Access to Communications Technology

Total Page:16

File Type:pdf, Size:1020Kb

Access to Communications Technology A Access to Communications Technology ABSTRACT digital divide: the Pew Research Center reported in 2019 that 42 percent of African American adults and Early proponents of digital communications tech- 43 percent of Hispanic adults did not have a desk- nology believed that it would be a powerful tool for top or laptop computer at home, compared to only disseminating knowledge and advancing civilization. 18 percent of Caucasian adults. Individuals without While there is little dispute that the Internet has home computers must instead use smartphones or changed society radically in a relatively short period public facilities such as libraries (which restrict how of time, there are many still unable to take advantage long a patron can remain online), which severely lim- of the benefits it confers because of a lack of access. its their ability to fill out job applications and com- Whether the lack is due to economic, geographic, or plete homework effectively. demographic factors, this “digital divide” has serious There is also a marked divide between digital societal repercussions, particularly as most aspects access in highly developed nations and that which of life in the twenty-first century, including banking, is available in other parts of the world. Globally, the health care, and education, are increasingly con- International Telecommunication Union (ITU), a ducted online. specialized agency within the United Nations that deals with information and communication tech- DIGITAL DIVIDE nologies (ICTs), estimates that as many as 3 billion people living in developing countries may still be In its simplest terms, the digital divide refers to the gap unconnected by 2023. between people who have easy, reliable access to the Internet and those who do not. In the United States, ICT DEVELOPMENT INDEX that divide occurs in varying contexts. The Federal Communications Commission (FCC) reports that in The ITU, which had been founded in 1865 to man- urban areas, 97 percent of Americans have access to age the first international telegraph networks, began high-speed broadband service. However, only 65 per- publishing the ICT Development Index (IDI) in cent of Americans living in rural areas have access to 2009 and continued to do so on an annual basis that service. In all, according to the FCC, some 30 through 2017. The ITU did not publish the IDI in million Americans cannot access the benefits of the 2018 or 2019. digital age because of deficiencies in the broadband The IDI combines eleven key indicators into one infrastructure. benchmark measure that can be used to monitor and Even in regions with good connectivity, there are compare advancements in ICT (information and differences in which households have access to com- communications technology) between countries, puters and the Internet because of socioeconomic and over time. The index is aimed at first tracking factors. A study conducted by the Pew Research Cen- individual nations’ ICT readiness: the level of net- ter in 2019 found that 46 percent of US adults with worked infrastructure and access to ICTs as measured household incomes below $30,000 per year did not by number of fixed-telephone subscriptions, mobile- have a computer at home, while 44 percent did not cellular telephone subscriptions, international Inter- have broadband Internet at home. Race and ethnic- net bandwidth per Internet user, households with a ity are also significant factors in the United States’ computer, and households with Internet access. 1 Access to Communications Technology Principles of Information Technology Next, ICT intensity (the level of use of ICTs in in-person help at a local DMV office. Most important, the country) is examined by surveying how many the digital divide perpetuates economic inequality individuals use the Internet, how many have fixed and impedes social mobility given how often school broadband subscriptions, and how many have coursework, even for the very youngest students, mobile-broadband subscriptions. Finally, a snap- involves computer use. Additionally, many well- shot of ICT impact (the concrete outcomes of more paying jobs rely on employees being at least some- efficient and effective ICT use) is taken by looking what computer literate. at mean years of schooling, gross secondary enroll- There are strong indications that a citizenry with ment, and gross tertiary enrollment. Those factors unimpeded access to the Internet can more easily serve as proxy indicators of overall skills and abilities. engage civically, leading to healthier democracies and In 2017, the United States ranked at number six- participatory decision-making. Consider the case of teen in the IDI. The top five spots were taken by Ice- North Korea, whose regime has greatly limited global land, South Korea, Switzerland, Denmark, and the Internet access for its citizens. Growing a more robust United Kingdom. information infrastructure can also be a pathway to economic growth for less developed nations, since ACCESSIBILITY FOR PEOPLE WITH PHYSICAL ICTs tend to be associated with marked improvements DISABILITIES in productivity. There are, in short, clear benefits to closing the digital divide—and myriad ramifications People with physical disabilities are also sometimes to allowing people to remain members of what has subject to a digital divide—a state of affairs that been called an “analogue underclass.” is easily overlooked by those who can effortlessly — Mari Rich manipulate a mouse, hear output from speakers, and clearly see whatever appears on a screen. True accessibility means, however, that everyone can use Further Reading the same technology as anyone else, regardless of Anderson, Monica, and Madhumitha Kumar. their level of vision, hearing, or manual dexterity. “Digital Divide Persists Even as Lower-Income In the United States, the Americans with Disabilities Americans Make Gains in Tech Adoption.” Pew Act (ADA) sets forth guidelines for digital acces- Research Center, 7 May 2019, www.pewresearch. sibility, although compliance has not always been org/fact-tank/2019/05/07/digital-divide-persists- widespread. To address that issue, user experience even-as-lower-income-americans-make-gains-in- designers are increasingly ensuring that technology tech-adoption/. Accessed 29 June 2020. can be employed successfully by people with a wide “Bridging the Digital Divide for All Americans.” range of functional abilities. Users of desktop com- Federal Communications Commission, www.fcc.gov/ puters, for example, can now input information in about-fcc/fcc-initiatives/bridging-digital-divide- multiple ways, including via mouse, keyboard, or all-americans. Accessed 29 June 2020. speech-recognition software. “Digital Accessibility.” Partnership on Employment & Accessible Technology, www.peatworks.org/futureof- WHY IT MATTERS work/a11y. Accessed 29 June 2020. “The ICT Development Index (IDI): Conceptual A constantly growing number of essential services are Framework and Methodology.” International Tele- conducted digitally. Thus, those on the wrong side of communication Union, www.itu.int/en/ITU-D/ the digital divide miss out on the long-term benefits Statistics/Pages/publications/mis/methodology. of innovative technology. In addition, their day-to-day aspx. Accessed 29 June 2020. lives become exponentially harder, as information James, Jeffrey. “The ICT Development Index and the vital to their health, safety, and financial stability is Digital Divide: How Are They Related?” Technologi- provided online. Consider, for example, the con- cal Forecasting and Social Change, vol. 79, no. 3, 2012, trast between clicking a few links on a Department of 587–94, doi.org/10.1016/j.techfore.2011.08.010. Motor Vehicles website and waiting for hours to get Accessed 29 June 2020. 2 Principles of Information Technology Acoustics Li, Austen, and Jacqueline Sussman. “Bridging the All—Digital Gaps with Whites.” Pew Research Digital Divide.” Wharton School of the University of Center, 20 Aug. 2019, www.pewresearch.org/fact- Pennsylvania Public Policy Initiative, 10 Apr. 2018, pub- tank/2019/08/20/smartphones-help-blacks-his- licpolicy.wharton.upenn.edu/live/news/2420- panics-bridge-some-but-not-all-digital-gaps-with- bridging-the-digital-divide/for-students/blog/ whites/. Accessed 29 June 2020. news. Accessed 29 June 2020. “Time to Close the Digital Divide.” Financial Times, 22 Perrin, Andrew, and Erica Turner. “Smartphones May 2020, www.ft.com/content/df6d1cd2-9b6e- Help Blacks, Hispanics Bridge Some—But Not 11ea-adb1-529f96d8a00b. Accessed 29 June 2020. Acoustics ABSTRACT to larger and better established divisions of science, but then acoustics would lose its unique strengths Acoustics is the science dealing with the produc- and its source of dynamic creativity. The main dif- tion, transmission, and effects of vibration in mate- ference between acoustics and more self-sufficient rial media. If the medium is air and the vibration branches of science is that acoustics depends on frequency is between 18 and 18,000 hertz (Hz), the physical laws developed in and borrowed from other vibration is termed “sound.” Acoustics is also used in fields. Therefore, the primary task of acoustics is to a broader context to describe sounds in solids and take these divergent principles and integrate them underwater and structure-borne sounds. Because into a coherent whole in order to understand, mea- mechanical vibrations, whether natural or human sure, and control vibration phenomena. induced, have accompanied humans through the The Acoustical Society of
Recommended publications
  • The Algebra of Open and Interconnected Systems
    The Algebra of Open and Interconnected Systems Brendan Fong Hertford College University of Oxford arXiv:1609.05382v1 [math.CT] 17 Sep 2016 A thesis submitted for the degree of Doctor of Philosophy in Computer Science Trinity 2016 For all those who have prepared food so I could eat and created homes so I could live over the past four years. You too have laboured to produce this; I hope I have done your labours justice. Abstract Herein we develop category-theoretic tools for understanding network- style diagrammatic languages. The archetypal network-style diagram- matic language is that of electric circuits; other examples include signal flow graphs, Markov processes, automata, Petri nets, chemical reaction networks, and so on. The key feature is that the language is comprised of a number of components with multiple (input/output) terminals, each possibly labelled with some type, that may then be connected together along these terminals to form a larger network. The components form hyperedges between labelled vertices, and so a diagram in this language forms a hypergraph. We formalise the compositional structure by intro- ducing the notion of a hypergraph category. Network-style diagrammatic languages and their semantics thus form hypergraph categories, and se- mantic interpretation gives a hypergraph functor. The first part of this thesis develops the theory of hypergraph categories. In particular, we introduce the tools of decorated cospans and corela- tions. Decorated cospans allow straightforward construction of hyper- graph categories from diagrammatic languages: the inputs, outputs, and their composition are modelled by the cospans, while the `decorations' specify the components themselves.
    [Show full text]
  • Research on the History of Modern Acoustics François Ribac, Viktoria Tkaczyk
    Research on the history of modern acoustics François Ribac, Viktoria Tkaczyk To cite this version: François Ribac, Viktoria Tkaczyk. Research on the history of modern acoustics. Revue d’Anthropologie des Connaissances, Société d’Anthropologie des Connaissances, 2019, Musical knowl- edge, science studies, and resonances, 13 (3), pp.707-720. 10.3917/rac.044.0707. hal-02423917 HAL Id: hal-02423917 https://hal.archives-ouvertes.fr/hal-02423917 Submitted on 26 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ON THE HISTORY OF MODERN ACOUSTICS Interview with Viktoria Tkaczyk, director of the Epistemes of Modern Acoustics research group at the Max Planck Institute for the History of Science, Berlin François Ribac S.A.C. | « Revue d'anthropologie des connaissances » 2019/3 Vol. 13, No 3 | pages 707 - 720 This document is the English version of: -------------------------------------------------------------------------------------------------------------------- François Ribac, « Recherche en histoire de l’acoustique moderne », Revue d'anthropologie
    [Show full text]
  • Linear and Nonlinear Waves
    Scholarpedia, 4(7):4308 www.scholarpedia.org Linear and nonlinear waves Graham W. Griffithsy and William E. Schiesser z City University,UK; Lehigh University, USA. Received April 20, 2009; accepted July 9, 2009 Historical Preamble The study of waves can be traced back to antiquity where philosophers, such as Pythagoras (c.560-480 BC), studied the relation of pitch and length of string in musical instruments. However, it was not until the work of Giovani Benedetti (1530-90), Isaac Beeckman (1588-1637) and Galileo (1564-1642) that the relationship between pitch and frequency was discovered. This started the science of acoustics, a term coined by Joseph Sauveur (1653-1716) who showed that strings can vibrate simultaneously at a fundamental frequency and at integral multiples that he called harmonics. Isaac Newton (1642-1727) was the first to calculate the speed of sound in his Principia. However, he assumed isothermal conditions so his value was too low compared with measured values. This discrepancy was resolved by Laplace (1749-1827) when he included adiabatic heating and cooling effects. The first analytical solution for a vibrating string was given by Brook Taylor (1685-1731). After this, advances were made by Daniel Bernoulli (1700-82), Leonard Euler (1707-83) and Jean d'Alembert (1717-83) who found the first solution to the linear wave equation, see section (3.2). Whilst others had shown that a wave can be represented as a sum of simple harmonic oscillations, it was Joseph Fourier (1768-1830) who conjectured that arbitrary functions can be represented by the superposition of an infinite sum of sines and cosines - now known as the Fourier series.
    [Show full text]
  • IT Project Quality Management
    10 IT Project Quality Management CHAPTER OVERVIEW The focus of this chapter will be on several concepts and philosophies of quality man- agement. By learning about the people who founded the quality movement over the last fifty years, we can better understand how to apply these philosophies and teach- ings to develop a project quality management plan. After studying this chapter, you should understand and be able to: • Describe the Project Management Body of Knowledge (PMBOK) area called project quality management (PQM) and how it supports quality planning, qual ity assurance, quality control, and continuous improvement of the project's products and supporting processes. • Identify several quality gurus, or founders of the quality movement, and their role in shaping quality philosophies worldwide. • Describe some of the more common quality initiatives and management sys tems that include ISO certification, Six Sigma, and the Capability Maturity Model (CMM) for software engineering. • Distinguish between validation and verification activities and how these activi ties support IT project quality management. • Describe the software engineering discipline called configuration management and how it is used to manage the changes associated with all of the project's deliverables and work products. • Apply the quality concepts, methods, and tools introduced in this chapter to develop a project quality plan. GLOBAL TECHNOLOGY SOLUTIONS It was mid-afternoon when Tim Williams walked into the GTS conference room. Two of the Husky Air team members, Sitaraman and Yan, were already seated at the 217 218 CHAPTER 10 / IT PROJECT QUALITY MANAGEMENT conference table. Tim took his usual seat, and asked "So how did the demonstration of the user interface go this morning?" Sitaraman glanced at Yan and then focused his attention on Tim's question.
    [Show full text]
  • Computer Algebra and Mathematics with the HP40G Version 1.0
    Computer Algebra and Mathematics with the HP40G Version 1.0 Renée de Graeve Lecturer at Grenoble I Exact Calculation and Mathematics with the HP40G Acknowledgments It was not believed possible to write an efficient program for computer algebra all on one’s own. But one bright person by the name of Bernard Parisse didn’t know that—and did it! This is his program for computer algebra (called ERABLE), built for the second time into an HP calculator. The development of this calculator has led Bernard Parisse to modify his program somewhat so that the computer algebra functions could be edited and cause the appropriate results to be displayed in the Equation Editor. Explore all the capabilities of this calculator, as set out in the following pages. I would like to thank: • Bernard Parisse for his invaluable counsel, his remarks on the text, his reviews, and for his ability to provide functions on demand both efficiently and graciously. • Jean Tavenas for the concern shown towards the completion of this guide. • Jean Yves Avenard for taking on board our requests, and for writing the PROMPT command in the very spirit of promptness—and with no advance warning. (refer to 6.4.2.). © 2000 Hewlett-Packard, http://www.hp.com/calculators The reproduction, distribution and/or the modification of this document is authorised according to the terms of the GNU Free Documentation License, Version 1.1 or later, published by the Free Software Foundation. A copy of this license exists under the section entitled “GNU Free Documentation License” (Chapter 8, p. 141).
    [Show full text]
  • CAS, an Introduction to the HP Computer Algebra System
    CAS, An introduction to the HP Computer Algebra System Background Any mathematician will quickly appreciate the advantages offered by a CAS, or Computer Algebra System1, which allows the user to perform complex symbolic algebraic manipulations on the calculator. Algebraic integration by parts and by substitution, the solution of differential equations, inequalities, simultaneous equations with algebraic or complex coefficients, the evaluation of limits and many other problems can be solved quickly and easily using a CAS. Importantly, solutions can be obtained as exact values such as 5−1, 25≤ x < or 4π rather than the usual decimal values given by numeric methods of successive approximation. Values can be displayed to almost any degree of accuracy required, allowing the user to view, for example, the exact value of a number such as 100 factorial. The HP CAS The HP CAS system was created by Bernard Parisse, Université de Grenoble, for the HP 49g calculator. It was improved and adapted for inclusion on the HP 40g with the help of Renée De Graeve, Jean-Yves Avenard and Jean Tavenas2. The HP CAS system offers the user a vast array of functions and abilities as well as an easy user interface which displays equations as they appear on the page. It also includes the ability to display many algebraic calculations in ‘step-by-step’ mode, making it an invaluable teaching tool in universities and schools. Functions are grouped by category and accessed via menus at the bottom of the screen. Copyright© 2005, Applications in Mathematics Learning to use the CAS Learning to use the CAS is very easy but, as with any powerful tool, truly effective use requires familiarity and time.
    [Show full text]
  • A History of Electroacoustics: Hollywood 1956 – 1963 by Peter T
    A History of Electroacoustics: Hollywood 1956 – 1963 By Peter T. Humphrey A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Music and the Designated Emphasis in New Media in the Graduate Division of the University of California, Berkeley Committee in charge: Professor James Q. Davies, Chair Professor Nicholas de Monchaux Professor Mary Ann Smart Professor Nicholas Mathew Spring 2021 Abstract A History of Electroacoustics: Hollywood 1956 – 1963 by Peter T. Humphrey Doctor of Philosophy in Music and the Designated Emphasis in New Media University of California, Berkeley Professor James Q. Davies, Chair This dissertation argues that a cinematic approach to music recording developed during the 1950s, modeling the recording process of movie producers in post-production studios. This approach to recorded sound constructed an imaginary listener consisting of a blank perceptual space, whose sonic-auditory experience could be controlled through electroacoustic devices. This history provides an audiovisual genealogy for electroacoustic sound that challenges histories of recording that have privileged Thomas Edison’s 1877 phonograph and the recording industry it generated. It is elucidated through a consideration of the use of electroacoustic technologies for music that centered in Hollywood and drew upon sound recording practices from the movie industry. This consideration is undertaken through research in three technologies that underwent significant development in the 1950s: the recording studio, the mixing board, and the synthesizer. The 1956 Capitol Records Studio in Hollywood was the first purpose-built recording studio to be modelled on sound stages from the neighboring film lots. The mixing board was the paradigmatic tool of the recording studio, a central interface from which to direct and shape sound.
    [Show full text]
  • A History of Rhythm, Metronomes, and the Mechanization of Musicality
    THE METRONOMIC PERFORMANCE PRACTICE: A HISTORY OF RHYTHM, METRONOMES, AND THE MECHANIZATION OF MUSICALITY by ALEXANDER EVAN BONUS A DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Music CASE WESTERN RESERVE UNIVERSITY May, 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________Alexander Evan Bonus candidate for the ______________________Doctor of Philosophy degree *. Dr. Mary Davis (signed)_______________________________________________ (chair of the committee) Dr. Daniel Goldmark ________________________________________________ Dr. Peter Bennett ________________________________________________ Dr. Martha Woodmansee ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________2/25/2010 *We also certify that written approval has been obtained for any proprietary material contained therein. Copyright © 2010 by Alexander Evan Bonus All rights reserved CONTENTS LIST OF FIGURES . ii LIST OF TABLES . v Preface . vi ABSTRACT . xviii Chapter I. THE HUMANITY OF MUSICAL TIME, THE INSUFFICIENCIES OF RHYTHMICAL NOTATION, AND THE FAILURE OF CLOCKWORK METRONOMES, CIRCA 1600-1900 . 1 II. MAELZEL’S MACHINES: A RECEPTION HISTORY OF MAELZEL, HIS MECHANICAL CULTURE, AND THE METRONOME . .112 III. THE SCIENTIFIC METRONOME . 180 IV. METRONOMIC RHYTHM, THE CHRONOGRAPHIC
    [Show full text]
  • SMT Solving in a Nutshell
    SAT and SMT Solving in a Nutshell Erika Abrah´ am´ RWTH Aachen University, Germany LuFG Theory of Hybrid Systems February 27, 2020 Erika Abrah´ am´ - SAT and SMT solving 1 / 16 What is this talk about? Satisfiability problem The satisfiability problem is the problem of deciding whether a logical formula is satisfiable. We focus on the automated solution of the satisfiability problem for first-order logic over arithmetic theories, especially using SAT and SMT solving. Erika Abrah´ am´ - SAT and SMT solving 2 / 16 CAS SAT SMT (propositional logic) (SAT modulo theories) Enumeration Computer algebra DP (resolution) systems [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories CAD Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping Partial CAD Virtual CDCL [GRASP’97] [zChaff’04] DPLL(T) substitution Watched literals Equalities and uninterpreted Clause learning/forgetting functions Variable ordering heuristics Bit-vectors Restarts Array theory Arithmetic Decision procedures for first-order logic over arithmetic theories in mathematical logic 1940 Computer architecture development 1960 1970 1980 2000 2010 Erika Abrah´ am´ - SAT and SMT solving 3 / 16 SAT SMT (propositional logic) (SAT modulo theories) Enumeration DP (resolution) [Davis, Putnam’60] DPLL (propagation) [Davis,Putnam,Logemann,Loveland’62] Decision procedures NP-completeness [Cook’71] for combined theories Conflict-directed [Shostak’79] [Nelson, Oppen’79] backjumping CDCL [GRASP’97] [zChaff’04]
    [Show full text]
  • Programming for Computations – Python
    15 Svein Linge · Hans Petter Langtangen Programming for Computations – Python Editorial Board T. J.Barth M.Griebel D.E.Keyes R.M.Nieminen D.Roose T.Schlick Texts in Computational 15 Science and Engineering Editors Timothy J. Barth Michael Griebel David E. Keyes Risto M. Nieminen Dirk Roose Tamar Schlick More information about this series at http://www.springer.com/series/5151 Svein Linge Hans Petter Langtangen Programming for Computations – Python A Gentle Introduction to Numerical Simulations with Python Svein Linge Hans Petter Langtangen Department of Process, Energy and Simula Research Laboratory Environmental Technology Lysaker, Norway University College of Southeast Norway Porsgrunn, Norway On leave from: Department of Informatics University of Oslo Oslo, Norway ISSN 1611-0994 Texts in Computational Science and Engineering ISBN 978-3-319-32427-2 ISBN 978-3-319-32428-9 (eBook) DOI 10.1007/978-3-319-32428-9 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2016945368 Mathematic Subject Classification (2010): 26-01, 34A05, 34A30, 34A34, 39-01, 40-01, 65D15, 65D25, 65D30, 68-01, 68N01, 68N19, 68N30, 70-01, 92D25, 97-04, 97U50 © The Editor(s) (if applicable) and the Author(s) 2016 This book is published open access. Open Access This book is distributed under the terms of the Creative Commons Attribution-Non- Commercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license and any changes made are indicated.
    [Show full text]
  • Sine Waves and Simple Acoustic Phenomena in Experimental Music - with Special Reference to the Work of La Monte Young and Alvin Lucier
    Sine Waves and Simple Acoustic Phenomena in Experimental Music - with Special Reference to the Work of La Monte Young and Alvin Lucier Peter John Blamey Doctor of Philosophy University of Western Sydney 2008 Acknowledgements I would like to thank my principal supervisor Dr Chris Fleming for his generosity, guidance, good humour and invaluable assistance in researching and writing this thesis (and also for his willingness to participate in productive digressions on just about any subject). I would also like to thank the other members of my supervisory panel - Dr Caleb Kelly and Professor Julian Knowles - for all of their encouragement and advice. Statement of Authentication The work presented in this thesis is, to the best of my knowledge and belief, original except as acknowledged in the text. I hereby declare that I have not submitted this material, either in full or in part, for a degree at this or any other institution. .......................................................... (Signature) Table of Contents Abstract..................................................................................................................iii Introduction: Simple sounds, simple shapes, complex notions.............................1 Signs of sines....................................................................................................................4 Acoustics, aesthetics, and transduction........................................................................6 The acoustic and the auditory......................................................................................10
    [Show full text]
  • Lab 5A: Mersenne's Laws & Melde's Experiment
    CSUEB Physics 1780 Lab 5a: Mersenne & Melde Page 1 Lab 5a: Mersenne’s Laws & Melde's experiment Introduction Vincenzo Galilei (1520 –1591), the father of Galileo Galilei, was an Italian lutenist, composer, and music theorist. It is reported that he showed that the pitch of a vibrating string was proportional to the square root of its tension. In other words, in order to increase the pitch by an octave (factor of 2 in frequency) it would require the tension to be quadrupled. Marin Mersenne (1588-1648, see picture), often called the “father of acoustics” , around 1630 published a book summarizing the properties of sound, based on the earlier work of Vincenzo and Galileo. He established that: • Frequency is inversely proportional to length of string • Frequency is inversely proportional to the diameter of the string • Frequency is proportional to the root of the tension • Frequency is inversely proportional to the root of the mass (density) of the string. So in summary, if you want a low note, use a fat (massive) long string under low tension. For a high pitch, use a thin short string under high tension. We can summarize all of his results with a single equation showing that the frequency “f” is proportional to: 1 F f ∝ , (1) L µ where “L” is the length of the violin string, “F” is the tension (in Newtons of force) and µ (“mu”) is the mass density of the string (in units of mass per unit length, e.g. kg per meter). In this experiment the string is assumed to be vibrating in its “fundamental” mode, like this, (figure 1).
    [Show full text]