Zinc Phosphate Cement

Total Page:16

File Type:pdf, Size:1020Kb

Zinc Phosphate Cement 2019 Self-Study Course #2 Course Course Instructions: . Read and review the course materials. Complete the 8 question test. A total of 6 questions must be answered correctly for credit. Submit your answers online at: http://dentistry.osu.edu/sms- Frequently Asked Contact Us: continuing-education Questions: . Check your email for your CE Q: Who can earn FREE CE credits? Phone certification of completion (please check your junk/spam 614-292-6737 A: EVERYONE - All dental professionals folder as well). in your office may earn free CE credits. Each person must read the course Toll Free materials and submit an online answer 1-888-476-7678 About SMS CE courses: form independently. TWO CREDIT HOURS are issued Q: Where can I find my SMS number? Fax for successful completion of this self-study course for the OSDB A: Your SMS number can be found in the 614-292-8752 2019-2021 biennium totals. upper right hand corner of your monthly reports, or, imprinted on the back of . CERTIFICATE of COMPLETION E-mail is used to document your CE your test envelopes. The SMS number is the account number for your office only, [email protected] credit and is emailed to each course participant. and is the same for everyone in the office. ALLOW 2 WEEKS for processing Web of your certificate. Q: How often are these courses dentistry.osu.edu/sms available? A: Four times per year (8 CE credits). The Ohio State University College of Dentistry is a recognized provider for ADA CERP credit. ADA CERP is a service of the American Dental Association to assist dental professionals in identifying quality providers of continuing dental education. ADA CERP does not approve or endorse individual courses or instructors, nor does it imply acceptance of credit hours by boards of dentistry. Concerns or complaints The Ohio State University about a CE provider may be directed to the provider or to the Commission for Continuing Education Provider Recognition at www.ada.org/cerp. College of Dentistry The Ohio State University College of Dentistry is approved by the Ohio State Dental Board as a 305 W. 12th Avenue permanent sponsor of continuing dental education. Columbus, OH 43210 This continuing education activity has been planned and implemented in accordance with the standards of the ADA Continuing Education Recognition Program (ADA CERP) through joint efforts between The Ohio State University College of Dentistry Office of Continuing Dental Education and the Sterilization Monitoring Service (SMS). 2019 General Review of Course Luting Agents This is an OSDB Category B: Supervised self-instruction course #2 About the Author Francisco X. Azpiazu Flores, DMD Dr. Azpiazu’s education includes Dental surgery degree from the Autonomous University of Nicaragua, a 2 –year Advanced Education in General Dentistry Program from the University of Connecticut. Currently he is enrolled in the Advanced Prosthodontics Programs of The Ohio State University where he is finishing his first year of residency. Before coming to the United States to continue his dental education he practiced general dentistry for 2 years in Nicaragua in addition to work as an assistant professor in his Alma mater in the class of Operative Dentistry and Dental Anatomy. Dr. Azpiazu can be reached at [email protected] Written by: Neither I nor my immediate family have any financial interests that Francisco X. Azpiazu, DMD would create a conflict of interest or restrict my judgement with regard to the content of this course. Edited by: Introduction Sydney Fisher, MPH Nick Kotlar, BS Dental cements have been used in dentistry since the early days of this profession. Although ‘‘no available product satisfies the requirements for an ideal luting agent,” there are some cements that have a long history of service, with proven efficiency and Release Date: reliability. Dental cements such as zinc phosphate cement, for May 13, 2019 example, have been used to cement indirect restorations for more 8:30am EST than a century with excellent results and have a well-documented clinical behavior. With the advent of newer cements with innovative formulations and “universal” indications of use, less Last Day to Take Course and less attention has been given to the more traditional types of Free of Charge: cements. Hill (2007) stated that “comprehensive patient care requires several materials” and the “choice is not always easy,” June 13, 2019 implying that the selection of the luting agent to be used must be 4:30pm EST an intelligent and practical process. A deep understanding of the different physical properties of the different types of cement available is necessary, and while a one-type-fits-all type of cement could be used for every situation, it may not be the best choice every time. In the upcoming pages of this course, a brief review of the different physical and chemical properties of the luting agents will be provided, in addition to a review of their2 use and clinical indications. Definition & Applications of Dental Cements Extracted from Proper Selection of Contemporary Dental Cements, Yu et al. (2014) Based on the 9th edition of The Glossary of Prosthodontics Terms, dental cement can be defined as a “binding element or agent used as a substance to make objects adhere to each other, something serving to firmly unite, or a material that, on hardening, will fill a space or bind adjacent objects.” According to O’Brien (2002) and McCabe & Walls (2009), the dental cements can be used as: 1. Luting agents to bond preformed restorations and orthodontic attachments in or on the tooth 2. Cavity liners and bases to protect the pulp, and foundations and anchors for restorations 3. Restorative materials 4. Root canal sealers Although there are many indications for the use of dental cements, this short course will emphasize the “luting” property of dental cements. What does luting mean? The word ‘luting’ implies the use of a moldable substance to seal a space or to cement two components together (Anusavice, Shen, & Rawls 2003). A dental luting agent can also be defined as both: 1. A viscous material placed between tooth structure and a prosthesis that hardens through chemical reactions to firmly attach the prosthesis to the tooth structure (Anusavice et al., 2003), 2. Any material used to attach or cement indirect restorations to prepared teeth (Ferro, 2017). Anusavice et al. (2003) and McCabe & Walls (2009) state that in order to guarantee an adequate clinical functionality, the luting materials must fulfill the following requirements: 1. Should be esthetic in nature. 2. Must be biocompatible without harming the tooth or its surrounding tissues. 3. Must have adequate film thickness. When compressed, the material should be able to flow between the surfaces being cemented to a thickness that allows the seating of the restoration. According to the ANSI/ADA Specification No. 96, freshly mixed cement is placed between two optically flat surfaces and a 150 Newton (N) vertical load is applied. The film should be continuous, and no voids should exist through the entire body of the film. For luting applications, the maximum allowable film thickness according to the ANSI/ADA specification No. 96 is 25µm. 4. Should allow sufficient time for mixing the material, applying to the restoration and/or tooth preparation and for seating the restoration in place in the mouth. 5. Should, ideally, give thermal and electrical insulation since many of the restoration commonly cemented to teeth are based on alloys (e.g. gold crowns). 6. Must provide retention to dental restorations on setting. The cement should provide mechanical resistance to the displacement of the restoration, and must be strong enough to resist fracture when loads are applied to the restoration. 7. Must have low solubility when exposed to the oral environment. 8. Must have adequate manipulation properties. The manipulation, including dispensation of the ingredients, should allow for some margin of error in practice and should allow easy removal when removing the excess of cement. Although some dental cements have very good physical properties and can fulfill the majority of the properties mentioned above, “no available product satisfies all the requirements for an ideal luting agent” (Hill, 2007). One of the most important functions of a luting agent is to fill the minute void between the tooth preparation (or implant abutment) and restoration interface in order to mechanically lock the restoration in place to prevent dislodgement during function (Hill, 2009; Lott, 2011). Excerpted from Phillips’ Science of Dental Materials (2003) When the prepared surface is seen in a microscope, the surfaces exhibits peaks and valleys. When two surfaces are placed against each other, there are only point contacts along the peaks leaving areas without contact between these. One of the principal objectives of dental cements is to fill and seal this spaces, for this purpose the material used should be fluid enough to flow into a continuous film without fragmentation, and should be compatible with both of the surfaces being cemented in order to prevent void development around the deep and narrow valleys of the preparation. Types of Dental Cements The American Dental Association (ADA) assesses the measurement of the clinically significant physical and chemical properties of dental materials and the development of new materials, instruments, and test methods. In 1966, the ADA Council on Dental Materials and Devices, now known as the Council on Scientific Affairs, assumed responsibility for standards development and initiated the certification of products that meet the requirements of these specifications. Such specifications are standards by which the quality and properties of particular dental materials can be gauged. These standards identify the requirements for the physical and chemical properties of a material that ensure satisfactory performance if the material is properly manipulated and used by the dentist and the dental laboratory technician.
Recommended publications
  • Clinical Study of Dental Cements. VII. a Study of Bridge Retainers Luted with Three Different Dental Cements
    Clinical Study of Dental Cements. VII. A Study of Bridge Retainers Luted with Three Different Dental Cements RALPH G. SILVEY and GEORGE E. MYERS Crown and Bridge Department, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA In a clinical study of three luting cements, the restoration could be examined for 547 bridges and 162 crowns were per- looseness. The restoration was recorded as manently cemented. Patzents were recalled successful if no looseness was detected. Pa- at 6-month intervals and the restorations tients were told to report at once should were examined for looseness. A pattern of any unusual signs or symptoms arise. retainer type, cement type and retainer success was demonstrable. Results Table 1 illustrates the rate of success of J Dent Res 57(5-6):703-707, May-June 1978. all single restorations evaluated during the study and also shows the success rate of A previous report' discussed the success each type of restoration relative to the ce- rate of three luting cements used on 547 ment used. bridges and 162 crowns. Using data col- Table 2 gives the rate of success for lected in the same study, the success rate of bridge retainers. Since a bridge generally the different types of luted retainers with consists of two or more retainers for each those cements was determined and is here- in reported. restoration and the failure of one retainer results in the failure of the restoration, no recognition is given to the retainers that re- Materials and Methods main luted in place when just restoration A description of the materials and failures are recorded.
    [Show full text]
  • Quintessence Journals
    pyr Co igh Alle Rechte vorbehaltent b y Q u in t An In Vitro Study on the Adhesion of Quartz Fiber Postsesse nz to Radicular Dentin Angelo Putignanoa/Giada Poderib/Antonio Ceruttic/Alvaro Curyd/Francesca Monticellie/ Cecilia Goraccif/Marco Ferrarig Purpose: To evaluate in vitro the bond strength at the adhesive interface between a quartz fiber post, different adhe- sive systems, and different composite cements. Materials and Methods: Thirty extracted single-rooted teeth were endodontically treated and divided into three groups (n = 10). Quartz fiber posts (DT Light-Post) were cemented with the following materials: group I: Prime & Bond NT + Self Cure Activator, and Calibra as luting cement; group II: Prime & Bond NT + Self Cure Activator, and UniFil Core; group III: UniFil Bond in combination with Unifil Core. The specimens were processed for the push-out test to evaluate bond strength at the root dentin-cement-post interface. They were sectioned along the long axis of the post into 1-mm-thick slices. A total of 60 sections was obtained from group I. Group II provided 67 slices, while group III provided 69. Load- ing was performed at a crosshead speed of 0.5 mm/min until the post segment was dislodged from the root section. Results: There was no statistically significant difference between the three experimental groups. The mean bond strength obtained for group I was 9.81 ± 5.40 MPa. For group II it was 12.06 ± 6.25 MPa, and 9.80 ± 5.01 MPa for group III. Conclusion: All the materials tested were similar in terms of providing satisfactory bond strength when used for luting fiber posts.
    [Show full text]
  • A Practical Guide to the Use of Luting Cements a Peer-Reviewed Publication Written by John O
    Earn 4 CE credits This course was written for dentists, dental hygienists, and assistants. 1992 1850s Early 1900s 1972 Resin- Zinc oxide 1900s Zinc Glass modified eugenol Zinc poly- ionomers glass phosphate carboxylate ionomers Early 2000s Self- adhesive cements A Practical Guide To The Use Of Luting Cements A Peer-Reviewed Publication Written by John O. Burgess, DDS, MS and Taneet Ghuman, BDS PennWell is an ADA CERP Recognized Provider Go Green, Go Online to take your course This course has been made possible through an unrestricted educational grant. The cost of this CE course is $59.00 for 4 CE credits. Cancellation/Refund Policy: Any participant who is not 100% satisfied with this course can request a full refund by contacting PennWell in writing. Educational Objectives a clinical success. The first change increased the strength Overall goal: The purpose of this article is to provide dental of the mixed material, allowing it to be used for permanent professionals with information on the selection and applica- cementation, and the second produced an easy-to-mix tion of luting cements. paste-paste system for provisional cementation that is still Upon completion of this course, the clinician will be able in use today.2,3 While the cement had an obtunding effect to do the following: on pulp, its disadvantages, including a high film thickness, 1. List the types of luting cements and their chemical have limited its use.4 The physical properties of dental ce- composition. ments appear in Table 1. 2. List the physical properties that affect the performance of luting cements.
    [Show full text]
  • A Castor Oil-Containing Dental Luting Agent: Effects RIF\FOLFORDGLQJDQGVWRUDJHWLPHRQÀH[XUDO Strength
    www.scielo.br/jaos http://dx.doi.org/10.1590/1678-775720140069 A castor oil-containing dental luting agent: effects RIF\FOLFORDGLQJDQGVWRUDJHWLPHRQÀH[XUDO strength Juliana dos Reis DERCELI1, Laiza Maria Grassi FAIS2, Lígia Antunes Pereira PINELLI2 1- Department of Restorative Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil. 2- Department of Dental Materials and Prosthodontics, Araraquara Dental School, Univ. Estadual Paulista - UNESP, Araraquara, SP, Brazil. Corresponding address: Lígia Antunes Pereira Pinelli - Rua Humaitá, 1680 - Centro - Araraquara - SP - Brazil - 14801-903 - Phone: +55 (16) 3301-6413 - Fax: +55 (16) 3301-6406 - e-mail: [email protected] 6XEPLWWHG)HEUXDU\0RGL¿FDWLRQ-XO\$FFHSWHG$XJXVW ABSTRACT avorable results in the use of castor oil polyurethane (COP) as pulp capping, membrane Fmaterial, sealer, mouthwash and in bone repair, associated with the fact that Ricinus communis is not derived from petroleum and it is abundant in Brazil, encourage researches LQWKHGHYHORSPHQWRIOXWLQJDJHQWV2EMHFWLYHV7KLVVWXG\FRPSDUHGWKHÀH[XUDOVWUHQJWK (FS) of a castor oil-containing dental luting agent with a weight percentage of 10% (wt%) of calcium carbonate (COP10) with RelyX ARC (RX) after mechanical cycling (MC) and distilled water storage. Material and Methods: Sixty-four specimens (25x2x2 mm) were fabricated and divided into two groups, COP10 and RX (control). Each group was divided into 4 subgroups (n=8) according to the storage time, 24 hours (24 h) or 60 days (60 d), and the performance (MC+FS) or not (only FS) of the mechanical cycling test. The FS (10 kN; 0.5 mm/min) and MC tests (10,000 cycles, 5 Hz, 0.5 mm/min) were carried out using an MTS-810 machine.
    [Show full text]
  • Clinical and Technical Considerations of Luting Agents for Fixed Prosthodontics
    International Journal of Dentistry Clinical and Technical Considerations of Luting Agents for Fixed Prosthodontics Guest Editors: Cornelis H. Pameijer, Per-Olof Glantz, and J. Anthony von Fraunhofer Clinical and Technical Considerations of Luting Agents for Fixed Prosthodontics International Journal of Dentistry Clinical and Technical Considerations of Luting Agents for Fixed Prosthodontics Guest Editors: Cornelis H. Pameijer, Per-Olof Glantz, and J. Anthony von Fraunhofer Copyright © 2012 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “International Journal of Dentistry.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Ali I. Abdalla, Egypt Nicholas Martin Girdler, UK Getulio Nogueira-Filho, Canada Jasim M. Albandar, USA Rosa H. Grande, Brazil A. B. M. Rabie, Hong Kong Eiichiro . Ariji, Japan Heidrun Kjellberg, Sweden Michael E. Razzoog, USA Ashraf F. Ayoub, UK Kristin Klock, Norway Stephen Richmond, UK John D. Bartlett, USA Manuel Lagravere, Canada Kamran Safavi, USA Marilia A. R. Buzalaf, Brazil Philip J. Lamey, UK L. P. Samaranayake, Hong Kong Francesco Carinci, Italy Daniel M. Laskin, USA Robin Seymour, UK Lim K. Cheung, Hong Kong Louis M. Lin, USA Andreas Stavropoulos, Denmark BrianW.Darvell,Kuwait A. D. Loguercio, Brazil Dimitris N. Tatakis, USA J. D. Eick, USA Martin Lorenzoni, Austria Shigeru Uno, Japan Annika Ekestubbe, Sweden Jukka H. Meurman, Finland Ahmad Waseem, UK Vincent Everts, The Netherlands Carlos A. Munoz-Viveros, USA Izzet Yavuz, Turkey Roland Frankenberger, Germany Toru Nikaido, Japan Contents Clinical and Technical Considerations of Luting Agents for Fixed Prosthodontics,CornelisH.Pameijer, Per-Olof Glantz, and J.
    [Show full text]
  • Dictionary of Geology and Mineralogy
    McGraw-Hill Dictionary of Geology and Mineralogy Second Edition McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto All text in the dictionary was published previously in the McGRAW-HILL DICTIONARY OF SCIENTIFIC AND TECHNICAL TERMS, Sixth Edition, copyright ᭧ 2003 by The McGraw-Hill Companies, Inc. All rights reserved. McGRAW-HILL DICTIONARY OF GEOLOGY AND MINERALOGY, Second Edi- tion, copyright ᭧ 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 1234567890 DOC/DOC 09876543 ISBN 0-07-141044-9 This book is printed on recycled, acid-free paper containing a mini- mum of 50% recycled, de-inked fiber. This book was set in Helvetica Bold and Novarese Book by the Clarinda Company, Clarinda, Iowa. It was printed and bound by RR Donnelley, The Lakeside Press. McGraw-Hill books are available at special quantity discounts to use as premi- ums and sales promotions, or for use in corporate training programs. For more information, please write to the Director of Special Sales, McGraw-Hill, Professional Publishing, Two Penn Plaza, New York, NY 10121-2298. Or contact your local bookstore. Library of Congress Cataloging-in-Publication Data McGraw-Hill dictionary of geology and mineralogy — 2nd. ed. p. cm. “All text in this dictionary was published previously in the McGraw-Hill dictionary of scientific and technical terms, sixth edition, —T.p.
    [Show full text]
  • Contemporary Permanent Luting Agents Used in Dentistry: a Literature Review
    Review Article Int Dent Res 2011;1:26-31 Contemporary Permanent Luting Agents Used in Dentistry: A Literature Review Ebru SÜMER1, Yalçın DEĞER2 1 Assistant, Dicle University, Faculty of Dentistry, Department of Prosthodontics, Diyarbakır, TURKEY 2 Assist. Prof., Dicle University, Faculty of Dentistry, Department of Prosthodontics, Diyarbakır, TURKEY Abstract Key Words Dental cements, luting agents, Dental cements are widely used in dentistry. Base material, temporary filling material and luting agents can all have different adhesive resin cement, resin clinical applications. Different types of cement have also been modified glass ionomer developed for various orthodontic and endodontic treatments. cement. In literature it is still argued that there is not ideal cement answering all purposes yet, so different materials are required for the comprehensive patient treatments and it is not always that easy to Correspondence: make the best choice. Ebru SÜMER The aim of this article is to provide a clinically relevant Dicle University, Dental Faculty, discussion of contemporary permanent luting agents, in order to Department of Prosthodontics, enhance the dentist’s ability to make proper cementation choices and 21280 Diyarbakir, Turkey e-mail: application. [email protected] (Int Dent Res 2011;1:26-31) Introduction Zinc phosphate, zinc oxide eugenol and silicophosphate cements were used from the early Dental cements are widely used in dentistry. twentieth century till 1970s when new cements were They can all have different clinical uses in dentistry. developed. At first polycarboxylate cement, next Cements can be used as base material, temporary glass ionomer cements and within the last thirty filling material and luting. There are also different years resin cements and resin modified glass types of cements developed to be used in ionomer cements were developed (5).
    [Show full text]
  • Review Article a Review of Luting Agents
    Hindawi Publishing Corporation International Journal of Dentistry Volume 2012, Article ID 752861, 7 pages doi:10.1155/2012/752861 Review Article A Review of Luting Agents Cornelis H. Pameijer Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut, Farmington, CT 06030, USA Correspondence should be addressed to Cornelis H. Pameijer, [email protected] Received 4 November 2011; Accepted 23 November 2011 Academic Editor: J. Anthony Von Fraunhofer Copyright © 2012 Cornelis H. Pameijer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Due to the availability of a large number of luting agents (dental cements) proper selection can be a daunting task and is usually based on a practitioner’s reliance on experience and preference and less on in depth knowledge of materials that are used for the restoration and luting agent properties. This review aims at presenting an overview of current cements and discusses physical properties, biocompatibility and other properties that make a particular cement the preferred choice depending on the clinical indication. Tables are provided that outline the different properties of the generic classification of cements. It should be noted that no recommendations are made to use a particular commercial cement for a hypothetical clinical situation. The choice is solely the responsibility of the practitioner. The appendix is intended as a guide for the practitioner towards a recommended choice under commonly encountered clinical scenarios. Again, no commercial brands are recommended although the author recognizes that some have better properties than others.
    [Show full text]
  • Evaluation of the Water Sorption and Solubility Behavior of Different Polymeric Luting Materials
    polymers Article Evaluation of the Water Sorption and Solubility Behavior of Different Polymeric Luting Materials Nawaf Labban 1,*, Rasha AlSheikh 2 , Melvin Lund 3, Bruce A. Matis 3, B. Keith Moore 3, Michael A. Cochran 3 and Jeffrey A. Platt 4 1 Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia 2 Department of Restorative Dental Science, College of Dentistry, Imam Abdulrahan Bin Faisal University, Dammam 34212, Saudi Arabia; [email protected] 3 Department of Restorative Dentistry, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; [email protected] (M.L.); [email protected] (B.A.M.); [email protected] (B.K.M.); [email protected] (M.A.C.) 4 Department of Biomedical Sciences and Comprehensive Care, Division of Dental Materials, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; [email protected] * Correspondence: [email protected]; Tel.: +966-11-467-9015; Fax: +966-11-467-8548 Abstract: Objective: The study evaluated the water sorption (WSP) and water solubility (WSL) characteristics of different luting agents over a 180-day water storage period. Materials and Methods: Nine luting materials, i.e., conventional resin cement: Panavia F (PF), Rely X ARC (RA), self-adhesive resin cement: Rely X Unicem (RU), Breez (BZ), Maxcem Elite (MX), BisCem (BC) and resin-modified glass ionomer cement: FujiCem (FC), FujiPlus (FP) Rely X luting plus (RL) were assessed and Citation: Labban, N.; AlSheikh, R.; fifty-two-disc specimens of each material were fabricated. All specimens were desiccated until a Lund, M.; Matis, B.A.; Moore, B.K.; constant weight (W0) was reached.
    [Show full text]
  • The Mineralogical Magazine
    THE MINERALOGICAL MAGAZINE AND JOUR1VAL OF THE MINERALOGICAL SOCIETY. No. 68. April, 1908. Vol. XV. On Hopeite and other zinc phosphates and associated minerals from the Broken Hill mines, North-Western .Rhodesia. By L. J. SrENC~R, M.A., F.G.S. Assistant in the Mineral Department of the :British Museum. [Read November 12, 1907.] HE new and remarkable mineral locality known as Rhodesia T Broken Hill is situated in NorLh-Western Rhodesla, at a distance of about 800 miles to tile north-east of tile Victoria Falls, and at tlw present terminus of the Cape to Cairo ]{ailway. The outcrop of lead and zinc ore which occurs here was accidentally discovered in January, 1902, by Mr. T. G. Davey, while he was prospecti,g the country for copper, l~ising out of the flat surrounding country is a series of low hills or kopjes, the largest of them being about 90 feet in height ; and these consist almost entirely of oxidized ore. The surrounding rocks are mainly crystalline limestones with some beds of sandstone, conglomerate, and phyllite. The ordinary type of ore of which the kopjes consist is compact and of a light yellowish colour. It is composed of an intimate intermixture of zinc silicate (hemimorphite) and lead carbonate (eerussitc) with variable amounts of interspersed iron hydroxide (llmonite). Crystal-lined cavities are of frequent occurrence in this ore. In the work of explora- tion, one of the tunnels driven through Kopje No. 1 broke into a large cavern, measuring about 24 x 80 feet. In this cave were found bones of recent animals, together with stone implements and other evidences of B 2 L, J.
    [Show full text]
  • Influence of Cement on Survival of All-Ceramic Restorations
    INFLUENCE OF CEMENT ON SURVIVAL OF ALL-CERAMIC RESTORATIONS THESIS Presented in Partial Fulfillment of the Requirements for The Degree of Master of Science in the Graduate School of The Ohio State University By Enas Elbahie Alakhras, B.D.S Graduate Program in Dentistry The Ohio State University 2011 Thesis Committee: Dr. Robert Seghi, DDS, MS (Advisor) Dr. William A. Brantley, PhD Dr. Noriko Katsube, PhD Copyright by Enas Mohamed Elbahie Alakhras 2011 ABSTRACT Previous research has shown that new technology in adhesive dentistry improves the performance of all-ceramic restorations. However, the major reason for failure of these restorations remains the occurrence of fractures. The overall objective of this research project was to investigate the influence of cement on the survival of all-ceramic restorations. A preliminary study was performed to evaluate the influence of the cement as a supporting structure on the survival of a simulated all-ceramic restoration. A trilayer simulation of a model restoration subjected to a clinically relevant condition of functional mastication was used. The results from the preliminary study showed that adhesively bonded specimens had higher survival rates than those conventionally cemented and that one of the adhesive cements had a significant higher survival rate than the other. Based on results from the preliminary study, three other studies were performed to investigate why adhesive cementation improves the performance of all-ceramic restorations. Results from these studies showed: (1) Resin cements had fewer defects or were void-free at the ceramic-cement interface of our ceramic model, while conventional cements showed areas of voids at the this interface.
    [Show full text]
  • Research Article Antibacterial Properties of Dental Luting Agents: Potential to Hinder the Development of Secondary Caries
    Hindawi Publishing Corporation International Journal of Dentistry Volume 2012, Article ID 529495, 7 pages doi:10.1155/2012/529495 Research Article Antibacterial Properties of Dental Luting Agents: Potential to Hinder the Development of Secondary Caries Erik Unosson,1 Yanling Cai, 2 Xiyuan Jiang,1 Jesper Lo¨of,¨ 3 Ken Welch,2 and Hakan˚ Engqvist1 1 Division of Applied Materials Science, Department of Engineering Sciences, The Angstr˚ om¨ Laboratory, Uppsala University, Box 534, 751 21 Uppsala, Sweden 2 Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, The Angstr˚ om¨ Laboratory, Uppsala University, Box 534, 751 21 Uppsala, Sweden 3 Doxa AB, Axel Johanssons Gata 4-6, 754 51 Uppsala, Sweden Correspondence should be addressed to Erik Unosson, [email protected] Received 30 November 2011; Accepted 5 January 2012 Academic Editor: Cornelis H. Pameijer Copyright © 2012 Erik Unosson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A modified direct contact test was used to evaluate the antibacterialpropertiesoffourcommerciallyavailabledentallutingagents (RelyX Unicem, Ketac Cem, Ceramir Crown & Bridge and Harvard Cement) and two reference materials (glass-ionomer cement and calcium aluminate cement) compared to a negative-control material (PMMA). Streptococcus mutans bacteria were placed in direct contact with specimens that had been aged for 10min, 1day, and 7days, in order to test the antibacterial properties of the materials. A metabolic assay containing resazurin was used to quantify the amount of viable bacteria remaining after the direct contact tests.
    [Show full text]