. Stamens 4–8, inserted in corolla throat, exserted; filaments absent or short; anthers dorsifixed near base. Ovary 2- celled, ovules 1 in each cell, attached at middle of septum; stigma 2-lobed, exserted. Fruit red, yellow, orange, blue, or black, drupa- ceous, globose to ellipsoid, fleshy or infrequently dry, with calyx limb when developed persistent; pyrenes 2, each 1-celled, with 1 seed, plano-convex, leathery or papery, on ventral (i.e., adaxial) face with longitudinal groove; seeds medium-sized to large, longitudinally grooved on ventral face; radicle terete, basiscopic. About 103 species: native to tropical Africa, Madagascar, and the Mascarene Islands, several species and hybrids cultivated in moist tropical regions worldwide; five species (all introduced) in China.
    [Show full text]
  • A Dissertation Submitted for Partial Fulfillment Of
    DIVERSITY OF NATURALIZED PLANT SPECIES ACROSS LAND USE TYPES IN MAKWANPUR DISTRICT, CENTRAL NEPAL A Dissertation Submitted for Partial Fulfillment of the Requirmentment for the Master‟s Degree in Botany, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal Submitted by Bhawani Nyaupane Exam Roll No.:107/071 Batch: 2071/73 T.U Reg. No.: 5-2-49-10-2010 Ecology and Resource Management Unit Central Department of Botany Institute of Science and Technology Tribhuvan University Kirtipur, Kathamndu, Nepal May, 2019 RECOMMENDATION This is to certify that the dissertation work entitled “DIVERSITY OF NATURALIZED PLANT ACROSS LAND USE TYPES IN MAKWANPUR DISTRICT, CENTRAL NEPAL” has been submitted by Ms. Bhawani Nyaupane under my supervision. The entire work is accomplished on the basis of Candidate‘s original research work. As per my knowledge, the work has not been submitted to any other academic degree. It is hereby recommended for acceptance of this dissertation as a partial fulfillment of the requirement of Master‘s Degree in Botany at Institute of Science and Technology, Tribhuvan University. ………………………… Supervisor Dr. Bharat Babu Shrestha Associate Professor Central Department of Botany TU, Kathmandu, Nepal. Date: 17th May, 2019 ii LETTER OF APPROVAL The M.Sc. dissertation entitled “DIVERSITY OF NATURALIZED PLANT SPECIES ACROSS LAND USE TYPES IN MAKWANPUR DISTRICT, CENTRAL NEPAL” submitted at the Central Department of Botany, Tribhuvan University by Ms. Bhawani Nyaupane has been accepted as a partial fulfillment of the requirement of Master‘s Degree in Botany (Ecology and Resource Management Unit). EXAMINATION COMMITTEE ………………………. ……………………. External Examiner Internal Examiner Dr. Rashila Deshar Dr. Anjana Devkota Assistant Professor Associate Professor Central Department of Environmental Science Central Department of Botany TU, Kathmandu, Nepal.
    [Show full text]
  • Plants in Chapter 5B-57.007, Florida Administrative Code Noxious Weed List
    Plants in chapter 5B-57.007, Florida Administrative Code Noxious Weed List Mark A. Garland Florida Department of Agriculture and Consumer Services July 6, 2004 Parasitic Weeds Scientific Name Common Family Origin In USDA DEP EPPC Notes/References Name Fla? Aeginetia spp. aeginetia Orobanchaceae Indomalaysian * 3 species. Non-photosynthetic (broomrape family) region and parasites on grasses and other East Asia monocots. A. indica is pest of sugarcane. Photos: http://www.science.siu.edu/parasitic - plants/Scrophulariaceae/NoPhoto.Sc rophs.html Alectra spp. alectra Scrophulariaceae Tropical * 40 species. Hemiparasites (with (snapdragon family) Africa, Asia chlorophyll). Photos: or Orobanchaceae http://www.science.siu.edu/parasitic (broomrape family) - plants/Scrophulariaceae/Hemipar.ht ml. Cuscuta spp., except dodder Convolvulaceae Cosmopolitan * all ~145 species, 8 native to Florida. the native Florida (morning-glory (C. except Yellow-stemmed non- family) japo- native photosynthetic twining parasites of species nica) U.S. herbs and woody plants. Species species are distinguished by minute floral and fruit characters. Orobanche spp., broomrape Orobanchaceae Temperate and * 150 species, 1 native to Florida. except native O. (broomrape family) subtropical Non-photosynthetic parasites. regions Photos: uniflora. http://www.science.siu.edu/parasitic - plants/Scrophulariaceae/Orobanche. Gallery.html 2 Terrestrial Weeds Scientific Name Common Family Origin In USDA DEP EPPC Notes/References Name Fla? Ageratina crofton weed Compositae or Mexico * Serious rangeland weed in India, adenophora Asteraceae Nigeria, Southeast Asia, Pacific (sunflower family) Islands, Australia, New Zealand, California. Toxic to livestock. http://ucce.ucdavis.edu/datastore/det ailreport.cfm?usernumber=2&survey number=182 Alternanthera sessilis sessile joyweed Amaranthaceae South Asia? * * Weed of over 30 crops, mostly in (amaranth family) tropics and subtropics.
    [Show full text]