bioRxiv preprint doi: https://doi.org/10.1101/251926; this version posted January 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A constraint-based model reveals hysteresis in island biogeography Joseph R. Burger*, Robert P. Anderson, Meghan A. Balk, and Trevor S. Fristoe Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA; North Carolina Museum of Natural Sciences, Raleigh, NC 27601 USA (JRB;
[email protected]) Department of Biology, City College of New York, City University of New York, New York, NY 10031 USA; Program in Biology, Graduate Center, City University of New York, New York, NY 10016 USA; and Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, New York, NY 10024 USA (RPA;
[email protected]) Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 (MAB;
[email protected]) Department of Biology, Washington University in St. Louis, St. Louis, MO 63130 USA (TSF;
[email protected]) *Corresponding author:
[email protected] Running title: Hysteresis in island biogeography Abstract Aim: We present a Constraint-based Model of Dynamic Island Biogeography (C-DIB) that predicts how species functional traits interact with dynamic environments to determine the candidate species available for local community assembly on real and habitat islands through time. Location: Real and habitat islands globally. Methods: We develop the C-DIB model concept, synthesize the relevant literature, and present a toolkit for evaluating model predictions for a wide variety of “island” systems and taxa.