Boron Trifluoride

Total Page:16

File Type:pdf, Size:1020Kb

Boron Trifluoride Right to Know Hazardous Substance Fact Sheet Common Name: BORON TRIFLUORIDE Synonyms: Boron Fluoride; Trifluoroborane CAS Number: 7637-07-2 Chemical Name: Borane, Trifluoro- RTK Substance Number: 0246 Date: July 2002 Revision: February 2012 DOT Number: UN 1008 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Boron Trifluoride is a colorless gas, with a strong odor, that Hazard Summary forms dense, white fumes in moist air. It is used as a catalyst Hazard Rating NJDOH NFPA for polymerization reactions, in soldering fluxes and fiber HEALTH - 4 optics, and as a fire extinguishing agent for Magnesium. FLAMMABILITY - 0 REACTIVITY - 1 f ODOR THRESHOLD = 1.6 ppm CORROSIVE f Odor thresholds vary greatly. Do not rely on odor alone to POISONOUS GASES ARE PRODUCED IN FIRE determine potentially hazardous exposures. CONTAINERS MAY EXPLODE IN FIRE Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; f Boron Trifluoride is on the Right to Know Hazardous 4=severe Substance List because it is cited by OSHA, ACGIH, DOT, f Boron Trifluoride can affect you when inhaled and by NIOSH, DEP, IRIS, NFPA and EPA. passing through the skin. f Boron Trifluoride is a CORROSIVE chemical and contact can severely irritate and burn the skin and eyes with possible eye damage. SEE GLOSSARY ON PAGE 5. f Skin contact with liquid Boron Trifluoride can cause frostbite. FIRST AID f Inhaling Boron Trifluoride can irritate the nose and throat. Eye Contact Repeated exposure can cause dryness of the nose and f Immediately flush with large amounts of water for at least 30 nosebleeds. minutes, lifting upper and lower lids. Remove contact f Inhaling Boron Trifluoride can irritate the lungs. Higher lenses, if worn, while flushing. Seek medical attention. exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency. Skin Contact f Exposure to Boron Trifluoride can cause headache, f Quickly remove contaminated clothing. Immediately wash nausea, vomiting and diarrhea. contaminated skin with large amounts of water. Seek f Boron Trifluoride may damage the kidneys and affect the medical attention. nervous system. f In case of contact with liquid Boron Trifluoride, immerse f Repeated very high exposure to Boron Trifluoride may affected part in warm water. Seek medical attention. cause the deposit of Fluoride in the bones and teeth, a condition called Fluorosis. The above health effects do NOT Inhalation occur at the level of Fluoride used in water to prevent f Remove the person from exposure. cavities in teeth. f Begin rescue breathing (using universal precautions) if f If Boron Trifluoride is involved in a fire it can release breathing has stopped and CPR if heart action has stopped. Hydrogen Fluoride. Consult the Right to Know Hazardous f Transfer promptly to a medical facility. Substance Fact Sheet on HYDROGEN FLUORIDE. f Medical observation is recommended for 24 to 48 hours after overexposure, as pulmonary edema may be delayed. Workplace Exposure Limits OSHA: The legal airborne permissible exposure limit (PEL) is EMERGENCY NUMBERS 1 ppm, not to be exceeded at any time. Poison Control: 1-800-222-1222 NIOSH: The recommended airborne exposure limit (REL) is CHEMTREC: 1-800-424-9300 1 ppm, which should not be exceeded at any time. NJDEP Hotline: 1-877-927-6337 ACGIH: The threshold limit value (TLV) is 1 ppm, which National Response Center: 1-800-424-8802 should not be exceeded at any time. f The above exposure limits are for air levels only. When skin contact also occurs, you may be overexposed, even though air levels are less than the limits listed above. BORON TRIFLUORIDE Page 2 of 6 Determining Your Exposure Reproductive Hazard f According to the information presently available to the New f Read the product manufacturer’s Material Safety Data Jersey Department of Health, Boron Trifluoride has not Sheet (MSDS) and the label to determine product been tested for its ability to affect reproduction. ingredients and important safety and health information about the product mixture. Other Effects f Repeated exposure can cause dryness of the nose and f For each individual hazardous ingredient, read the New nosebleeds. Jersey Department of Health Hazardous Substance Fact f Boron Trifluoride can irritate the lungs. Repeated Sheet, available on the RTK website exposure may cause bronchitis to develop with coughing, (www.nj.gov/health/eoh/rtkweb) or in your facility’s RTK phlegm, and/or shortness of breath. Central File or Hazard Communication Standard file. f Boron Trifluoride may damage the kidneys and affect the nervous system. f You have a right to this information under the New Jersey f Repeated, very high exposure to Boron Trifluoride can Worker and Community Right to Know Act and the Public cause the deposit of Fluoride in the bones and teeth, a Employees Occupational Safety and Health (PEOSH) Act condition called Fluorosis. This may cause pain, disability if you are a public worker in New Jersey, and under the and mottling of the teeth. federal Occupational Safety and Health Act (OSHA) if you are a private worker. f The New Jersey Right to Know Act requires most Medical employers to label chemicals in the workplace and Medical Testing requires public employers to provide their employees with For frequent or potentially high exposure (half the PEL or information concerning chemical hazards and controls. greater), the following are recommended before beginning The federal OSHA Hazard Communication Standard (29 work and at regular times after that: CFR 1910.1200) and the PEOSH Hazard Communication f Fluoride levels in urine higher than 4 mg/liter indicate Standard (N.J.A.C. 12:100-7) require employers to provide overexposure similar information and training to their employees. If symptoms develop or overexposure is suspected, the This Fact Sheet is a summary of available information following are recommended: regarding the health hazards that may result from exposure. Duration of exposure, concentration of the substance and other f Lung function tests factors will affect your susceptibility to any of the potential f Kidney function tests effects described below. Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for Health Hazard Information damage already done are not a substitute for controlling exposure. Acute Health Effects The following acute (short-term) health effects may occur You have a legal right to request copies of your medical testing immediately or shortly after exposure to Boron Trifluoride: under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020). f Contact can severely irritate and burn the skin and eyes with possible eye damage. Mixed Exposures f Skin contact with liquid Boron Trifluoride can cause frostbite. f Smoking can cause heart disease, lung cancer, f Inhaling Boron Trifluoride can irritate the nose and throat. emphysema, and other respiratory problems. It may worsen f Inhaling Boron Trifluoride can irritate the lungs causing respiratory conditions caused by chemical exposure. Even if coughing and/or shortness of breath. Higher exposures may you have smoked for a long time, stopping now will reduce cause a build-up of fluid in the lungs (pulmonary edema), a your risk of developing health problems. medical emergency, with severe shortness of breath. f Exposure to Boron Trifluoride can cause headache, nausea, vomiting and diarrhea. Chronic Health Effects The following chronic (long-term) health effects can occur at some time after exposure to Boron Trifluoride and can last for months or years: Cancer Hazard f According to the information presently available to the New Jersey Department of Health, Boron Trifluoride has not been tested for its ability to cause cancer in animals. BORON TRIFLUORIDE Page 3 of 6 Workplace Controls and Practices f Where exposure to cold equipment, vapors, or liquid may occur, employees should be provided with insulated gloves Very toxic chemicals, or those that are reproductive hazards or and special clothing designed to prevent the freezing of body sensitizers, require expert advice on control measures if a less tissues. toxic chemical cannot be substituted. Control measures f All protective clothing (suits, gloves, footwear, headgear) include: (1) enclosing chemical processes for severely should be clean, available each day, and put on before work. irritating and corrosive chemicals, (2) using local exhaust ventilation for chemicals that may be harmful with a single exposure, and (3) using general ventilation to control Eye Protection exposures to skin and eye irritants. For further information on f Wear non-vented goggles when working with liquids that workplace controls, consult the NIOSH document on Control splash or when vapors and/or fumes are present. A face Banding at www.cdc.gov/niosh/topics/ctrlbanding/. shield is also required if the liquid is severely irritating or corrosive to the skin and eyes. The following work practices are also recommended: f Do not wear contact lenses when working with this substance. f Label process containers. f Provide employees with hazard information and training. Respiratory Protection f Monitor airborne chemical concentrations. Improper use of respirators is dangerous. Respirators f Use engineering controls if concentrations exceed should only be used if the employer has implemented a written recommended exposure levels. program that takes into account workplace conditions, f Provide eye wash fountains and emergency showers. requirements for worker training, respirator fit testing, and f Wash or shower if skin comes in contact with a hazardous material. medical exams, as described in the OSHA Respiratory f Always wash at the end of the workshift. Protection Standard (29 CFR 1910.134). f Change into clean clothing if clothing becomes contaminated. f Where the potential exists for exposure over 1 ppm, use a f Do not take contaminated clothing home. supplied-air respirator with a full facepiece operated in a f Get special training to wash contaminated clothing.
Recommended publications
  • Densifying Metal Hydrides with High Temperature and Pressure
    3,784,682 United States Patent Office Patented Jan. 8, 1974 feet the true density. That is, by this method only theo- 3,784,682 retical or near theoretical densities can be obtained by DENSIFYING METAL HYDRIDES WITH HIGH making the material quite free from porosity (p. 354). TEMPERATURE AND PRESSURE The true density remains the same. Leonard M. NiebylsM, Birmingham, Mich., assignor to Ethyl Corporation, Richmond, Va. SUMMARY OF THE INVENTION No Drawing. Continuation-in-part of abandoned applica- tion Ser. No. 392,370, Aug. 24, 1964. This application The process of this invention provides a practical Apr. 9,1968, Ser. No. 721,135 method of increasing the true density of hydrides of Int. CI. COlb 6/00, 6/06 metals of Groups II-A, II-B, III-A and III-B of the U.S. CI. 423—645 8 Claims Periodic Table. More specifically, true densities of said 10 metal hydrides may be substantially increased by subject- ing a hydride to superatmospheric pressures at or above ABSTRACT OF THE DISCLOSURE fusion temperatures. When beryllium hydride is subjected A method of increasing the density of a hydride of a to this process, a material having a density of at least metal of Groups II-A, II-B, III-A and III-B of the 0.69 g./cc. is obtained. It may or may not be crystalline. Periodic Table which comprises subjecting a hydride to 15 a pressure of from about 50,000 p.s.i. to about 900,000 DESCRIPTION OF THE PREFERRED p.s.i. at or above the fusion temperature of the hydride; EMBODIMENT i.e., between about 65° C.
    [Show full text]
  • Thermodynamic Hydricity of Small Borane Clusters and Polyhedral Closo-Boranes
    molecules Article Thermodynamic Hydricity of Small Borane Clusters y and Polyhedral closo-Boranes Igor E. Golub 1,* , Oleg A. Filippov 1 , Vasilisa A. Kulikova 1,2, Natalia V. Belkova 1 , Lina M. Epstein 1 and Elena S. Shubina 1,* 1 A. N. Nesmeyanov Institute of Organoelement Compounds and Russian Academy of Sciences (INEOS RAS), 28 Vavilova St, 119991 Moscow, Russia; [email protected] (O.A.F.); [email protected] (V.A.K.); [email protected] (N.V.B.); [email protected] (L.M.E.) 2 Faculty of Chemistry, M.V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, 119991 Moscow, Russia * Correspondence: [email protected] (I.E.G.); [email protected] (E.S.S.) Dedicated to Professor Bohumil Štibr (1940-2020), who unfortunately passed away before he could reach the y age of 80, in the recognition of his outstanding contributions to boron chemistry. Academic Editors: Igor B. Sivaev, Narayan S. Hosmane and Bohumír Gr˝uner Received: 6 June 2020; Accepted: 23 June 2020; Published: 25 June 2020 MeCN Abstract: Thermodynamic hydricity (HDA ) determined as Gibbs free energy (DG◦[H]−) of the H− detachment reaction in acetonitrile (MeCN) was assessed for 144 small borane clusters (up 2 to 5 boron atoms), polyhedral closo-boranes dianions [BnHn] −, and their lithium salts Li2[BnHn] (n = 5–17) by DFT method [M06/6-311++G(d,p)] taking into account non-specific solvent effect (SMD MeCN model). Thermodynamic hydricity values of diborane B2H6 (HDA = 82.1 kcal/mol) and its 2 MeCN dianion [B2H6] − (HDA = 40.9 kcal/mol for Li2[B2H6]) can be selected as border points for the range of borane clusters’ reactivity.
    [Show full text]
  • Borontrifluoride Etherate Safety Data Sheet 6160301 According to Federal Register / Vol
    Borontrifluoride etherate Safety Data Sheet 6160301 according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 02/09/2016 Version: 1.0 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Borontrifluoride etherate CAS No : 109-63-7 Product code : 6160-3-01 Formula : C4H10BF3O Synonyms : Boron trifluoride diethyl etherate Other means of identification : MFCD00013194 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Laboratory chemicals Manufacture of substances Scientific research and development 1.3. Details of the supplier of the safety data sheet SynQuest Laboratories, Inc. P.O. Box 309 Alachua, FL 32615 - United States of America T (386) 462-0788 - F (386) 462-7097 [email protected] - www.synquestlabs.com 1.4. Emergency telephone number Emergency number : (844) 523-4086 (3E Company - Account 10069) SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture Classification (GHS-US) Flam. Liq. 3 H226 - Flammable liquid and vapour Acute Tox. 4 (Oral) H302 - Harmful if swallowed Acute Tox. 1 (Inhalation) H330 - Fatal if inhaled Skin Corr. 1A H314 - Causes severe skin burns and eye damage Eye Dam. 1 H318 - Causes serious eye damage STOT SE 3 H335 - May cause respiratory irritation STOT RE 1 H372 - Causes damage to organs through prolonged or repeated exposure Full text of H-phrases: see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS02 GHS05 GHS06 GHS07 GHS08 Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H226 - Flammable liquid and vapor H302 - Harmful if swallowed H314 - Causes severe skin burns and eye damage H330 - Fatal if inhaled H335 - May cause respiratory irritation H372 - Causes damage to organs through prolonged or repeated exposure Precautionary statements (GHS-US) : P210 - Keep away from heat/sparks/open flames/hot surfaces.
    [Show full text]
  • PATENT OFFICE PROPONCACD SYNTHESS Donald J
    Patented Aug. 29, 1939 2,170,825 UNITED STATES 2,170,825PATENT OFFICE PROPONCACD SYNTHESS Donald J. Loder, Wilmington, Del, assignor to E. I. du Pont de Nenours is mington, Del, a corporation ofCompany, Delaware Wi No Drawing. Application January 27, 1938, Serial No. 18,226 8. Claims. (C. 260-532) This invention relates to an improved, process for the preparation of propionic acid and its ethyl chloride, and the like, may likewise be used, esters and particularly to the preparation of pro although due to its availability, low cost, and pionic acid by the interaction of ethanol and car adaptability I prefer to employ ethanol as the bon monoxide in the presence of boron fluoride major raw material. as the catalyst. An aqueous solution of borontrifluoride is pre An object of the invention is to provide a ferred as the catalyst, which may be made in var 5 process for the preparation of propionic acid in , ious ways such, for example, as by the solution exceedingly high yields from ethanol and carbon of boron trifluoride in water; by the interaction O monoxide. A further object of the invention is of anhydrous hydrogen fluoride with boric oxide to provide a process for preparing propionic acid or boric anhydride; or, if desired, by the intro O and its ethyl ester from ethanol and carbon mon duction of boron trifluoride as a gas directly into oxide in the presence of such proportions of water the mixture of water, ethanol, ether and/or ester and boron trifluoride that substantially 100% prior to or during the reaction.
    [Show full text]
  • Product Overview Honeywell Team Provides Expertise in the Manufacture, Transport, Delivery, and Safe Handling of BF3
    For over 70 years, Honeywell has been the trusted Boron Trifluoride source for Boron Trifluoride (BF3) supply. The Product Overview Honeywell team provides expertise in the manufacture, transport, delivery, and safe handling of BF3. The #1 Choice for BF3 Gas and Complex Our high-performance BF3 commercial and technical services team is focused on your success. Our production experience, robust supply chain, large fleet, and product stewardship commitment gives us the ability to meet your expectations. Benefits of using Honeywell BF3 include: • Reliable supply and multiple inventory locations • Experienced and dedicated technical service support • Large modern fleet built and maintained to Honeywell standards with dedicated drivers • Superior supply chain with redundancies • Emergency response expertise • High quality products – ISO 9001 certified BF3 BF3 Methanol Complex BF3 Ether Complex UN ID Number UN 1008 UN 2922 UN 3286 Shipping Information Toxic, Corrosive Corrosive liquid, Toxic, NOS Flammable Liquid, Toxic, Corrosive, NOS Shipping Name Boron Trifluoride Boron Trifluoride Methanol Complex Boron Trifluoride Diethyl Etherate Form Compressed Gas Liquid Liquid Color Dense white cloud if exposed to moisture Colorless to yellowish Colorless to pale yellow Odor Strong pungent Strong pungent Strong pungent Chemical Formula BF3 CH4BF3O C4H10BF3O Boiling Point -148°F / -100°C Not determined 258.3°F / 125.7°C Melting Point -199.1°F / -128.4°C Not determined -76.7°F / -60.4°C Flash Point Not applicable 154°F / 67.8°C < 50°F / < 10°C Molecular Weight 67.81 g/mol 99.8 g/mol 141.94 g/mol Learn more To discuss your BF3 requirements, Although Honeywell International Inc.
    [Show full text]
  • Catalytic, Thermal, Regioselective Functionalization of Alkanes and Arenes with Borane Reagents
    ACS Symposium Series 885, Activation and Functionalization of C-H Bonds, Karen I. Goldberg and Alan S. Goldman, eds. 2004. CHAP TER 8 Catalytic, Thermal, Regioselective Functionalization of Alkanes and Arenes with Borane Reagents John F. Hartwig Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107 Work in the author’s group that has led to a regioselective catalytic borylation of alkanes at the terminal position is summarized. Early findings on the photochemical, stoichiometric functionalization of arenes and alkanes and the successful extension of this work to a catalytic functionalization of alkanes under photochemical conditions is presented first. The discovery of complexes that catalyze the functionalization of alkanes to terminal alkylboronate esters is then presented, along with mechanistic studies on these system and computational work on the stoichiometric reactions of isolated metal-boryl compounds with alkanes. Parallel results on the development of catalysts and a mechanistic understanding of the borylation of arenes under mild conditions to form arylboronate esters are also presented. © 2004 American Chemical Society 136 137 1. Introduction Although alkanes are considered among the least reactive organic molecules, alkanes do react with simple elemental reagents such as halogens and oxygen.1,2) Thus, the conversion of alkanes to functionalized molecules at low temperatures with control of selectivity and at low temperatures is a focus for development of catalytic processes.(3) In particular the conversion of an alkane to a product with a functional group at the terminal position has been a longstanding goal (eq. 1). Terminal alcohols such as n-butanol and terminal amines, such as hexamethylene diamine, are major commodity chemicals(4) that are produced from reactants several steps downstream from alkane feedstocks.
    [Show full text]
  • Boranes in Organic Chemistry 2. Β-Aminoalkyl- and Β-Sulfanylalkylboranes in Organic Synthesis V.M
    Eurasian ChemTech Journal 4 (2002) 153-167 Boranes in Organic Chemistry 2. β-Aminoalkyl- and β-sulfanylalkylboranes in organic synthesis V.M. Dembitsky1, G.A. Tolstikov2*, M. Srebnik1 1Department of Pharmaceutical Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, The Hebrew University of Jerusalem, Jerusalem 91120, Israel 2Novosibirsk Institute of Organic Chemistry SB RAS, 9, Lavrentieva Ave., Novosibirsk, 630090, Russia Abstract Problems on using of β-aminoalkyl- and β-sulfanylalkylboranes in organic synthesis are considered in this review. The synthesis of boron containing α-aminoacids by Curtius rearrangement draws attention. The use of β-aminoalkylboranes available by enamine hydroboration are described. Examples of enamine desamination with the formation of alkenes, aminoalcohols and their transfor- mations into allylic alcohol are presented. These conversions have been carried out on steroids and nitro- gen containing heterocyclic compounds. The dihydroboration of N-vinyl-carbamate and N-vinyl-urea have been described. Examples using nitrogen and oxygen containing boron derivatives for introduction of boron functions were presented. The route to borylhydrazones by hydroboration of enehydrazones was envisaged. The possibility of trialkylamine hydroboration was shown on indole alkaloids and 11-azatricyclo- [6.2.11,802,7]2,4,6,9-undecatetraene examples. The synthesis of β-sulfanyl-alkylboranes by various routes was described. The synthesis of boronic thioaminoacids was carried out by free radical thiilation of dialkyl-vinyl- boronates. Ethoxyacetylene has been shown smoothly added 1-ethylthioboracyclopentane. Derivatives of 1,4-thiaborinane were readily obtained by divinylboronate hydroboration. Dialkylvinylboronates react with mercaptoethanol with the formation of 1,5,2-oxathioborepane derivatives. Stereochemistry of thiavinyl esters hydroboration leading to stereoisomeric β-sulfanylalkylboranes are discussed.
    [Show full text]
  • Synthesis and Characterization of Boron Trifluoride Doped High Performance Polyaniline
    ISSN: 0973-4945; CODEN ECJHAO E-Journal of Chemistry http://www.ejchem.net 2012, 9(4), 2332-2337 Synthesis and Characterization of Boron Trifluoride Doped High Performance Polyaniline K. BASAVAIAH1*, D. SAMSONU2, AND A. V. PRASADA RAO1 1Department of Inorganic and Analytical Chemistry, Andhra University, Visakhapatnam- 530003, India 2Departments of Organic, Foods, Drugs and Water, Andhra University, Visakhapatnam- 530003, India [email protected] Received 28 July 2011; Accepted 4 October 2011 Abstract: We report simple synthesis of boron trifluoride (BF3) doped defect free high performance polyaniline (HPPANI) in two step method. Firstly, HPPANI was prepared via self-stabilization dispersion polymerization method in a heterogeneous reaction medium. Second step involves doping of emeraldine base form of HPPANI with boron trifluoride under reduced vacuum. The resultants BF3 doped HPPANI have been well characterized by using UV- Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetry. The spectroscopic data indicated that the interaction between HPPANI and BF3.Thermogravimetry studies revealed that the BF3 doping improved the thermal stability of defects free PANI. Keywords: Conducting polymers; High performance PANI; Doping; Boron trifluoride; Thermal stability. Introduction Conducting polymers have attracted increasing attention because they offers the possibility of generation of novel materials with diverse applications for electromagnetic interference (EMI) shielding, rechargeable battery, chemical sensor, organic light emitting devices, corrosion devices, and microwave absorption1–5. Among conducting polymers, polyaniline (PANI) is the promising electrical conducting polymer due to its a broad range of tunable properties derived from its structural flexibility, good environmental stability, easy preparation in aqueous solution, and organic solvents, optical, electrical properties and unique redox chemistry6-7.
    [Show full text]
  • Chapter 13 Group 13 Elements
    Chapter 13 Group 13 Elements Physical Properties Metals Halides, oxides, hydroxides, salts of oxoacids Compounds containing nitrogen Metal boride Electron deficient borane and carborane clusters: an introduction 1 Borax Boron Relative abundances of the group 13 elements in the Earth’s crust. http://www.astro.virginia.edu/class/oconnell/LBT/ Abundances of elements in the Earth’s crusts. 2 Production of aluminium in the US between 1960 and 2008. World production (estimated) and US consumption of gallium between 1980 and 2008 3 Uses of aluminium in the US in 2008 Uses of boron in the US in 2008 Some physical properties of the group 13 elements, M, and their ions. 4 Some physical properties of the group 13 elements, M, and their ions. (Continued) α Part of one layer of the infinite lattice of -rhombohedral boron, showing the B 12 - icosahedral building blocks which are covalently linked to give a rigid, infinite lattice. 5 B 12 B12 +12B B60 B84 = B 12 B12 B60 β The construction of the B 84 -unit, the main building block of the infinite lattice of - rhombohedral boron. (a) In the centre of the unit is a B 12 -icosahedron, and (b) to each of these 12, another boron atom is covalently bonded. (c) A B60 -cage is the outer ‘skin’ of the B 84 -unit. (d) The final B 84 -unit can be described in terms of covalently bonded sub-units (B 12 )(B 12 )(B 60 ). Neutral Group 13 Hydrides Molecular compounds – BnHm B2H6 Delocalized 3-center 2-electron B-H-B interactions 6 Selected reactions of B 2H6 and Ga 2H6 GaBH 6 Gas Phase Solid State Part of one chain of the polymeric structure of crystalline GaBH 6 (X-ray diffraction at 110 K) 7 Adducts of GaH 3 t Formation of adducts RH 2N•GaH 3 (R = Me, Bu) − [Al 2H6(THF) 2] [Al(BH 4)3] [Al(BH 4)4] 8 π The formation of partial -bonds in a trigonal planar BX 3 molecule Reaction of BX 3 with a Lewis base Boron Halide Clusters B4Cl 4 B8Cl 8 B9Br 9 The family of BnXn (X = Cl, Br, I) molecules possess cluster structures.
    [Show full text]
  • Ammonia-Borane: a Promising Material for Hydrogen Storage
    0 1) Background BES021 Ammonia-Borane: a Promising Material for Hydrogen Storage H3NBH3 H2 + (H2NBH2)n H2 + (HNBH)n H2 + BN 6.5 wt% H 13.1 wt% 19.6 wt% • High storage capacity has drawn attention to hydrogen release methods and mechanisms: – Catalyzed hydrolysis – Solid thermolysis – Catalyzed solid thermolysis - Solution thermolysis in ethers and ionic liquids - Catalyzed solution thermolysis Cf. A. Staubitz et al. Chem. Rev. 2010, 110, 4079-4124. This presentation does not contain any proprietary or confidential information 2) Base-Promoted AB dehydrogenation Enhanced AB H2-Release with Proton Sponge in Ionic Liquids or Tetraglyme with Reduced Foaming o NH3BH3 + 5 mol % PS at 85 C in Ionic Liquids or Tetraglyme (250 mg) (91 mg) (250 mg) 5.60 mat. wt. % H2 pKa = 11.1 Himmelberger, D.; Yoon, C. W.; Bluhm, M. E.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. 2009, 131, 14101. Proton Sponge Increases Release Rate of Second Equivalent of H2 from AB 2nd Equiv. AB with 5 mol% PS in bmimCl at 85°C Proton Sponge Induces Loss of a Second H2- Equivalent from Thermally Dehydrogenated AB − Model Studies: AB/[Et3BNH2BH3] Reactions Show Chain Growth -H • • + − 2 - NH3BH3+ Li BEt3H Et3BNH2BH3 -H2 − NH BH [Et3BNH2BH2NH2BH3] 3 3 Mass spec and GIAO/NMR studies indicate chain growth • - X-ray structure Et3BNH2BH3 0h • 11B{1H} NMR AB • 67h • AB ★ -19.7 (q) ★ -11.0 (t) -6.1(s) DFT optimized structure of ★ − [Et3BNH2BH2NH2BH3] GIAO calculated 11B chem. shifts: -8.2, -12.0, -23.5 ppm Verkade’s Base Also Activates AB H2-Release 50 wt% bmimCl 2 Verkade’s Base of H Equiv.
    [Show full text]
  • Recovery Method and Recycling Method for Boron Trifluoride Complex
    (19) TZZ __¥_T (11) EP 2 821 137 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 07.01.2015 Bulletin 2015/02 B01J 31/40 (2006.01) B01J 38/00 (2006.01) C07C 41/58 (2006.01) C07C 43/06 (2006.01) (2006.01) (21) Application number: 13754170.2 C07F 5/02 (22) Date of filing: 01.03.2013 (86) International application number: PCT/JP2013/055731 (87) International publication number: WO 2013/129662 (06.09.2013 Gazette 2013/36) (84) Designated Contracting States: • MACHIDA, Masashi AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Chiba 2990192 (JP) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • SEKIGUCHI, Hiroki PL PT RO RS SE SI SK SM TR Chiba 2990293 (JP) Designated Extension States: • YOSHIDA, Yukio BA ME Chiba 2990293 (JP) • TSUBOUCHI, Toshiyuki (30) Priority: 02.03.2012 JP 2012047436 Chiba 2990293 (JP) (71) Applicant: Idemitsu Kosan Co., Ltd. (74) Representative: Hoffmann Eitle Chiyoda-ku Patent- und Rechtsanwälte PartmbB Tokyo 100-8321 (JP) Arabellastraße 30 81925 München (DE) (72) Inventors: • ODA, Sumihiro Chiba 2990293 (JP) (54) RECOVERY METHOD AND RECYCLING METHOD FOR BORON TRIFLUORIDE COMPLEX (57) In a reaction in which a boron trifluoride complex containing the boron trifluoride complex by separating is used as a catalyst, the expensive and harmful boron the boron trifluoride complex present in the reaction mix- trifluoride complex is separated from a reaction mixture ture by using a saturated hydrocarbon-based solvent.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]