Qbd) Approach for Optimization and Characterization of Micro Emulsion Based Nasal Formulation of Antipsychotic/Antischizophrenic Drug- Aripiprazole

Total Page:16

File Type:pdf, Size:1020Kb

Qbd) Approach for Optimization and Characterization of Micro Emulsion Based Nasal Formulation of Antipsychotic/Antischizophrenic Drug- Aripiprazole Int. J. Pharm. Investigation, 2020;10(3):286-293 Original Article Quality by Design (QbD) Approach for Optimization and Characterization of Micro emulsion based Nasal formulation of Antipsychotic/Antischizophrenic Drug- Aripiprazole Sharada L Deore1,*, Bhushan A Baviskar1, Anjali Kide1, Ashwin D Deshmukh1, Yogita B Khandare1, Ramdas B Rode2 1Government College of Pharmacy, Amravati, Maharashtra, INDIA. 2S.M.B.T. College of Pharmacy, Dhamangaon, Nashik, Maharashtra, INDIA. ABSTRACT Introduction: Present study is focused to develop micro emulsion based helped in identifying identification robust design parameters for rapid nasal formulation of poorly water soluble antipsychotic/anti-schizophrenic development of stable aripiprazole micro emulsion. The critical quality drug Aripiprazole. Materials and Methods: Different surfactants and co attributes (CQAs) like solubility and compatibility with excipients, dosage surfactants are screened by implementing pseudo ternary phase diagram. form, particle size, turbidity, drug content and drug release have greater Effect of concentrations of four independent variables- oil (X1), Surfactant impact on the stability and therapeutic performance of micro emulsion of (X2), co-surfactant (X3) and water (X4) on two dependent variables- aripiprazole. Conclusion: Aripiprazole containing intranasal micro emulsion particle size (Y1) and drug content (Y2) is studied from surface response is successfully developed by quality by design approach for understanding the critical quality attributes and microemulsion is better alternative over plots obtained by application of Box Behnken Design Experiment. conventional delivery systems. QTPP and CQA mediated risk assessment applied to ensure desirable Key words: Aripiprazole, Micro emulsion, Intranasal, QBD, QTPP, CQA. quality, safety and efficacy of developed microemulsion. Developed microemulsion evaluated for appearance, particle size, viscosity, drug Correspondence content, pH, conductivity, drug release, zeta potential, polydispersity Dr. Sharada L Deore index, nasal toxicity and stability. Results: DoE based QBD approach lead Government College of Pharmacy, Kathora Naka, Amravati-444 604, Maharashtra, development of suitable optimized batch of Aripiprazole micro emulsion INDIA. with particle size 95.2 nm, viscosity 120 cp, pH 6.0, 90%, drug content Email: [email protected] and about 87.33% nasal permeability release within 4 hr. Risk assessment DOI: 10.5330/ijpi.2020.3.52 INTRODUCTION Aripiprazole is an atypical antipsychotic drug with chemical name Present work is focused on QBD approach based development of 7-[4-[4-(2,3-dichlorophenyl)-1-piperazinyl]butoxy]-3,4-dihydro-2(1H) effective intranasal drug delivery system for Aripiprazole in the form of quinolinone.1 It belongs to the chemical class of benzisoxazole derivatives micro emulsion. and is indicated for the management of schizophrenia. Study revealed that Aripiprazole have high affinity towards D2, D3 - Dopamine and 5 - MATERIALS AND METHODS HT serotonin receptors.2 However, the exact root cause of Schizophrenia 7 Materials is still unclear, Aripiprazole have shown significant improvement in Positive and negative symptoms in schizophrenic patients which Gift sample of Aripirazole was provided by Alembic Pharmaceuticals, indirectly suggests that dopamine and serotonin agonists helps in Vadodara. The organic solvents, excipients and other chemicals of management of schizophrenia by restoring dopamine level in frontal analytical grade were procured from S.D Fine chemicals Pvt. Ltd. cortex region of brain.2 Based on the extremely low hydrophobicity (<1 Mumbai, India. Design of Experiment (DOE), Version 7 was used for μg/mL at room temperature) and lipophilicity, it is classified as a class IV assessment of design to study optimization. Prosim software was used compound according to Biopharmaceutical Classification System (BCS). for constructing pseudo ternary diagram. It is also found that due to poor solubility drug accumulates in body Methods by 99% binding with plasma protein.3 If the solubility of Aripiprazole is enhanced, it can reduce dose frequency as well as drug deposition; also Solubility Studies enhance bioavailability of drug at targeted site.3 To select the best oil/surfactant/co surfactant for preparation of micro Micro emulsion technique offers a promising solution for solubilisation emulsion, saturated solubility studies were carried out in different oils/ of such drugs during formulation.4 Intranasal route is one of the surfactants/co surfactants.8 Excess amount of Aripiprazole was added to advanced approaches to deliver antipsychotic or neuroprotective drug 200 mg of each oil/surfactant/co surfactant in glass vial. Mixtures were directly to brain via olfactory and trigeminal nerves through cavity solicited in solicitor for 30 min. Mixture containing vials were kept in by avoiding blood brain barrier hurdle.5 QBD is now an integral part orbital shaker for 72 hr to form homogenous mixture. Samples were of formulation development at lab as well as industrial level because centrifuged at 3000 rpm for 15 min. from supernatant liquid 0.1 ml of factorial design gives best optimized batch for pilot plant scale up.6,7 solution was pipette out and diluted with ethanol. Samples were analyzed This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. International Journal of Pharmaceutical Investigation, Vol 10, Issue 3, Jul-Sep, 2020 286 Deore, et al.: Aripiprazole Microemulsion by QbD Approach by UV-Spectrometric at 255 nm wavelength against blank sample against distilled water as blank.9,15 Percentage transmittance indicates the (same concentration of oil without drug) and calculated solubility of homogenous nature and clarity of formulation. Aripiprazole. Globule size determination: The globule size was determined using photon correlation spectroscopy (PCS) with in-built Zetasizer). The Pseudo Ternary Phase Diagram instrument is based on the principle of dynamic light scattering (DLS). The pseudo ternary phase diagrams were developed by the water The technique measures particle diffusion due to Brownian motion and titration method.8 Aliquots of each surfactant and co surfactant mixture relates this to the size of the particles. The particle size is then calculated (Smix) were mixed with the oil at ambient temperature in a (2:1, 1:2, 1:1) from the translational diffusion coefficient using the Strokes-Einstein 16 ratio. For each phase diagram, the ratio of oil to the Smix was varied as 9:1, equation. 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9 (v/v). Water was added drop wise to each oil- S mixture under vigorous stirring. After equilibrium, the samples mix Table 1: Observed responses based on Box Behnken Design. were visually checked and determined as being clear micro emulsions. No heating was done during the preparation. Phase diagrams (Figure 1) Code Oil Surfactant Co- Water Particle Drug were constructed using prosim software. (X1 ) (X2) surfactant size Content (X3) (R1) (%) Formulation of Micro emulsion The trial batches of micro emulsion were prepared by phase titration F1 10 17 47.225 24 214 85.5 method.9 Initially required quantity of Aripiprazole was dissolved in appropriate quantity of oil. The mixture was homogenized and to it, F2 10 26 47.25 16 411 50 accurately weighed quantity of surfactant: co surfactant blends were F3 5 26 47.25 8 792 39 added in small portion with constant stirring. The blends were mixed thoroughly using magnetic stirrer and to it drop wise double distilled F4 10 24 34.5 24 130 83.33 water added with continuous stirring. F5 15 26 47.25 8 250 56.67 Optimization of Micro emulsion formulation F6 10 17 34.5 16 256 90 Optimization of micro emulsion formulation was explored by applying F7 10 17 47.5 8 300 43.33 response surface methodology and experimental design BBD (Box Behnken Design) using 3 level factorial designs.10-12 Polynomial F8 10 26 60 24 977 60 model was constructed for optimization of Aripiprazole keeping four independent and two dependent variables [Table 1] using Design Expert F9 5 17 34.05 16 95.2 95 (version 7.1, Stat-Ease Inc, Minneapolis, Minnesota) and analyzed F10 10 26 34.5 16 218 83.56 statistically by analysis of variance (ANOVA). F11 10 26 47.25 18 614 56.66 Independent variable Low level Medium level High level F12 10 26 47.25 16 227 75 Oleic acid(X1) 5 10 15 Tween 80(X2) 12 25.931 36 F13 10 35 47.25 8 442 92 Transcutol-p(X3) 24.5 47.5 73.5 F14 15 26 34.5 16 665 71 Water (X4) 8 16 24 F15 10 35 60 16 450 77.23 Dependent Variable - Y1 = Particle Size, Y2 = Drug Content F16 15 26 47.25 24 218 23.88 Further optimization of formulation was done by Design Expert software. F17 10 35 34.5 16 660 95 29 experiments were planned as per 34 factorial designs. Particle size and drug content was selected as a response for optimization. F18 5 26 47.25 24 178 77 F19 15 17 47.25 16 392 58.34 Quality Target Product Profile (QTPP) and Critical Quality Analysis (CQA) F20 10 35 47.25 24 509 50.05 Description of the target product profile for identity, dosage form, F21 15 26 60 16 302 75 strength, route of administration, appearance, content uniformity, pharmacokinetics, bioequivalence, assay etc is called as QTPP. CQAs F22 5 17 47.25 16 130 70.45 are usually defined properties like physicochemical and biological
Recommended publications
  • Aromaticity of Anthranil and Its Isomers, 1,2-Benzisoxazole and Benzoxazole Carmen Domene,A Leonardus W
    Tetrahedron Letters Tetrahedron Letters 46 (2005) 4077–4080 Aromaticity of anthranil and its isomers, 1,2-benzisoxazole and benzoxazole Carmen Domene,a Leonardus W. Jenneskensb,* and Patrick W. Fowlerc aPhysical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, UK bDebye Institute, Organic Chemistry and Catalysis, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands cDepartment of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, UK Received 14 February 2005; revised 28 March 2005; accepted 5 April 2005 Available online 19 April 2005 Abstract—Direct computation of the p-current density, that is, the Ôring currentÕ, of anthranil (1) and its isomers 1,2-benzisoxazole (2) and benzoxazole (3) reveals different patterns of current flow: isomers 2 and 3 sustain strong benzene-like currents in the six- membered and bifurcated flow in the five-membered ring, whereas, in keeping with its lower thermodynamic stability, 1 has only a perimeter circulation without separate monocycle currents. Although the ring current criterion does not offer a sharp distinction between 2 and 3, their difference in thermodynamic stability is identical to that between isoxazole (4) and oxazole (5) suggesting an aromaticity order 1 < 2 3. Ó 2005 Elsevier Ltd. All rights reserved. The extent to which energetic, reactivity and magnetic property underlying NICS: the current density induced criteria of aromaticity are descriptions of a single, unify- by a perpendicular magnetic field, that is, the Ôring ing property of molecules remains a matter of debate.1 currentÕ, which gives an insight into the essential differ- Anthranil (1) and its isomers 1,2-benzisoxazole (2) and ence between anthranil (1) on the one hand and its benzoxazole (3) offer a series of bicyclic molecules with two isomers 2 and 3 on the other.
    [Show full text]
  • Review of Pharmacokinetics and Pharmacogenetics in Atypical Long-Acting Injectable Antipsychotics
    pharmaceutics Review Review of Pharmacokinetics and Pharmacogenetics in Atypical Long-Acting Injectable Antipsychotics Francisco José Toja-Camba 1,2,† , Nerea Gesto-Antelo 3,†, Olalla Maroñas 3,†, Eduardo Echarri Arrieta 4, Irene Zarra-Ferro 2,4, Miguel González-Barcia 2,4 , Enrique Bandín-Vilar 2,4 , Victor Mangas Sanjuan 2,5,6 , Fernando Facal 7,8 , Manuel Arrojo Romero 7, Angel Carracedo 3,9,10,* , Cristina Mondelo-García 2,4,* and Anxo Fernández-Ferreiro 2,4,* 1 Pharmacy Department, University Clinical Hospital of Ourense (SERGAS), Ramón Puga 52, 32005 Ourense, Spain; [email protected] 2 Clinical Pharmacology Group, Institute of Health Research (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; [email protected] (I.Z.-F.); [email protected] (M.G.-B.); [email protected] (E.B.-V.); [email protected] (V.M.S.) 3 Genomic Medicine Group, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] (N.G.-A.); [email protected] (O.M.) 4 Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Citation: Toja-Camba, F.J.; 15706 Santiago de Compostela, Spain; [email protected] Gesto-Antelo, N.; Maroñas, O.; 5 Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Echarri Arrieta, E.; Zarra-Ferro, I.; 46100 Valencia, Spain González-Barcia, M.; Bandín-Vilar, E.; 6 Interuniversity Research Institute for Molecular Recognition and Technological Development,
    [Show full text]
  • The Synthesis of Tryptophan Derivatives, 2
    Graduate Theses, Dissertations, and Problem Reports 2009 The synthesis of tryptophan derivatives, 2- and/or 3-substituted indoles, progress toward dilemmaones A-C, and synthetic studies towards fistulosin via palladium-catalyzed reductive N- heteroannulation Christopher Andrew Dacko West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Dacko, Christopher Andrew, "The synthesis of tryptophan derivatives, 2- and/or 3-substituted indoles, progress toward dilemmaones A-C, and synthetic studies towards fistulosin via palladium-catalyzed reductive N-heteroannulation" (2009). Graduate Theses, Dissertations, and Problem Reports. 4454. https://researchrepository.wvu.edu/etd/4454 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. The Synthesis of Tryptophan Derivatives, 2- and/or 3- Substituted Indoles, Progress Toward Dilemmaones A-C, and Synthetic Studies Towards Fistulosin via Palladium-Catalyzed Reductive N-Heteroannulation Christopher Andrew Dacko Dissertation submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Björn C.
    [Show full text]
  • Long-Acting Injectable Antipsychotics. Review and Recent Developments
    Review Article Monica Zolezzi, BPharm, MSc. ABSTRACT Long-acting injectable antipsychotics, also known as "depots", were developed in the late 1960s as an attempt to improve compliance and long-term management of schizophrenia. Despite their availability for over 30 years, guidelines for their use and data on patients for whom long-acting injectable antipsychotics are most indicated are sparse and vary considerably. A review of the perceived advantages and disadvantages of using long-acting injectable antipsychotics is provided in this article, as well as a review of the literature to update clinicians on the current advances of this therapeutic option to optimize compliance and long-term management of chronic schizophrenia. Neurosciences 2005; Vol. 10 (2): 126-131 chizophrenia is a chronic disorder for which it is hydrolyze the esterified compound and liberates the Swell recognized that lifelong treatment with parent antipsychotic.2,9,10 Although depot antipsychotics is necessary. Although quite antipsychotics have been available for over 30 successful in treating and preventing relapses,1,2 years, guidelines for their use and data on patients antipsychotics are not readily accepted by patients, for whom long-acting injectables are most indicated thus, non-compliance is common.3,4 Thus, are sparse and vary considerably. In addition, long-acting injectable forms of these medications despite the fact that the use of depot antipsychotics were developed in an attempt to help medication has been extensively promoted to overcome patient compliance
    [Show full text]
  • Dr. James H. Reeves Dr. Pamela J. Seaton Dr. Paulo F. Almeida Dr
    COMPUTED NMR SHIELDING VALUES OF UNSATURATED FIVE-MEMBERED- HETEROCYCLIC RING COMPOUNDS AND THEIR BENZO-ANALOGS AS A MEASURE OF AROMATICITY Eddie LaReece Pittman A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Chemistry and Biochemistry University of North Carolina Wilmington 2008 Approved by Advisory Committee ______________________________Dr. James H. Reeves ______________________________ Dr. Pamela J. Seaton ______________________________ Dr. Paulo F. Almeida ______________________________ Dr. Ned H. Martin Chair Accepted by ______________________________ Dean, Graduate School TABLE OF CONTENTS ABSTRACT....................................................................................................................... iv ACKNOWLEDGEMENTS................................................................................................ v LIST OF TABLES...........................................................................................................viii LIST OF FIGURES ........................................................................................................... ix 1. INTRODUCTION .......................................................................................................... 1 2. OBJECTIVE ................................................................................................................... 8 3. EXPERIMENTAL METHODS...................................................................................
    [Show full text]
  • Chemical Names Standardization Using Neural Sequence to Sequence Model
    Under review as a conference paper at ICLR 2019 CHEMICAL NAMES STANDARDIZATION USING NEURAL SEQUENCE TO SEQUENCE MODEL Anonymous authors Paper under double-blind review ABSTRACT Chemical information extraction is to convert chemical knowledge in text into true chemical database, which is a text processing task heavily relying on chem- ical compound name identification and standardization. Once a systematic name for a chemical compound is given, it will naturally and much simply convert the name into the eventually required molecular formula. However, for many chemi- cal substances, they have been shown in many other names besides their system- atic names which poses a great challenge for this task. In this paper, we propose a framework to do the auto standardization from the non-systematic names to the corresponding systematic names by using the spelling error correction, byte pair encoding tokenization and neural sequence to sequence model. Our framework is trained end to end and is fully data-driven. Our standardization accuracy on the test dataset achieves 54.04% which has a great improvement compared to previous state-of-the-art result. 1 INTRODUCTION There are more than 100 million named chemical substances in the world. In order to uniquely identify every chemical substance, there are elaborate rules for assigning names to them on the basis of their structures. These names are called systematic names. The rules for these names are defined by International Union of Pure and Applied Chemistry (IUPAC) (Favre & Powell, 2013). However, besides the systematic name, there can be also many other names for a chemical sub- stance due to many reasons.
    [Show full text]
  • Synthesis and Biological Activities of 1,2-Benzisoxazoles and Their N- Glucosides
    Research Journal of Chemical Sciences ______________________________________________ ISSN 2231-606X Vol. 6(1), 61-68, January (2016) Res. J. Chem. Sci. Synthesis and Biological activities of 1,2-Benzisoxazoles and their N- Glucosides Yogesh V. Punatkar 1, Rajendra K. Wanare 2 and Ravin M. Jugade 1* 1Department of Chemistry, Mahatma Jyotiba Phule, Educational Campus, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur-440 033, INDIA 2 Department of Chemistry, Jawaharlal Nehru College, Wadi, Nagpur-440 023, INDIA [email protected] Available online at: www.isca.in, www.isca.me Received 30 th Augustr 2015, revised 24 th September 2015, accepted 12th November 2015 Abstract 2-oximinoacetyl-4-acetyl phenol 2 was prepared by the interaction of 2,4-diacetyl phenol 1 with hydroxylamine hydrochloride using suitable solvent. Cyclization of product 2 with acetic anhydride using N,N-Dimethylformamide afforded 3-methyl-5-acetyl-1,2-benzisoxazole 3. Nitration of compound 3 with nitrating mixture produces 3-methyl-5-acetyl-7-nitro- 1,2-benzisoxazole 4. 3-Methyl-5-acetyl-7-amine-1,2-benzisoxazole 5 was prepared by the reduction of product 4 using tin and hydrochloric acid. Different 3-methyl-5-(3̍-aryl prop-2-enoyl)-7-amine-1,2-benzisoxazoles̍ 6a-j have been synthesized by the interaction of appropriate 3-methyl-5-acetyl-7-amine-1,2-benzisoxazole 5 with different aromatic aldehydes using piperidine. The reaction of 3-methyl-5-(3̍-aryl prop-2̍-enoyl)-7-amine-1,2-benzisoxazoles 6a-j with hydrazine hydrate in alcoholic KOH to obtained 3-methyl-5-(3̍-aryl-1H- pyrazol-5̍-yl)-7-amine-1,2-benzisoxazoles 7a-j.
    [Show full text]
  • I Modulating Dopamine Receptors Subtype Selectivity by Thiophene
    Modulating Dopamine Receptors Subtype Selectivity by Thiophene and Benzothiophene based Derivatives Dissertation zur Erlangen des akademischen Grades Doctor rerum naturalium (Dr . rer . nat .) Vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät Der Friedrich-Schiller- Universität Jena Von Mohamed Abdel Fattah geboren am 6. April 1983 in Kairo I 1. Gutachter: 2. Gutachter: 3. Gutachter: Datum der Disputation: II Table OF CONTENTS Table of Contents III List of Figures VI List of Tables IX Abstract X 1. Introduction 1 1.1 Biosynthesis and metabolic fates of dopamine 1 1.2 Central functions of dopamine 3 1.2.1 Control of locomotion and motor function 4 1.2.2 Control of cognition 4 1.2.3 Prolactin regulation 5 1.2.4 Dopamine and reward system 5 1.2.5 Pain processing 6 1.2.6 Stimulation of Chemoreceptor Trigger Zone 7 1.3 Peripheral functions of dopamine 7 1.4 Dopaminergic receptors 8 1.4.1 Molecular structure of dopaminergic receptors 9 1.4.2 Mechanisms of dopaminergic receptors signaling 11 1.4.2.1 D1-like receptors signaling 12 1.4.2.2 D2-like receptors signaling 13 1.4.3 Dopaminergic receptors expression and tissue distribution 14 1.5 Dopaminergic ligands 15 1.5.1 D1-like family receptors ligands 16 III 1.5.1.1 Phenylbenzazepine derivatives 16 1.5.1.2 Tetrahydroisoquinoline derivatives 19 1.5.1.3 Indolobenzazecines and Dibenzazecines 21 1.5.2 D2-like family receptors ligands 24 1.5.2.1 4-Phenylpiperidine derivatives 28 1.5.2.2 Aminotetraline derivatives 31 1.5.2.3 Phenylpiperazine derivatives 34 1.6 Binding pockets of some dopaminergic receptors 37 2.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,981,528 Gravestock (45) Date of Patent: *Nov
    USOO5981528A United States Patent (19) 11 Patent Number: 5,981,528 Gravestock (45) Date of Patent: *Nov. 9, 1999 54). ANTIBIOTIC OXAZOLIDINONE 50735/96 10/1996 Australia ..................... CO7D 413/10 DERVATIVES 2154024 1/1996 Canada ........................ CO7D 413/04 O127902 12/1984 European Pat. Off. ...... CO7D 263/20 75 Inventor: Michael Barry Gravestock, 0184170 6/1986 European Pat. Off. ...... CO7D 263/20 0312000 4/1989 European Pat. Off. ...... CO7D 263/20 Macclesfield, United Kingdom 0316594 5/1989 European Pat. Off. ... CO7D 263/20 73 Assignee: Zeneca Limited, Kondon O352781 1/1990 European Pat. Off. ...... CO7D 263/20 (List continued on next page.) * Notice: This patent issued on a continued pros OTHER PUBLICATIONS ecution application filed under 37 CFR 1.53(d), and is subject to the twenty year Abstracts: The 1996 ICAAC (Interscience Congress of patent term provisions of 35 U.S.C. Antimicrobial Agents and Chemotherapy), New Orleans, 41, 154(a)(2). (Spe. 15–18, 1996). Ashtekar, D., et al., “Oxazolidinones, a New Class of 21 Appl. No.: 08/945,160 Synthetic Antituberculosis Agent: In vitro and in vivo Activities of DuP-721 Against Mycobacterium tuberculo 22 PCT Filed: Feb. 20, 1997 sis”, Diagn. Microbiol. Infect. Dis., 14, 465-471, (1991). 86 PCT No.: PCT/GB97/00462 Barbachyn, M., et al., “Identification of a Novel Oxazolidi none (U-100480) with Potent Antimycobacterial Activity”, S371 Date: Oct. 21, 1997 J. Medical Chemistry, 39, 680-685, (1996). Barbachyn, M., et al., “Synthesis and Antibacterial Activity S 102(e) Date: Oct. 21, 1997 of New Tropone-Substituted Phenyloxazolidinone Antibac 87 PCT Pub. No.: WO97/30995 terial Agents.
    [Show full text]
  • Download Article (PDF)
    Synthesis of New Furobenzoxazole and Furoflavone Derivatives Orchidee H. Hishmat, Khairia M. Khalil, Nabila M. A. El-Ebrashi, and Mohamed N. M. Khodeir National Research Centre, Dokki, Cairo, Egypt Z. Naturforsch. 33b, 1491-1495 (1978); received July 4, 1978 Furobenzoxazoles, Furoflavones The synthesis of visnaginone-oxime (2 a) and khellinone-oxime (2 b) is reported. Beck- mann rearrangement of 2 a and 2b using different cyclising agents was studied. Structure assignement for the produced benzoxazole derivatives and benzisoxazole derivatives was confirmed by chemical and spectral evidences. Utilization of visnaginone (la) and khelli- none (lb) for the synthesis of new furoflavone derivatives was also undertaken. It is well known that both nitrogen [1] and oxy- was obtained upon using hydrogen chloride gas in gen [2] heterocycles are eminent in the field of glacial acetic acid in the cyclization of visnaginone pharmaceutical chemistry. Compounds containing oxime (2 a). Similar treatment of the khellinone both types of heterocycles, particularly the furo- oxime (2 b) yielded the benzoxazole (3 b), however, benzoxazoles, and furobenzisoxazoles are of high as the sole reaction product. biological importance and find wide applications as 0CH3 OCH3 analgesic, antiinflammatory, muscle relaxant, bac- n—A,—N ^J^nhcoch3 tericide as well as fungicide [3]. During our in- vestigations in the benzofuran series [4], it appeared oux ncr now of interest to undertake the synthesis of some R new furobenzoxazole (3) and furobenzisoxazoles (5) 3a: R = H 4 derived from visnaginone (la) and khellinone (lb) 3b: R = 0CH respectively. This was achieved by condensing la 3 and lb with hydroxylamine, followed by cyclizing The structure of the oxazole (3 a) was confirmed the oximes 2 a and 2 b so formed, under the condi- by: (a) it is insoluble in dilute aqueous alkali and tions of Beckmann rearrangement.
    [Show full text]
  • Antipsychotics (Rxfiles).Pdf
    ANTIPSYCHOTICS (AP): Comparison Chart B Jensen BSP © www.RxFiles.ca Nov 2018 Name: Generic/TRADE GROUP Clinical ADVERSE EVENTS -AE (%) ANTI- DOSE: INITIAL/d; USUAL DOSE $ (& receptor activity) g =generic Equivalency-mg Anticholinergic Sedation Hypotension EPS EMETIC MAX/d; Elderly Dosing RANGE /Month ChlorproMAZINE LARGACTIL, g Pregnancy 25-75mg; 1000mg po 100mg po BID 12 (25 ,50 ,100 mg tab)(liquid made by some pharmacies) 100 >30 >30 >30 >10 category Aliphatic 50mg/2ml amp: D/C 2016) D2, 1, 5-HT2A Intractable: may help P L 1200mg Retinal pigmentosa 200mg po BID 14 Cholestatic jaundice <1%, Weight gain ~3-5kg, Seizures <1%, Photosensitivity <3%. Hiccups ; schizo ≥6mos ++++ Methotrimeprazine NOZINAN, g Phenothiazine 70 >30 >30 >30 >10 Mild: 5-25mg; 25mg po BID 28 (2, 5, 25, 50mg tab) + P L 1000mg po 50mg po BID 37 ⌂ (5mg/ml soln, 25mg/ml amp) H1,5HT2A Periciazine(Pericyazine) NEULEPTIL 15 >30 >30 >10 >2 ++++ 5-20mg AM + 5mg po AM + 42 (5,10,20mg cap; 10mg/ml liquid) D2 Phenothiazine 10-40mg PM po 10mg po PM FluPHENAzine MODECATE,MODITEN, g 5 >2 >2 >2 >30 + 2.5-10mg; 20mg po 1-5mg po daily 17-23 (DEPOT with preservative 125mg/5ml Vial & 15mg IM P L 2.5-12.5mg; 100mg 12.5-50mg IM/SC 35 /5ml vial 100mg/1ml amp; 1, 2 , 5mg tab) D2, 5-HT2A, 5-HT7 q4week IM/SC q2-3w q2-4w ~20mg/dCATIE Perphenazine TRILAFON, g Piperazine 4-16mg; 64mg po 8mg po BID 17 8 >10 >10 >10 >10 ++++ (2,4,8,16mg tab); (5mg/ml amp ) D2, 5-HT2A, H1 P L Trifluoperazine STELAZINE, g 6 >2 >2 >10 >30 ++++ 4-10mg; 40mg po 5mg po TID 34 P L (1,2,5,10, 20 mg tab; 10mg/ml
    [Show full text]
  • Benzisoxazole and Indazole Derivatives As
    Europäisches Patentamt *EP000833820B1* (19) European Patent Office Office européen des brevets (11) EP 0 833 820 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C07D 261/20, C07D 231/56, of the grant of the patent: A61K 31/42, A61K 31/50, 14.02.2001 Bulletin 2001/07 A61K 31/415 (21) Application number: 96915782.5 (86) International application number: PCT/US96/06851 (22) Date of filing: 14.05.1996 (87) International publication number: WO 96/39397 (12.12.1996 Gazette 1996/54) (54) BENZISOXAZOLE AND INDAZOLE DERIVATIVES AS ANTIPSYCHOTIC AGENTS BENZISOXAZOL- UND INDAZOL- DERIVATE ALS ANTIPSYCHOTIKA DERIVES DE BENZISOXAZOLE ET D’INDAZOLE UTILISES COMME AGENTS NEUROLEPTIQUES (84) Designated Contracting States: (74) Representative: VOSSIUS & PARTNER AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC Siebertstrasse 4 NL PT SE 81675 München (DE) Designated Extension States: AL LT LV SI (56) References cited: EP-A- 0 302 423 EP-A- 0 402 644 (30) Priority: 06.06.1995 US 470400 WO-A-94/12495 DE-A- 3 247 530 US-A- 4 954 503 (43) Date of publication of application: 08.04.1998 Bulletin 1998/15 • JOURNAL OF MEDICINAL CHEMISTRY, vol. 29, no. 3, 1 March 1986, pages 359-369, (73) Proprietor: Aventis Pharmaceuticals Inc. XP000561328 YEVICH J P ET AL: "SYNTHESIS Bridgewater, NJ 08807-0800 (US) AND BIOLOGICAL EVALUATION OF 1-(1,2-BENZISOTHIAZOL-3-YL)- AND (72) Inventors: (1,2-BENZISOXAZOL-3-YL)PIPERAZINE • PALERMO, Mark, G., Building 20, DERIVATIVES AS POTENTIAL ANTIPSYCHOTIC Netcong, NJ 07857 (US) AGENTS" • MARTIN, Lawrence, L.
    [Show full text]