Final Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mycotaxon the International Journal of Fungal Taxonomy & Nomenclature
MYCOTAXON THE INTERNATIONAL JOURNAL OF FUNGAL TAXONOMY & NOMENCLATURE Volume 135 (2) April–June 2020 Westerdykella aquatica sp. nov. (Song & al.— Fig. 2, p. 289) issn (print) 0093-4666 https://doi.org/10.5248/135-2 issn (online) 2154-8889 myxnae 135(2): 235–470 (2020) Editorial Advisory Board Karen Hansen (2014-2021), Chair Stockholm, Sweden Brandon Matheny (2013-2020), Past Chair Knoxville, Tennessee, U.S.A. Else Vellinga (2019–2022) Oakland, California, U.S.A. Xinli Wei (2019–2023) Beijing, China Todd Osmundson (2019–2024) La Crosse, Wisconsin, U.S.A. Elaine Malosso (2019–2025) Recife, Brazil ISSN 0093-4666 (print) ISSN 2154-8889 (online) MYCOTAXON THE INTERNATIONAL JOURNAL OF FUNGAL TAXONOMY & NOMENCLATURE April–June 2020 Volume 135 (2) http://dx.doi.org/10.5248/135-2 Editor-in-Chief Lorelei L. Norvell [email protected] Pacific Northwest Mycology Service 6720 NW Skyline Boulevard Portland, Oregon 97229-1309 USA Nomenclature Editor Shaun R. Pennycook [email protected] Manaaki Whenua Landcare Research Auckland, New Zealand Mycotaxon, Ltd. © 2020 www.mycotaxon.com & www.ingentaconnect.com/content/mtax/mt p.o. box 264, Ithaca, NY 14581-0264, USA iv ... Mycotaxon 135(2) MYCOTAXON volume one hundred thirty-five (2) — table of contents Nomenclatural novelties & typifications.............................. vii Corrigenda .....................................................viii Reviewers........................................................ix 2020 submission procedure . x From the Editor . xi Taxonomy & Nomenclature Four new Lepraria species for Iran, with a key to all Iranian species Sareh Sadat Kazemi, Iraj Mehregan, Younes Asri, Sarah Saadatmand, Harrie J.M. Sipman 235 Pluteus dianae and P. punctatus resurrected, with first records from eastern and northern Europe Hana Ševčíková, Ekaterina F. -
Full Text in Pdf Format
Vol. 651: 163–181, 2020 MARINE ECOLOGY PROGRESS SERIES Published October 1 https://doi.org/10.3354/meps13439 Mar Ecol Prog Ser OPEN ACCESS Habitat preferences, foraging behaviour and bycatch risk among breeding sooty shearwaters Ardenna grisea in the Southwest Atlantic Anne-Sophie Bonnet-Lebrun1,2,3,8,*, Paulo Catry1, Tyler J. Clark4,9, Letizia Campioni1, Amanda Kuepfer5,6,7, Megan Tierny6, Elizabeth Kilbride4, Ewan D. Wakefield4 1MARE − Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal 2Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK 3Centre d’Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, CNRS — Université de Montpellier - Université Paul-Valéry Montpellier — EPHE, 34293 Montpellier cedex 5, France 4Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK 5FIFD — Falkland Islands Fisheries Department, Falkland Islands Government, PO Box 598, Stanley, Falkland Islands, FIQQ 1ZZ, UK 6SAERI — South Atlantic Environmental Research Institute, Stanley, Falkland Islands, FIQQ 1ZZ, UK 7Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK 8Present address: British Antarctic Survey, High Cross, Madingley Road, Cambridge CB4 0ET, UK 9Present address: Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA ABSTRACT: Pelagic seabirds are important components of many marine ecosystems. The most abundant species are medium/small sized petrels (<1100 g), yet the sub-mesoscale (<10 km) distri- bution, habitat use and foraging behaviour of this group are not well understood. Sooty shearwaters Ardenna grisea are among the world’s most numerous pelagic seabirds. -
Icmadophila Aversa and Piccolia Conspersa, Two Lichen Species New to Bolivia
Polish Botanical Journal 55(1): 217–221, 2010 ICMADOPHILA AVERSA AND PICCOLIA CONSPERSA, TWO LICHEN SPECIES NEW TO BOLIVIA KARINA WILK Abstract. The species Icmadophila aversa and Piccolia conspersa are reported as new to the lichen biota of Bolivia. The studied material was collected in Madidi National Park (NW Bolivia). The species are briefl y characterized and their ecology and distribution are discussed. Key words: lichenized fungi, new records, Madidi region, Andes, South America Karina Wilk, Laboratory of Lichenology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; e-mail: [email protected] INTRODUCTION Bolivia is still one of the countries least studied While studying the material collected in the biologically, but the data already available indi- Madidi region I identifi ed two interesting lichen cate a potentially high level of biodiversity (Ibisch species – Icmadophila aversa and Piccolia con- & Mérida 2004). Knowledge of the cryptogams, spersa. The species are reported here as new to Bo- including lichens, is particularly defi cient (Feuerer livia. Brief descriptions and notes on their ecology et al. 1998). In the last decade, however, licheno- and worldwide distribution are provided. logical studies have progressed in Bolivia. The most recent works have provided many new dis- MATERIAL AND METHODS coveries: records new to the country, continent or Southern Hemisphere, and species new to The study is based on material collected in 2006–2007 in science (e.g., Ferraro 2002; Feuerer & Sipman Madidi National Park. The collection sites are located in 2005; Flakus & Wilk 2006; Flakus & Kukwa 2007; the Cordillera Apolobamba (Fig. -
The Puzzle of Lichen Symbiosis
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1503 The puzzle of lichen symbiosis Pieces from Thamnolia IOANA ONUT, -BRÄNNSTRÖM ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9887-0 UPPSALA urn:nbn:se:uu:diva-319639 2017 Dissertation presented at Uppsala University to be publicly examined in Lindhalsalen, EBC, Norbyvägen 14, Uppsala, Thursday, 1 June 2017 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Associate Professor Anne Pringle (University of Wisconsin-Madison, Department of Botany). Abstract Onuț-Brännström, I. 2017. The puzzle of lichen symbiosis. Pieces from Thamnolia. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1503. 62 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9887-0. Symbiosis brought important evolutionary novelties to life on Earth. Lichens, the symbiotic entities formed by fungi, photosynthetic organisms and bacteria, represent an example of a successful adaptation in surviving hostile environments. Yet many aspects of the lichen symbiosis remain unexplored. This thesis aims at bringing insights into lichen biology and the importance of symbiosis in adaptation. I am using as model system a successful colonizer of tundra and alpine environments, the worm lichens Thamnolia, which seem to only reproduce vegetatively through symbiotic propagules. When the genetic architecture of the mating locus of the symbiotic fungal partner was analyzed with genomic and transcriptomic data, a sexual self-incompatible life style was revealed. However, a screen of the mating types ratios across natural populations detected only one of the mating types, suggesting that Thamnolia has no potential for sexual reproduction because of lack of mating partners. -
Lichenicolous Biota (Nos 201–230)
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Fritschiana Jahr/Year: 2015 Band/Volume: 80 Autor(en)/Author(s): Hafellner Josef Artikel/Article: Lichenicolous Biota (Nos 201-230) 21-41 - 21 - Lichenicolous Biota (Nos 201–230) Josef HAFELLNER* HAFELLNER Josef 2015: Lichenicolous Biota (Nos 201–230). – Frit- schiana (Graz) 80: 21–41. - ISSN 1024-0306. Abstract: The 9th fascicle (30 numbers) of the exsiccata 'Lichenicolous Biota' is published. The issue contains ma- terial of 20 non-lichenized fungal taxa (14 teleomorphs of ascomycetes, 4 anamorphic states of ascomycetes, 2 an- amorphic states of basidiomycetes) and 9 lichenized as- comycetes, including paratype material of Dimelaena li- chenicola K.Knudsen et al. (no 223), Miriquidica invadens Hafellner et al. (no 226, 227), and Stigmidium xantho- parmeliarum Hafellner (no 210). Furthermore, collections of the type species of the following genera are distributed: Illosporiopsis (I. christiansenii), Illosporium (I. carneum), Marchandiomyces (M. corallinus), Marchandiobasidium (M. aurantiacum, sub Erythricium aurantiacum), Micro- calicium (M. disseminatum), Nigropuncta (N. rugulosa), Paralecanographa (P. grumulosa), Phaeopyxis (P. punc- tum), Placocarpus (P. schaereri), Rhagadostoma (R. li- chenicola), and Stigmidium (S. schaereri). *Institut für Pflanzenwissenschaften, NAWI Graz, Karl-Franzens-Universität, Holteigasse 6, 8010 Graz, AUSTRIA e-mail: [email protected] Introduction The exsiccata 'Lichenicolous Biota' is continued with fascicle 9, containing 30 numbers. The exsiccata covers all lichenicolous biota, i.e., it is open not only to non- lichenized and lichenized fungi, but also to myxomycetes, bacteria, and even animals, whenever they cause a characteristic symptom on their host (e.g. discoloration or galls). -
Opuscula Philolichenum, 6: 1-XXXX
Opuscula Philolichenum, 15: 56-81. 2016. *pdf effectively published online 25July2016 via (http://sweetgum.nybg.org/philolichenum/) Lichens, lichenicolous fungi, and allied fungi of Pipestone National Monument, Minnesota, U.S.A., revisited M.K. ADVAITA, CALEB A. MORSE1,2 AND DOUGLAS LADD3 ABSTRACT. – A total of 154 lichens, four lichenicolous fungi, and one allied fungus were collected by the authors from 2004 to 2015 from Pipestone National Monument (PNM), in Pipestone County, on the Prairie Coteau of southwestern Minnesota. Twelve additional species collected by previous researchers, but not found by the authors, bring the total number of taxa known for PNM to 171. This represents a substantial increase over previous reports for PNM, likely due to increased intensity of field work, and also to the marked expansion of corticolous and anthropogenic substrates since the site was first surveyed in 1899. Reexamination of 116 vouchers deposited in MIN and the PNM herbarium led to the exclusion of 48 species previously reported from the site. Crustose lichens are the most common growth form, comprising 65% of the lichen diversity. Sioux Quartzite provided substrate for 43% of the lichen taxa collected. Saxicolous lichen communities were characterized by sampling four transects on cliff faces and low outcrops. An annotated checklist of the lichens of the site is provided, as well as a list of excluded taxa. We report 24 species (including 22 lichens and two lichenicolous fungi) new for Minnesota: Acarospora boulderensis, A. contigua, A. erythrophora, A. strigata, Agonimia opuntiella, Arthonia clemens, A. muscigena, Aspicilia americana, Bacidina delicata, Buellia tyrolensis, Caloplaca flavocitrina, C. lobulata, C. -
Integrating Habitat and Partial Survey Data to Estimate the Regional Population of a Globally Declining Seabird Species, the Sooty Shearwater
Global Ecology and Conservation 17 (2019) e00554 Contents lists available at ScienceDirect Global Ecology and Conservation journal homepage: http://www.elsevier.com/locate/gecco Original Research Article Integrating habitat and partial survey data to estimate the regional population of a globally declining seabird species, the sooty shearwater * Tyler J. Clark a, , 1, Jason Matthiopoulos a, Anne-Sophie Bonnet-Lebrun b, c, Letizia Campioni d, Paulo Catry d, Ilaria Marengo e, Sally Poncet f, Ewan Wakefield a a Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK b Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK c Centre d’Ecologie Fonctionnelle et Evolutive CEFE UMR 5175, CNRS - Universite de Montpellier - Universite Paul-Valery Montpellier e EPHE, France d MARE e Marine and Environmental Sciences Centre, ISPA - Instituto Universitario, 1149-041, Lisboa, Portugal e SAERI - South Atlantic Environmental Research Institute, Stanley, Falkland Islands, FIQQ 1ZZ, UK f The Antarctic Research Trust, Stanley, Falkland Islands, FIQQ 1ZZ, UK article info abstract Article history: Many animal populations are thought to be in flux due to anthropogenic impacts. How- Received 21 November 2018 ever, censusing organisms to understand such changes is often impractical. For example, Accepted 3 February 2019 while it is thought that over half of pelagic seabird populations are declining, most breed in burrows or on cliffs, in large, remote colonies, making them difficult to count. Burrow- Keywords: nesting sooty shearwaters (Ardenna grisea) are abundant but declining in their core (South Ardenna grisea Pacific) breeding range, potentially due to introduced rodents and habitat loss. In contrast, Burrowing petrels Kidney Island, their largest colony in the Falkland Islands (Southwest Atlantic), purportedly Habitat preference Puffinus griseus grew by several orders of magnitude since the mid-1900s. -
An Evolving Phylogenetically Based Taxonomy of Lichens and Allied Fungi
Opuscula Philolichenum, 11: 4-10. 2012. *pdf available online 3January2012 via (http://sweetgum.nybg.org/philolichenum/) An evolving phylogenetically based taxonomy of lichens and allied fungi 1 BRENDAN P. HODKINSON ABSTRACT. – A taxonomic scheme for lichens and allied fungi that synthesizes scientific knowledge from a variety of sources is presented. The system put forth here is intended both (1) to provide a skeletal outline of the lichens and allied fungi that can be used as a provisional filing and databasing scheme by lichen herbarium/data managers and (2) to announce the online presence of an official taxonomy that will define the scope of the newly formed International Committee for the Nomenclature of Lichens and Allied Fungi (ICNLAF). The online version of the taxonomy presented here will continue to evolve along with our understanding of the organisms. Additionally, the subfamily Fissurinoideae Rivas Plata, Lücking and Lumbsch is elevated to the rank of family as Fissurinaceae. KEYWORDS. – higher-level taxonomy, lichen-forming fungi, lichenized fungi, phylogeny INTRODUCTION Traditionally, lichen herbaria have been arranged alphabetically, a scheme that stands in stark contrast to the phylogenetic scheme used by nearly all vascular plant herbaria. The justification typically given for this practice is that lichen taxonomy is too unstable to establish a reasonable system of classification. However, recent leaps forward in our understanding of the higher-level classification of fungi, driven primarily by the NSF-funded Assembling the Fungal Tree of Life (AFToL) project (Lutzoni et al. 2004), have caused the taxonomy of lichen-forming and allied fungi to increase significantly in stability. This is especially true within the class Lecanoromycetes, the main group of lichen-forming fungi (Miadlikowska et al. -
Pertusaria Georgeana Var. Goonooensis Is Described As New to Science
The striking rust-red colour of the surface of Porpidia macrocarpa is thought to result from a high “luxury” accumulation of iron. The species is known from New Zealand and Australia in the Southern Hemisphere and from North America, Europe, and Asia in the Northern Hemisphere. 1 mm CONTENTS ADDITIONAL LICHEN RECORDS FROM NEW ZEALAND Fryday, AM (47) Coccotrema corallinum Messuti and C. pocillarium (C.E.Cumm.) Brodo .... 3 ADDITIONAL LICHEN RECORDS FROM AUSTRALIA Archer, AW (63) Graphis cleistoblephara Nyl. and G. plagiocarpa Fée ........................... 6 Elix, JA (64) ......................................................................................................................... 8 RECENT LITERATURE ON AUSTRALASIAN LICHENS ......................................... 16 ANNOUNCEMENT AND NEWS 18th meeting of Australasian lichenologists 2008 ...................................................... 17 Ray Cranfield awarded Churchill Fellowship ............................................................ 17 ARTICLES Archer, AW; Elix, JA—Two new species in the Australian Graphidaceae (lichenized Ascomycota) ................................................................................................................... 18 Elix, JA—Further new crustose lichens (Ascomycota) from Australia ................... 21 Elix, JA; Archer, AW—A new variety of Pertusaria georgeana (lichenized Ascomy- cota) containing a new depside .................................................................................. 26 Elix, JA—A new species of Xanthoparmelia -
The Revision of Specimens of the Cladonia Pyxidata-Chlorophaea Group
Acta Mycologica DOI: 10.5586/am.1087 ORIGINAL RESEARCH PAPER Publication history Received: 2016-04-02 Accepted: 2016-12-21 The revision of specimens of the Cladonia Published: 2017-01-16 pyxidata-chlorophaea group (lichenized Handling editor Maria Rudawska, Institute of Dendrology, Polish Academy of Ascomycota) from northeastern Poland Sciences, Poland deposited in the herbarium collections of Funding Research funded by the Polish University in Bialystok Ministry of Science and Higher Education within the statutory research. Anna Matwiejuk* Competing interests Department of Plant Ecology, Institute of Biology, University of Bialystok, Konstantego No competing interests have Ciołkowskiego 1J, 15-245 Bialystok, Poland been declared. * Email: [email protected] Copyright notice © The Author(s) 2017. This is an Open Access article distributed Abstract under the terms of the Creative Commons Attribution License, In northeastern Poland, the chemical variation of the Cladonia chlorophaea-pyxi- which permits redistribution, data group was much neglected, as TLC has not been used in delimitation of spe- commercial and non- cies differing in the chemistry. As a great part of herbal material of University in commercial, provided that the article is properly cited. Bialystok from NE Poland was misidentified, I found my studies to be necessary. Based on the collection of 123 specimens deposited in Herbarium of University Citation in Bialystok, nine species of the C. pyxidata-chlorophaea group are reported from Matwiejuk A. The revision of NE Poland. The morphology, secondary chemistry, and ecology of examined li- specimens of the Cladonia pyxidata-chlorophaea group chens are presented and the list of localities is provided. The results revealed that (lichenized Ascomycota) from C. -
Lichens and Associated Fungi from Glacier Bay National Park, Alaska
The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O. -
NEW DATA ABOUT MOSSES on the SVALBARD GLACIERS Olga
NEW DATA ABOUT MOSSES ON THE SVALBARD GLACIERS Olga Belkina Polar-Alpine Botanical Garden-Institute, Kola Science Center of the Russian Academy of Sciences, Apatity, Murmansk Province, Russia; e-mail: [email protected] Rapid melting and retreat of glaciers in the Arctic is a cause of sustainable long‐ In Svalbard moss populations were found on 9 glaciers. In 2012, during re‐examination of the populations a few term existence of ablation zone on them. Sometimes these areas are the habitats In 2007 B.R.Mavlyudov collected one specimen on individuals of Bryum cryophilum Mårtensson and some plants of some mosses partly due to good availability of water and cryoconite Bertilbreen (Paludella squarrosa (Hedw.) Brid.) and of Sanionia uncinata were found among H. polare shoots in substratum. 14 species were found in this unusual habitat on Alaska and Iceland: some specimens on Austre Grønfjordbreen (Ceratodon some large cushions. Therefore the next stage of cushion Andreaea rupestris Hedw., Ceratodon purpureus (Hedw.) Brid., Ditrichum purpureus (Hedw.) Brid., Warnstorfia sarmentosa succession had begun –emergence of a di‐ and multi‐species flexicaule (Schwaegr.) Hampe, Pohlia nutans (Hedw.) Lindb., Polytrichum (Wahlenb.) Hedenäs, Sanionia uncinata (Hedw.) community. A similar process was observed earlier on the juniperinum Hedw. (Benninghoff, 1955), Racomitrium fasciculare (Hedw.) Brid. Loeske, Hygrohypnella polare (Lindb.) Ignatov & bone of a mammal that was lying on the same glacier. (=Codriophorus fascicularis (Hedw.) Bendarek‐Ochyra et Ochyra) (Shacklette, Ignatova.). Ceratodon purpureus settled in center of almost spherical 1966), Drepanocladus berggrenii (C.Jens.) Broth. (Heusser, 1972), Racomitrium In 2009 populations of two latter species were studied cushion of Sanionia uncinata on the both butt‐ends of the crispulum var.