Musical Mathematics on the Art and Science of Acoustic Instruments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ACT Resources for Arts A/V Technology
Career Cluster: Arts, A/V Technology, & Communications Mathematics in Digital Arts and Design III – Addresses standard 11 Question A graphic designer at a bottling company is tasked with designing efficient packaging for soda cans. Two options are being considered. Which of the two arrangements has less unused space in the package and how does the arrangement compare with the alternative? The radius of a soda can is approximately 3.2 cm. Package A Package B A. Package A; Package A has 16.7% less unused space than Package B. B. Package B; Package B has 16.7% less unused space than Package A. C. Package B; Package B has 8.3% less unused space than Package A. D. Neither; The two packages have equal unused space. Source: Adapted from Zordak, S. E. (n.d.). Soda Cans. Retrieved February 24, 2016, from http://illuminations.nctm.org/Lesson.aspx?id=2363 Office of Career and Technical Education • 710 James Robertson Parkway • Nashville, TN 37243 1 | March 2016 Tel: (615) 532-2830 • tn.gov/education/cte Career Cluster: Arts, A/V Technology, & Communications Science in A/V Production I – Addresses Standard 15 Passage I Natural Science: This passage is adapted from the chapter “The Wave Theory of Sound” in Acoustics: An Introduction to Its Physical Principles and Applications by Allan Pierce. (Acoustical Society of America). Acoustics is the science of sound, including 20 ability, of communication via sound, along with the its production, transmission, and effects. In variety of psychological influences sound has on present usage, the term sound implies not only those who hear it. -
Marin Mersenne English Version
MARIN MERSENNE (September 8, 1588 – September 1, 1648) by HEINZ KLAUS STRICK, Germany Although no stamp with a portrait of the French mathematician MARIN MERSENNE has yet been issued, the postal administration of the Principality of Liechtenstein took the discovery of the 39th MERSENNE prime number = 13,466,917 − M13,466,9 17 2 1 as an opportunity to select this number as the motif for a stamp of a series on science (the graphic on the stamp below shows a logarithmic spiral). (drawings © Andreas Strick) EUCLID had already dealt with numbers of the type 2n −1 and, among other things, proved the theorem: If 2n −1 is a prime number, then 2n1- ⋅ (2 n − 1) is a perfect number. th Until the end of the 16 century it was believed that all numbers of the type 2n −1 were prime numbers if the exponent n was a prime number. In 1603, the Italian mathematician PIETRO CATALDI, who was also the first to write a treatise on continued fractions, proved the following: If the exponent n is not a prime number, i.e. if it can be represented as the product of n a⋅ b= with a b∈ , IN , then 2n −1 is not a prime number either; because then the number can be broken down into at least two factors: ⋅ − ⋅ 2a b − 12112 =( a −) ⋅( +a + 22 a + 23 a + ...2 + (b 1) a ). He also showed by systematic trial and error with all prime divisors up to the root of the number in question that 217 −1 and 219 −1 are prime numbers. -
The Science of String Instruments
The Science of String Instruments Thomas D. Rossing Editor The Science of String Instruments Editor Thomas D. Rossing Stanford University Center for Computer Research in Music and Acoustics (CCRMA) Stanford, CA 94302-8180, USA [email protected] ISBN 978-1-4419-7109-8 e-ISBN 978-1-4419-7110-4 DOI 10.1007/978-1-4419-7110-4 Springer New York Dordrecht Heidelberg London # Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Contents 1 Introduction............................................................... 1 Thomas D. Rossing 2 Plucked Strings ........................................................... 11 Thomas D. Rossing 3 Guitars and Lutes ........................................................ 19 Thomas D. Rossing and Graham Caldersmith 4 Portuguese Guitar ........................................................ 47 Octavio Inacio 5 Banjo ...................................................................... 59 James Rae 6 Mandolin Family Instruments........................................... 77 David J. Cohen and Thomas D. Rossing 7 Psalteries and Zithers .................................................... 99 Andres Peekna and Thomas D. -
White Paper: Acoustics Primer for Music Spaces
WHITE PAPER: ACOUSTICS PRIMER FOR MUSIC SPACES ACOUSTICS PRIMER Music is learned by listening. To be effective, rehearsal rooms, practice rooms and performance areas must provide an environment designed to support musical sound. It’s no surprise then that the most common questions we hear and the most frustrating problems we see have to do with acoustics. That’s why we’ve put this Acoustics Primer together. In simple terms we explain the fundamental acoustical concepts that affect music areas. Our hope is that music educators, musicians, school administrators and even architects and planners can use this information to better understand what they are, and are not, hearing in their music spaces. And, by better understanding the many variables that impact acoustical environ- ments, we believe we can help you with accurate diagnosis and ultimately, better solutions. For our purposes here, it is not our intention to provide an exhaustive, technical resource on the physics of sound and acoustical construction methods — that has already been done and many of the best works are listed in our bibliography and recommended readings on page 10. Rather, we want to help you establish a base-line knowledge of acoustical concepts that affect music education and performance spaces. This publication contains information reviewed by Professor M. David Egan. Egan is a consultant in acoustics and Professor Emeritus at the College of Architecture, Clemson University. He has been principal consultant of Egan Acoustics in Anderson, South Carolina for more than 35 years. A graduate of Lafayette College (B.S.) and MIT (M.S.), Professor Eagan also has taught at Tulane University, Georgia Institute of Technology, University of North Carolina at Charlotte, and Washington University. -
Research on the History of Modern Acoustics François Ribac, Viktoria Tkaczyk
Research on the history of modern acoustics François Ribac, Viktoria Tkaczyk To cite this version: François Ribac, Viktoria Tkaczyk. Research on the history of modern acoustics. Revue d’Anthropologie des Connaissances, Société d’Anthropologie des Connaissances, 2019, Musical knowl- edge, science studies, and resonances, 13 (3), pp.707-720. 10.3917/rac.044.0707. hal-02423917 HAL Id: hal-02423917 https://hal.archives-ouvertes.fr/hal-02423917 Submitted on 26 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ON THE HISTORY OF MODERN ACOUSTICS Interview with Viktoria Tkaczyk, director of the Epistemes of Modern Acoustics research group at the Max Planck Institute for the History of Science, Berlin François Ribac S.A.C. | « Revue d'anthropologie des connaissances » 2019/3 Vol. 13, No 3 | pages 707 - 720 This document is the English version of: -------------------------------------------------------------------------------------------------------------------- François Ribac, « Recherche en histoire de l’acoustique moderne », Revue d'anthropologie -
Linear and Nonlinear Waves
Scholarpedia, 4(7):4308 www.scholarpedia.org Linear and nonlinear waves Graham W. Griffithsy and William E. Schiesser z City University,UK; Lehigh University, USA. Received April 20, 2009; accepted July 9, 2009 Historical Preamble The study of waves can be traced back to antiquity where philosophers, such as Pythagoras (c.560-480 BC), studied the relation of pitch and length of string in musical instruments. However, it was not until the work of Giovani Benedetti (1530-90), Isaac Beeckman (1588-1637) and Galileo (1564-1642) that the relationship between pitch and frequency was discovered. This started the science of acoustics, a term coined by Joseph Sauveur (1653-1716) who showed that strings can vibrate simultaneously at a fundamental frequency and at integral multiples that he called harmonics. Isaac Newton (1642-1727) was the first to calculate the speed of sound in his Principia. However, he assumed isothermal conditions so his value was too low compared with measured values. This discrepancy was resolved by Laplace (1749-1827) when he included adiabatic heating and cooling effects. The first analytical solution for a vibrating string was given by Brook Taylor (1685-1731). After this, advances were made by Daniel Bernoulli (1700-82), Leonard Euler (1707-83) and Jean d'Alembert (1717-83) who found the first solution to the linear wave equation, see section (3.2). Whilst others had shown that a wave can be represented as a sum of simple harmonic oscillations, it was Joseph Fourier (1768-1830) who conjectured that arbitrary functions can be represented by the superposition of an infinite sum of sines and cosines - now known as the Fourier series. -
Founding a Family of Fiddles
The four members of the violin family have changed very little In hundreds of years. Recently, a group of musi- cians and scientists have constructed a "new" string family. 16 Founding a Family of Fiddles Carleen M. Hutchins An article from Physics Today, 1967. New measmement techniques combined with recent acoustics research enable us to make vioUn-type instruments in all frequency ranges with the properties built into the vioHn itself by the masters of three centuries ago. Thus for the first time we have a whole family of instruments made according to a consistent acoustical theory. Beyond a doubt they are musically successful by Carleen Maley Hutchins For three or folti centuries string stacles have stood in the way of practi- quartets as well as orchestras both cal accomplishment. That we can large and small, ha\e used violins, now routinely make fine violins in a violas, cellos and contrabasses of clas- variety of frequency ranges is the re- sical design. These wooden instru- siJt of a fortuitous combination: ments were brought to near perfec- violin acoustics research—showing a tion by violin makers of the 17th and resurgence after a lapse of 100 years— 18th centuries. Only recendy, though, and the new testing equipment capa- has testing equipment been good ble of responding to the sensitivities of enough to find out just how they work, wooden instruments. and only recently have scientific meth- As is shown in figure 1, oiu new in- ods of manufactiu-e been good enough struments are tuned in alternate inter- to produce consistently instruments vals of a musical fourth and fifth over with the qualities one wants to design the range of the piano keyboard. -
Mersenne and Mixed Mathematics
Mersenne and Mixed Mathematics Antoni Malet Daniele Cozzoli Pompeu Fabra University One of the most fascinating intellectual ªgures of the seventeenth century, Marin Mersenne (1588–1648) is well known for his relationships with many outstanding contemporary scholars as well as for his friendship with Descartes. Moreover, his own contributions to natural philosophy have an interest of their own. Mersenne worked on the main scientiªc questions debated in his time, such as the law of free fall, the principles of Galileo’s mechanics, the law of refraction, the propagation of light, the vacuum problem, the hydrostatic paradox, and the Copernican hypothesis. In his Traité de l’Harmonie Universelle (1627), Mersenne listed and de- scribed the mathematical disciplines: Geometry looks at continuous quantity, pure and deprived from matter and from everything which falls upon the senses; arithmetic contemplates discrete quantities, i.e. numbers; music concerns har- monic numbers, i.e. those numbers which are useful to the sound; cosmography contemplates the continuous quantity of the whole world; optics looks at it jointly with light rays; chronology talks about successive continuous quantity, i.e. past time; and mechanics concerns that quantity which is useful to machines, to the making of instruments and to anything that belongs to our works. Some also adds judiciary astrology. However, proofs of this discipline are The papers collected here were presented at the Workshop, “Mersenne and Mixed Mathe- matics,” we organized at the Universitat Pompeu Fabra (Barcelona), 26 May 2006. We are grateful to the Spanish Ministry of Education and the Catalan Department of Universities for their ªnancial support through projects Hum2005-05107/FISO and 2005SGR-00929. -
Musical Acoustics - Wikipedia, the Free Encyclopedia 11/07/13 17:28 Musical Acoustics from Wikipedia, the Free Encyclopedia
Musical acoustics - Wikipedia, the free encyclopedia 11/07/13 17:28 Musical acoustics From Wikipedia, the free encyclopedia Musical acoustics or music acoustics is the branch of acoustics concerned with researching and describing the physics of music – how sounds employed as music work. Examples of areas of study are the function of musical instruments, the human voice (the physics of speech and singing), computer analysis of melody, and in the clinical use of music in music therapy. Contents 1 Methods and fields of study 2 Physical aspects 3 Subjective aspects 4 Pitch ranges of musical instruments 5 Harmonics, partials, and overtones 6 Harmonics and non-linearities 7 Harmony 8 Scales 9 See also 10 External links Methods and fields of study Frequency range of music Frequency analysis Computer analysis of musical structure Synthesis of musical sounds Music cognition, based on physics (also known as psychoacoustics) Physical aspects Whenever two different pitches are played at the same time, their sound waves interact with each other – the highs and lows in the air pressure reinforce each other to produce a different sound wave. As a result, any given sound wave which is more complicated than a sine wave can be modelled by many different sine waves of the appropriate frequencies and amplitudes (a frequency spectrum). In humans the hearing apparatus (composed of the ears and brain) can usually isolate these tones and hear them distinctly. When two or more tones are played at once, a variation of air pressure at the ear "contains" the pitches of each, and the ear and/or brain isolate and decode them into distinct tones. -
UNIVERSITY of CALIFORNIA, SAN DIEGO Non-Contact
UNIVERSITY OF CALIFORNIA, SAN DIEGO Non-contact Ultrasonic Guided Wave Inspection of Rails: Next Generation Approach A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Structural Engineering by Stefano Mariani Committee in Charge: Professor Francesco Lanza di Scalea, Chair Professor David J. Benson Professor Michael J. Buckingham Professor William S. Hodgkiss Professor Chia-Ming Uang 2015 Copyright, Stefano Mariani, 2015 All rights reserved. The dissertation of Stefano Mariani is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ Chair University of California, San Diego 2015 iii DEDICATION To Bob iv TABLE OF CONTENTS Signature Page iii Dedication iv Table of Contents v List of Abbreviations ix List of Figures xi List of Tables xxii Acknowledgments xxiv Vita xvii Abstract of the Dissertation xxix 1 Introduction ................................................................................................................... 1 1.1 Non Destructive Evaluation of railroad tracks. Introductory discussions and motivations for the research ............................................................................................ 1 1.2 -
Music and Science from Leonardo to Galileo International Conference 13-15 November 2020 Organized by Centro Studi Opera Omnia Luigi Boccherini, Lucca
MUSIC AND SCIENCE FROM LEONARDO TO GALILEO International Conference 13-15 November 2020 Organized by Centro Studi Opera Omnia Luigi Boccherini, Lucca Keynote Speakers: VICTOR COELHO (Boston University) RUDOLF RASCH (Utrecht University) The present conference has been made possibile with the friendly support of the CENTRO STUDI OPERA OMNIA LUIGI BOCCHERINI www.luigiboccherini.org INTERNATIONAL CONFERENCE MUSIC AND SCIENCE FROM LEONARDO TO GALILEO Organized by Centro Studi Opera Omnia Luigi Boccherini, Lucca Virtual conference 13-15 November 2020 Programme Committee: VICTOR COELHO (Boston University) ROBERTO ILLIANO (Centro Studi Opera Omnia Luigi Boccherini) FULVIA MORABITO (Centro Studi Opera Omnia Luigi Boccherini) RUDOLF RASCH (Utrecht University) MASSIMILIANO SALA (Centro Studi Opera Omnia Luigi Boccherini) ef Keynote Speakers: VICTOR COELHO (Boston University) RUDOLF RASCH (Utrecht University) FRIDAY 13 NOVEMBER 14.45-15.00 Opening • FULVIA MORABITO (Centro Studi Opera Omnia Luigi Boccherini) 15.00-16.00 Keynote Speaker 1: • VICTOR COELHO (Boston University), In the Name of the Father: Vincenzo Galilei as Historian and Critic ef 16.15-18.15 The Galileo Family (Chair: Victor Coelho, Boston University) • ADAM FIX (University of Minnesota), «Esperienza», Teacher of All Things: Vincenzo Galilei’s Music as Artisanal Epistemology • ROBERTA VIDIC (Hochschule für Musik und Theater Hamburg), Galilei and the ‘Radicalization’ of the Italian and German Music Theory • DANIEL MARTÍN SÁEZ (Universidad Autónoma de Madrid), The Galileo Affair through -
A History of Electroacoustics: Hollywood 1956 – 1963 by Peter T
A History of Electroacoustics: Hollywood 1956 – 1963 By Peter T. Humphrey A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Music and the Designated Emphasis in New Media in the Graduate Division of the University of California, Berkeley Committee in charge: Professor James Q. Davies, Chair Professor Nicholas de Monchaux Professor Mary Ann Smart Professor Nicholas Mathew Spring 2021 Abstract A History of Electroacoustics: Hollywood 1956 – 1963 by Peter T. Humphrey Doctor of Philosophy in Music and the Designated Emphasis in New Media University of California, Berkeley Professor James Q. Davies, Chair This dissertation argues that a cinematic approach to music recording developed during the 1950s, modeling the recording process of movie producers in post-production studios. This approach to recorded sound constructed an imaginary listener consisting of a blank perceptual space, whose sonic-auditory experience could be controlled through electroacoustic devices. This history provides an audiovisual genealogy for electroacoustic sound that challenges histories of recording that have privileged Thomas Edison’s 1877 phonograph and the recording industry it generated. It is elucidated through a consideration of the use of electroacoustic technologies for music that centered in Hollywood and drew upon sound recording practices from the movie industry. This consideration is undertaken through research in three technologies that underwent significant development in the 1950s: the recording studio, the mixing board, and the synthesizer. The 1956 Capitol Records Studio in Hollywood was the first purpose-built recording studio to be modelled on sound stages from the neighboring film lots. The mixing board was the paradigmatic tool of the recording studio, a central interface from which to direct and shape sound.