Confounding Factors in the Detection of Species Responses to Habitat Fragmentation

Total Page:16

File Type:pdf, Size:1020Kb

Confounding Factors in the Detection of Species Responses to Habitat Fragmentation Biol. Rev. (2006), 81, pp. 117–142. f 2005 Cambridge Philosophical Society 117 doi:10.1017/S1464793105006949 Printed in the United Kingdom Confounding factors in the detection of species responses to habitat fragmentation Robert M. Ewers1,2,3* and Raphael K. Didham1 1 School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand (E-mail: [email protected]) 2 Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Panama´, Republic of Panama´ 3 Current address: Institute of Zoology, Zoological Society of London, Regents Park, London NW14RY, UK, and Department of Zoology, Cambridge University, Downing Street, Cambridge CB23EJ, UK (Received 9 November 2004; revised and accepted 19 September 2005) ABSTRACT Habitat loss has pervasive and disruptive impacts on biodiversity in habitat remnants. The magnitude of the ecological impacts of habitat loss can be exacerbated by the spatial arrangement – or fragmentation – of remaining habitat. Fragmentation per se is a landscape-level phenomenon in which species that survive in habitat remnants are confronted with a modified environment of reduced area, increased isolation and novel ecological boundaries. The implications of this for individual organisms are many and varied, because species with differing life history strategies are differentially affected by habitat fragmentation. Here, we review the extensive literature on species responses to habitat fragmentation, and detail the numerous ways in which confounding factors have either masked the detection, or prevented the manifestation, of predicted fragmentation effects. Large numbers of empirical studies continue to document changes in species richness with decreasing habitat area, with positive, negative and no relationships regularly reported. The debate surrounding such widely contrasting results is beginning to be resolved by findings that the expected positive species-area relationship can be masked by matrix-derived spatial subsidies of resources to fragment-dwelling species and by the invasion of matrix-dwelling species into habitat edges. Significant advances have been made recently in our understanding of how species interactions are altered at habitat edges as a result of these changes. Interestingly, changes in biotic and abiotic parameters at edges also make ecological processes more variable than in habitat interiors. Individuals are more likely to encounter habitat edges in fragments with convoluted shapes, leading to increased turnover and variability in population size than in fragments that are compact in shape. Habitat isolation in both space and time disrupts species distribution patterns, with consequent effects on metapopulation dynamics and the genetic structure of fragment-dwelling populations. Again, the matrix habitat is a strong determinant of fragmentation effects within remnants because of its role in regulating dispersal and dispersal- related mortality, the provision of spatial subsidies and the potential mediation of edge-related microclimatic gradients. We show that confounding factors can mask many fragmentation effects. For instance, there are multiple ways in which species traits like trophic level, dispersal ability and degree of habitat specialisation influence species- level responses. The temporal scale of investigation may have a strong influence on the results of a study, with short-term crowding effects eventually giving way to long-term extinction debts. Moreover, many fragmentation effects like changes in genetic, morphological or behavioural traits of species require time to appear. By contrast, synergistic interactions of fragmentation with climate change, human-altered disturbance regimes, species interactions and other drivers of population decline may magnify the impacts of fragmentation. To conclude, we emphasise that anthropogenic fragmentation is a recent phenomenon in evolutionary time and suggest that the final, long-term impacts of habitat fragmentation may not yet have shown themselves. * Address for correspondence: Department of Zoology, Cambridge University, Downing Street, Cambridge CB2 3EJ, UK (Tel: (+44) 1223 336675; Fax: (+44) 1223 336676; E-mail: [email protected]). 118 Robert M. Ewers and Raphael K. Didham Key words: area effects, edge effects, habitat fragmentation, habitat loss, invertebrate, isolation, matrix, shape index, synergies, time lags. CONTENTS I. Introduction ................................................................................................................................................. 118 (1) Causes of habitat fragmentation ......................................................................................................... 118 (2) Approaches to the study of fragmentation ........................................................................................ 119 (3) Structure of this review ........................................................................................................................ 119 II. Habitat area ................................................................................................................................................. 119 (1) Species-area relationships: predicting extinction rates from habitat loss ...................................... 120 (2) Landscape and extinction thresholds ................................................................................................. 122 (3) The population consequences of small habitat area ........................................................................ 122 III. Edge effects ................................................................................................................................................... 123 (1) Community composition at habitat boundaries ............................................................................... 123 (2) Edges as ecological traps ...................................................................................................................... 123 (3) Edges alter species interactions ........................................................................................................... 124 (4) Variability and hyperdynamism at edges .......................................................................................... 124 IV. Shape complexity ........................................................................................................................................ 124 V. Isolation ........................................................................................................................................................ 125 VI. Matrix effects ................................................................................................................................................ 125 (1) Can matrix quality mitigate fragmentation effects? ......................................................................... 126 (2) Matrix and dispersal ............................................................................................................................. 126 (3) Matrix and edge effects ........................................................................................................................ 127 VII. Confounding factors in the detection of fragmentation impacts .......................................................... 127 (1) Trait-mediated differences in species responses to fragmentation ................................................. 127 (2) Time lags in the manifestation of fragmentation effects .................................................................. 129 (a) Time lags in population responses to fragmentation ................................................................. 129 (b) Biogeographic factors controlling fragmentation responses ...................................................... 130 (c) Altered selection pressures and developmental instability ......................................................... 131 (3) Synergies magnify the impacts of fragmentation .............................................................................. 131 (a) Fragmentation and pollination ...................................................................................................... 131 (b) Fragmentation and disease ............................................................................................................. 132 (c) Fragmentation and climate change .............................................................................................. 132 (d ) Fragmentation and human-modified disturbance regimes ........................................................ 133 VIII. Implications for fragmentation research .................................................................................................. 133 IX. Conclusions .................................................................................................................................................. 134 X. Acknowledgements ...................................................................................................................................... 134 XI. References .................................................................................................................................................... 134 I. INTRODUCTION (1) Causes of habitat fragmentation Fragmentation, as an expression of the size and spatial The magnitude of habitat fragmentation reflects the per- arrangement of habitat patches, is not a purely anthro- vasive influence of humans
Recommended publications
  • PLUME MOTHS of AFGHANISTAN (LEPIDOPTERA, PTEROPHORIDAE) 1Altai State University, Lenina 61
    Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 183 UDC 595.7(262.81) Peter Ustjuzhanin,1,6* Vasily Kovtunovich,2 Igor Pljushtch,3 Juriy Skrylnik4, Oleg Pak5 PLUME MOTHS OF AFGHANISTAN (LEPIDOPTERA, PTEROPHORIDAE) 1Altai State University, Lenina 61. RF-656049. Barnaul, Russia. 2 Moscow Society of Nature Explorers. Home address: Russia, Moscow, 121433, Malaya Filevskaya str., 24/1, app. 20. 3Schmalhausen Institute of Zoology, National Academy of Science of Ukraine, Bogdan Khmielnitski str., 15, 01601, Kiev, Ukraine. 4 Ukrainian Research Institute of Forestry & Forest Melioration, 61024, Pushkinska str. 86, Kharkov, Ukraine. 5 Donetsk National University, Faculty of Biology, Shchors str., 46, 83050, Donetsk, Ukraine. 6*Corresponding author. E-mail: [email protected] New data on Pterophoridae from Afghanistan are considered. A checklist of Pterophoridae species of the fauna of Afghanistan is presented, as including 32 species of 14 genera. Merrifieldia tridactyla is for the first time recorded for the fauna of Afghanistan. The basic literature on the Afghanistan Pterophoridae were used in the study. Key words: Pterophoridae, plume moths, Afghanistan, fauna, new data. INTRODUCTION Many Pterophoridae as Cossidae are specific inhabitants of the arid regions of the Palaearctic. Usually deserts are good zoogeographical barriers preventing from mixing the faunas of different zoogeographical regions (Yakovlev & Dubatolov 2013; Yakovlev, 2015; Yakovlev et al., 2015). Until now there were no special publications on Pterophoridae from Afghanistan. The first description of a new species of Pterophoridae, Stenoptilia nurolhaki, from Afghanistan was in the work by Amsel (1967), In a series of works by Ernst Arenberger (1981, 1987, 1995), six new species were described from Afghanistan.
    [Show full text]
  • The Insect Fauna Associated with Horehound (Marrubium Vulgare L
    Plant Protection Quarterly Vol.15(1) 2000 21 belonging to eight orders were found feeding on the plant (Figure 2, Table 2). The insect fauna associated with horehound The insects included 12 polyphagous spe- (Marrubium vulgare L.) in western Mediterranean cies (44%), 8 oligophagous species (30%) and 7 monophagous species (26%). At the Europe and Morocco: potential for biological control larval stage, there were five root-feeding in Australia species (22%), one stem-boring species (4%), nine leaf-feeding species (39%), eight flower, ovary or seed feeding species A Jean-Louis Sagliocco , Keith Turnbull Research Institute, Victorian (34%). Based on adult feeding behaviour Department of Natural Resources and Environment, CRC for Weed there was one root-boring species (74%), Management Systems, PO Box 48, Frankston, Victoria 3199, Australia. six leaf-feeding species (40%) and eight A Previous address: CSIRO European Laboratory, Campus International de species feeding on flowers or ovaries or Baillarguet, 34980 Montferrier sur Lez, Cedex, France. seeds (53%). Wheeleria spilodactylus (Curtis) Summary were preserved. Immature stages were (Lepidoptera: Pterophoridae) Marrubium vulgare L. (Lamiaceae) was kept with fresh plant material until the Wheeleria spilodactylus was abundant at surveyed in western Mediterranean Eu- adult stage for identification. Insects most sites in France and Spain, and had rope and Morocco to identify the phy- were observed either in the field or the been recorded feeding on M. vulgare tophagous insect fauna associated with laboratory to confirm that they fed on the (Gielis 1996) and Ballota nigra (Bigot and this weed and to select species having plant. Insects were sent to museum spe- Picard 1983).
    [Show full text]
  • DISCLAIMER the IPBES Global Assessment on Biodiversity And
    DISCLAIMER The IPBES Global Assessment on Biodiversity and Ecosystem Services is composed of 1) a Summary for Policymakers (SPM), approved by the IPBES Plenary at its 7th session in May 2019 in Paris, France (IPBES-7); and 2) a set of six Chapters, accepted by the IPBES Plenary. This document contains the draft Glossary of the IPBES Global Assessment on Biodiversity and Ecosystem Services. Governments and all observers at IPBES-7 had access to these draft chapters eight weeks prior to IPBES-7. Governments accepted the Chapters at IPBES-7 based on the understanding that revisions made to the SPM during the Plenary, as a result of the dialogue between Governments and scientists, would be reflected in the final Chapters. IPBES typically releases its Chapters publicly only in their final form, which implies a delay of several months post Plenary. However, in light of the high interest for the Chapters, IPBES is releasing the six Chapters early (31 May 2019) in a draft form. Authors of the reports are currently working to reflect all the changes made to the Summary for Policymakers during the Plenary to the Chapters, and to perform final copyediting. The final version of the Chapters will be posted later in 2019. The designations employed and the presentation of material on the maps used in the present report do not imply the expression of any opinion whatsoever on the part of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Links Between the Theory of Island Biogeography and Some Other
    How Consideration of Islands Has Inspired Mainstream Ecology: Links Between the Theory of Island Biogeography and Some Other Key Theories BH Warren, National Museum of Natural History, Paris, France RE Ricklefs, University of Missouri at St. Louis, St. Louis, MO, United States C Thébaud, Paul Sabatier University, Toulouse, France D Gravel, University of Sherbrooke, Sherbrooke, QC, Canada N Mouquet, University of Montpellier, Montpellier, France © 2019 Elsevier Inc. All rights reserved. Abstract The passing of the 50th anniversary of the theory of island biogeography (IBT) has helped spur a new wave of interest in the biology of islands. Despite the longstanding acclaim of MacArthur and Wilson’s (1963, 1967) theory, the breadth of its influence in mainstream ecology today is easily overlooked. Here we summarize some of the main links between IBT and subsequent developments in ecology. These include not only modifications to the core model to incorporate greater biological complexity, but also the role of IBT in inspiring two other quantitative theories that are at least as broad in relevance—metapopulation theory and ecological neutral theory. Using habitat fragmentation and life-history evolution as examples, we also argue that a significant legacy of IBT has been in shaping and unifying ecological schools of thought. Recent years have seen a surge in interest in island biology and island biogeography theory (IBT; Losos and Ricklefs, 2010; Santos et al., 2016; Patino et al., 2017; Whittaker et al., 2017), partly motivated by the 40th and 50th anniversaries of the Core IBT model (MacArthur and Wilson, 1963) and the monograph that expanded on this model with related ideas (MacArthur and Wilson, 1967).
    [Show full text]
  • An Essay: Geoedaphics and Island Biogeography for Vascular Plants A
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 13 | Issue 1 Article 11 1991 An Essay: Geoedaphics and Island Biogeography for Vascular Plants A. R. Kruckerberg University of Washington Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Kruckerberg, A. R. (1991) "An Essay: Geoedaphics and Island Biogeography for Vascular Plants," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 13: Iss. 1, Article 11. Available at: http://scholarship.claremont.edu/aliso/vol13/iss1/11 ALISO 13(1), 1991, pp. 225-238 AN ESSAY: GEOEDAPHICS AND ISLAND BIOGEOGRAPHY FOR VASCULAR PLANTS1 A. R. KRUCKEBERG Department of Botany, KB-15 University of Washington Seattle, Washington 98195 ABSTRAcr "Islands" ofdiscontinuity in the distribution ofplants are common in mainland (continental) regions. Such discontinuities should be amenable to testing the tenets of MacArthur and Wilson's island biogeography theory. Mainland gaps are often the result of discontinuities in various geological attributes-the geoedaphic syndrome of topography, lithology and soils. To discover ifgeoedaphically caused patterns of isolation are congruent with island biogeography theory, the effects of topographic discontinuity on plant distributions are examined first. Then a similar inspection is made of discon­ tinuities in parent materials and soils. Parallels as well as differences are detected, indicating that island biogeography theory may be applied to mainland discontinuities, but with certain reservations. Key words: acid (sterile) soils, edaphic islands, endemism, geoedaphics, granite outcrops, island bio- geography, mainland islands, serpentine, speciation, topographic islands, ultramafic, vas­ cular plants, vernal pools. INTRODUCTION "Insularity is ... a universal feature of biogeography"-MacArthur and Wilson ( 196 7) Do topographic and edaphic islands in a "sea" of mainland normal environ­ ments fit the model for oceanic islands? There is good reason to think so, both from classic and recent biogeographic studies.
    [Show full text]
  • The Theory of Insular Biogeography and the Distribution of Boreal Birds and Mammals James H
    Great Basin Naturalist Memoirs Volume 2 Intermountain Biogeography: A Symposium Article 14 3-1-1978 The theory of insular biogeography and the distribution of boreal birds and mammals James H. Brown Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721 Follow this and additional works at: https://scholarsarchive.byu.edu/gbnm Recommended Citation Brown, James H. (1978) "The theory of insular biogeography and the distribution of boreal birds and mammals," Great Basin Naturalist Memoirs: Vol. 2 , Article 14. Available at: https://scholarsarchive.byu.edu/gbnm/vol2/iss1/14 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist Memoirs by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. THE THEORY OF INSULAR BIOGEOGRAPHY AND THE DISTRIBUTION OF BOREAL BIRDS AND MAMMALS James H. Brown 1 Abstract.—The present paper compares the distribution of boreal birds and mammals among the isolated mountain ranges of the Great Basin and relates those patterns to the developing theory of insular biogeography. The results indicate that the distribution of permanent resident bird species represents an approximate equilib- rium between contemporary rates of colonization and extinction. A shallow slope of the species-area curve (Z = 0.165), no significant reduction in numbers of species as a function of insular isolation (distance to nearest conti- nent), and a strong dependence of species diversity on habitat diversity all suggest that immigration rates of bo- real birds are sufficiently high to maintain populations on almost all islands where there are appropriate habitats.
    [Show full text]
  • History of Insular Ecology and Biogeography - Harold Heatwole
    OCEANS AND AQUATIC ECOSYSTEMS- Vol. II - History of Insular Ecology and Biogeography - Harold Heatwole HISTORY OF INSULAR ECOLOGY AND BIOGEOGRAPHY Harold Heatwole North Carolina State University, Raleigh, North Carolina, USA Keywords: islands; insular dynamics; One Tree Island; Aristotle; Darwin; Wallace; equilibrium theory; biogeography; immigration; extinction; species-turnover; stochasticism; determinism; null hypotheses; trophic structure; transfer organisms; assembly rules; energetics. Contents 1. Ancient and Medieval Concepts: the Birth of Insular Biogeography 2. Darwin and Wallace: the Dawn of the Modern Era 3. Genetics and Insular Biogeography 4. MacArthur and Wilson: the Equilibrium Theory of Insular Biogeography 5. Documenting and Testing the Equilibrium Theory 6. Modifying the Equilibrium Theory 7. Determinism versus Stochasticism in Insular Communities 8. Insular Energetics and Trophic Structure Stability Glossary Bibliography Biographical Sketch Summary In ancient times, belief in spontaneous generation and divine creation dominated thinking about insular biotas. Weaknesses in these theories let to questioning of those ideas, first by clergy and later by scientists, culminating in Darwin's and Wallace's postulation of evolution through natural selection. MacArthur and Wilson presented a dynamic equilibrium model of insular ecology and biogeography that represented the number of species on an island as an equilibrium between immigration and extinction rates, as influenced by insular sizes and distances from mainlands. This model has been tested and found generally true but requiring minor modifications, such as accounting for disturbancesUNESCO affecting the equilibrium nu–mber. EOLSS There has been basic controversy as to whether insular biotas reflect deterministic or stochastic processes. It is likely that neither extreme SAMPLEis completely correct but rather CHAPTERS the two kinds of processes interact.
    [Show full text]
  • Disturbance and Resilience in the Luquillo Experimental Forest
    Biological Conservation 253 (2021) 108891 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Disturbance and resilience in the Luquillo Experimental Forest Jess K. Zimmerman a,*, Tana E. Wood b, Grizelle Gonzalez´ b, Alonso Ramirez c, Whendee L. Silver d, Maria Uriarte e, Michael R. Willig f, Robert B. Waide g, Ariel E. Lugo b a Department of Environmental Science, University of Puerto Rico, Río Piedras, PR 00921, Puerto Rico b USDA Forest Service International Institute of Tropical Forestry, Río Piedras, PR 00926, Puerto Rico c Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, United States of America d Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, United States of America e Department of Ecology, Evolution and Environmental Biology, Columbia University, United States of America f Institute of the Environment and Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT 06269, United States of America g Department of Biology, University of New Mexico, Albuquerque, NM 87131, United States of America ARTICLE INFO ABSTRACT Keywords: The Luquillo Experimental Forest (LEF) has a long history of research on tropical forestry, ecology, and con­ Biogeochemistry servation, dating as far back as the early 19th Century. Scientificsurveys conducted by early explorers of Puerto Climate change Rico, followed by United States institutions contributed early understanding of biogeography, species endemism, Drought and tropical soil characteristics. Research in the second half of the 1900s established the LEF as an exemplar of Food web forest management and restoration research in the tropics. Research conducted as part of a radiation experiment Gamma radiation Hurricane funded by the Atomic Energy Commission in the 1960s on forest metabolism established the field of ecosystem Landslide ecology in the tropics.
    [Show full text]
  • Microlepidoptera.Hu Redigit: Fazekas Imre
    Microlepidoptera.hu Redigit: Fazekas Imre 5 2012 Microlepidoptera.hu A magyar Microlepidoptera kutatások hírei Hungarian Microlepidoptera News A journal focussed on Hungarian Microlepidopterology Kiadó—Publisher: Regiograf Intézet – Regiograf Institute Szerkesztő – Editor: Fazekas Imre, e‐mail: [email protected] Társszerkesztők – Co‐editors: Pastorális Gábor, e‐mail: [email protected]; Szeőke Kálmán, e‐mail: [email protected] HU ISSN 2062–6738 Microlepidoptera.hu 5: 1–146. http://www.microlepidoptera.hu 2012.12.20. Tartalom – Contents Elterjedés, biológia, Magyarország – Distribution, biology, Hungary Buschmann F.: Kiegészítő adatok Magyarország Zygaenidae faunájához – Additional data Zygaenidae fauna of Hungary (Lepidoptera: Zygaenidae) ............................... 3–7 Buschmann F.: Két új Tineidae faj Magyarországról – Two new Tineidae from Hungary (Lepidoptera: Tineidae) ......................................................... 9–12 Buschmann F.: Új adatok az Asalebria geminella (Eversmann, 1844) magyarországi előfordulásához – New data Asalebria geminella (Eversmann, 1844) the occurrence of Hungary (Lepidoptera: Pyralidae, Phycitinae) .................................................................................................. 13–18 Fazekas I.: Adatok Magyarország Pterophoridae faunájának ismeretéhez (12.) Capperia, Gillmeria és Stenoptila fajok új adatai – Data to knowledge of Hungary Pterophoridae Fauna, No. 12. New occurrence of Capperia, Gillmeria and Stenoptilia species (Lepidoptera: Pterophoridae) ……………………….
    [Show full text]
  • TAXONOMIC and BIOLOGICAL STUDIES of PTEROPHORIDAE of JAPAN (Lepidoptera)1
    Pacific Insects 5 (1) : 65-209 April 30, 1963 TAXONOMIC AND BIOLOGICAL STUDIES OF PTEROPHORIDAE OF JAPAN (Lepidoptera)1 By Koji Yano ENTOMOLOGICAL LABORATORY, FACULTY OF AGRICULTURE, KYUSHU UNIVERSITY, FUKUOKA, JAPAN Abstract: The present paper treats 57 species belonging to 18 genera of the Japanese Pterophoridae. Fourteen new species are described, 4 species are recorded for the first time from Japan and 3 new synonyms are proposed. The larvae and pupae of 20 species belong­ ing to 13 and 12 genera respectively are described as well as the biological notes of them. Eleven species are injurious to the useful plants. Forty-two host plants including those after the previous records are listed. Keys to subfamilies, genera and species for adults are given. Preliminary keys to subfamilies for both the larvae and pupae, those to genera of 2 sub­ families for larvae and to genera of 1 subfamily for pupae are also given. CONTENTS page Introduction 66 Acknowledgements 66 Historical review 67 Systematics 68 Characters of the family 68 Adult 68 Mature larva 69 Pupa 71 Biology 72 Subdivision of the family 72 Subfamily Agdistinae 74 Subfamily Platyptiliinae 80 Subfamily Pterophorinae 167 Notes on the host plants and economic significance 202 A list of the species of the Japanese Pterophoridae 203 References 205 1. Contribution Ser. 2, No. 163, Entomological Laboratory, Kyushu University. 66 Pacific Insects Vol. 5, no. 1 INTRODUCTION Since the publications of Dr. S. Matsumura's great work entitled " 6000 Illustrated In­ sects of Japan-Empire", in which 24 species including 21 new species of the family Ptero­ phoridae from Japan, Korea and Formosa were illustrated, and the excellent papers written by Mr.
    [Show full text]
  • Testing Predictions of Island Biogeography Theory in Tropical
    TESTING PREDICTIONS OF ISLAND BIOGEOGRAPHY THEORY IN TROPICAL PREMONTANE FOREST FRAGMENTS by LUANNA B. G. PREVOST (Under the Direction of Chris J. Peterson) ABSTRACT Habitat fragmentation is a major threat to biodiversity and a prevalent disturbance in tropical premontane forest landscapes, yet fragmentation impacts in premontane forests are poorly understood. To understand plant responses to fragmentation, I examined fragmentation impacts using a traditional conceptual framework, island biogeography theory, along with more recent concepts about fragmentation impacts, edge effects and matrix influences. In my first study, I tested island biogeography theory predictions for herbaceous plant and tree species richness in fragments of varying in size and isolation distance from 1 to 209 hectares, and 0.5 to 6.7km, respectively. Contrary to predictions of the theory, I found that there was no relationship between species richness and fragment size or species richness and isolation distance. Examination of the plant community composition revealed an increase in pioneer tree species in small size classes indicating a possible shift of the forest fragment community to a more successional and less mature forest after fragmentation. In my second study, I address the impact of the surrounding matrix on the microclimate and plant composition from the edge to the forest interior. I observed a narrow edge effect in microclimate and species composition extending 10m into the forest fragment. Within 10m from the edge and into the fragment I observed more weedy herbaceous species and a greater proportion of pioneer trees, indicating a shift in plant composition near edges as a result of fragmentation. My final study examines fragmentation using a landscape approach to understand the relationship between matrix (landscape) characteristics and plant composition in fragments.
    [Show full text]
  • Supplementary Material
    Supplementary material Characteristics of included studies The characteristics of studies included in the review are detailed in tables and appendices within the review. Note that these references are included in the list below along with studies that were rejected upon reading at full text/abstract (reasons for rejection were not recorded). References retrieved from electronic searching assessed at full text/abstract (1890). Science 16 (393): 95. (1897). "Notes and Abstracts." American Journal of Sociology 3(3): 410-416. (1909). The Musical Times 50 (800): 661. (1909). "Scientific Notes and News." Science 29 (753): 892-894. (1915). "Notes." Journal of the Society of Comparative Legislation 15 (1): 48- 64. (1918). "The Ecology of Scrub." The Journal of Ecology 6(3): 234. (1932). "Notices of Publications on Animal Ecology." The Journal of Animal Ecology 1(2): 194-207. (1936). "Notices of Publications on Animal Ecology." The Journal of Animal Ecology 5(2): 402-418. (1938). "Ecological Literature Received." Ecology 19 (1): 161-163. (1939). "Summer Meeting at Aberystwyth." The Journal of Animal Ecology 8(1): 210-211. (1939). "Summer Meeting at Aberystwyth, 16-21 July 1938." The Journal of Ecology 27 (1): 246-247. (1944). "Nature Conservation and Nature Reserves." The Journal of Animal Ecology 13 (1): 1-25. (1945). "Acer Campestre L." The Journal of Ecology 32 (2): 239-252. (1948). "Notices of Publications on the Animal Ecology of the British Isles." The Journal of Animal Ecology 17 (2): 265-276. (1958). "6. Studies on Behaviour." The Journal of Animal Ecology 27 (1): 189- 190. (1965). "1. Ecological Surveys and the Relations of Animals to Habitat Conditions." The Journal of Animal Ecology 34 (3): 754-761.
    [Show full text]