Chapter 10 Gene Flow and the Evolutionary Ecology of Passively

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 10 Gene Flow and the Evolutionary Ecology of Passively Chapter 10 Gene flow and the evolutionary ecology of passively dispersing aquatic invertebrates Beth Okamura and Joanna R. Freeland Introduction Apart from a relatively small number of ancient inland bodies of water, most fresh- water lakes originated during the last glaciation and will eventually disappear due to processes such as infilling with sediments and encroachment of marginal vegetation (Wetzel 1975). Therefore, to ensure long-term persistence, most freshwater organ- isms must at least occasionally disperse to and colonize new sites, and the wide- spread distribution of many species is indicative of such events (Darwin 1859; Pennak 1989). However, as dispersal is notoriously difficult to assess, its extent and frequency are poorly understood. This ignorance significantly compromises our understanding of both population structure and population dynamics. This chapter will review the evidence for,and assess the biological significance of, intersite dispersal and gene flow by invertebrates that inhabit lakes and ponds. We begin by broadly considering how variation in the frequency and scale of dispersal affects population and community structures. We briefly review dispersal mecha- nisms of freshwater invertebrates, and then focus on our own research programme on dispersal, gene flow and the metapopulation ecology of freshwater bryozoans. This is followed by a review of dispersal in freshwater zooplankton,an approach that allows us to compare and contrast the significance and extent of dispersal and gene flow for groups that differ in ecology and life history. Frequency and scale of dispersal Research over the last decade on the spatial ecology of populations and communities has revealed that a profound influence may be exerted by the frequency and scale of dispersal. Much of the research at the population level has focused on metapopula- tion dynamics, whereas community ecologists have focused on the relative impor- tance of regional verus local influences on patterns of species richness. Dispersal and metapopulation structure Since many organisms occur in a series of discrete and isolated sites, the metapopu- 194 195 Occupied sites Unoccupied sites Figure 10.1 Schematic representation of a classic metapopulation. Populations within local sites go extinct and are recolonized through dispersal (shown by arrows) from other currently occupied sites within the metapopulation. The pattern of site occupation varies over time with dispersal playing a crucial role in linking subpopulations within the metapopulation. lation concept (Levins 1969, 1970) has been increasingly applied by ecologists to describe the dynamics of subdivided populations. Levins’ classic metapopulation model demonstrated that, in a collection of subdivided populations, the fraction of habitat patches occupied at any one time results from a balance of the rate at which local populations go extinct and the rate of colonization of empty patches (Fig.10.1) (Hanski 1989). Since all local populations are subject to extinction, persistence ap- plies only at regional scales (Hanski & Simberloff 1997). Dispersal lies at the heart of metapopulation dynamics since it determines which habitat patches collectively comprise a metapopulation at any given time. Although metapopulation dynamics are believed to apply to many populations, conformation to the classic metapopulation model appears to be relatively rare (Harrison & Taylor 1997; Bullock et al., this volume). Further refinements of the classic model include effects such as variation in patch size or quality on extinction probabilities (e.g. island–mainland and source–sink metapopulations), the influ- ence of interspecific interactions on rates of local extinction and colonization, and spatially dependent variation in the probability of dispersal between sites (e.g. step- 196 . . ping stone and other spatially explicit models) (for reviews see Hanski & Simberloff 1997;Hanski 1999).The latter developments can account for effects of the vagility of species and landscape structure. Thus, whether a series of patches represent sepa- rate, independent populations, true metapopulations or ‘patchy populations’ (uni- tary populations within which there are discrete patches of resources; Menéndez & Thomas 2000) will be influenced by the frequency and scale of dispersal across the landscape. The frequency and scale of dispersal and accompanying gene flow will also influ- ence patterns of genetic differentiation (Slatkin 1987). Thus, patchy populations should converge towards panmixia given frequent gene flow, and there will be little genetic differentiation among local populations. At intermediate levels, gene flow will link subpopulations within a metapopulation, and moderate levels of genetic differentiation are expected due to, for example, founder effects, genetic drift and local selection. Finally, in independent populations genetic differentiation should ultimately lead to speciation. Dispersal and patterns of species richness Consideration of dispersal at the community level provides the basis for regional versus local patterns of species richness.Patterns of species composition among sites may reflect the extent to which dispersal and local interactions limit local diversity (for reviews see Cornell & Karlson 1997; Srivastava 1999). If dispersal rates greatly exceed local extinction probabilities for many species, then nearly all species in the region that are capable of invading the site should be present. Local processes will then determine species diversity and composition within patches. In this case, local species richness will approach an upper asymptote with increasing regional richness (Fig. 10.2) (Cornell & Lawton 1992). However,if dispersal is rare,then many species may be absent. Local species composition in this case will depend on a site’s history of colonization,and local interactions may be relatively unimportant (Ricklefs 1987; Cornell & Lawton 1992; Cornell & Karlson 1997). Species composition will then be undersaturated, and local species richness will increase continuously with increas- ing richness of the regional pool of species (Fig. 10.2). Such communities are con- sidered to be dispersal limited and under strong regional control. Linear, positive relationships in support of dispersal limitation have been discerned in a diversity of systems in marine, freshwater and terrestrial environments (Cornell & Karlson 1997; Srivastava 1999). How do freshwater invertebrates disperse? Intersite dispersal of freshwater invertebrates can be achieved by active or passive means (for review see Bilton et al. 2001). Active dispersal occurs through self- generated movements of organisms, mainly exemplified by aerial flight of adult in- sects. Passive dispersal is achieved by means of external agents, including floods, wind and animal vectors. Most non-insect invertebrates of lakes and ponds colonize new sites through the passive dispersal of small, dormant propagules (Williams 197 Unsaturated communities Local species richness Saturated communities Regional species richness Figure 10.2 In unsaturated communities local species richness is predicted to be a fixed proportion of regional species richness. In saturated communities,local richness may increase with regional richness but will reach an upper limit at higher regional richness. (Adapted from Srivastava 1999.) 1987). These propagules are typically highly resistant to desiccation and extremes of temperature and often show apparent adaptations to increase the likelihood of at- tachment to animal vectors. Thus, many propagules display features such as hooks, spines and sticky surfaces (Fig. 10.3); avoidance of deposition in bottom sediments through buoyancy; and accumulations of large numbers at times that coincide with peaks of waterfowl annual migrations (Bilton et al. 2001). Dispersal, life history and population genetic structure in freshwater bryozoans The life history of freshwater bryozoans Freshwater bryozoans are benthic, hermaphroditic, colonial invertebrates and are common, but overlooked, residents of freshwater habitats (Wood 1991). Their life cycle involves a high degree of clonal reproduction through colony growth by bud- ding of new zooids, colony fission or fragmentation, and the asexual production of large numbers of resistant propagules, called statoblasts. Statoblasts represent both an overwintering and dispersal stage (Fig. 10.3). Small colonies emerge from stato- blasts when favourable conditions return in the following growing season.Sexual re- production is brief in duration and results in short-lived, swimming larvae that can 198 . . Figure 10.3 Scanning electron micrograph of statoblasts of Cristatella mucedo. Scale bar = 400mm. disperse within a site before metamorphosing into a small colony. The early sea- sonal occurrence of sex in bryozoans is unusual. The majority of freshwater inverte- brate groups undergo a late season sexual phase which is viewed to be adaptive in that it results in the production of maximal genetic variation at a time that coincides with unpredictable conditions (Lynch & Spitze 1994). Thus, when conditions deteriorate,zooplankton taxa undergo a sexual phase to produce dormant,resistant embryos that will hatch out the following season. Population genetic studies of Cristatella mucedo The bryozoan Cristatella mucedo occurs as elongate,gelatinous colonies in lakes and ponds throughout the Holarctic. This widespread distribution has allowed our population genetics studies to be conducted over large spatial scales;
Recommended publications
  • Quantifying the Relative Importance of Competition, Predation, and Environmental Variation for Species Coexistence
    bioRxiv preprint doi: https://doi.org/10.1101/797704; this version posted October 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Quantifying the relative importance of competition, predation, and environmental variation for species coexistence Lauren G. Shoemaker1, corresponding author email: [email protected], phone: (970)-691-0459, fax: NA 2Botany Department, University of Wyoming, Laramie, WY, 82071 Allison K. Barner2;3, corresponding author email: [email protected], fax: NA 2Department of Environmental Science, Policy, and Management University of California, Berkeley, Berkeley, CA, 94720 3Department of Biology, Colby College, Waterville, ME, 04901 Leonora S. Bittleston4;5 email: [email protected] 4Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139 5Department of Biological Sciences, Boise State University, Boise, ID, 83725 Ashley I. Teufel6;7 email: [email protected] 6Santa Fe Institute, Santa Fe, NM, 87501 7Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712 Data accessibility statement: All code to replicate this study can currently be found on GitHub at https://github.com/lash1937/foodwebs_env_variation_coexistence. Upon acceptance, code will be archived on Zenodo. Running Title: Competition and predation affect coexistence Keywords: Coexistence theory, ecological networks, species interactions stabilizing mechanisms, environmental fluctuations, diamond model, storage effect 1 bioRxiv preprint doi: https://doi.org/10.1101/797704; this version posted October 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • PLUME MOTHS of AFGHANISTAN (LEPIDOPTERA, PTEROPHORIDAE) 1Altai State University, Lenina 61
    Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 183 UDC 595.7(262.81) Peter Ustjuzhanin,1,6* Vasily Kovtunovich,2 Igor Pljushtch,3 Juriy Skrylnik4, Oleg Pak5 PLUME MOTHS OF AFGHANISTAN (LEPIDOPTERA, PTEROPHORIDAE) 1Altai State University, Lenina 61. RF-656049. Barnaul, Russia. 2 Moscow Society of Nature Explorers. Home address: Russia, Moscow, 121433, Malaya Filevskaya str., 24/1, app. 20. 3Schmalhausen Institute of Zoology, National Academy of Science of Ukraine, Bogdan Khmielnitski str., 15, 01601, Kiev, Ukraine. 4 Ukrainian Research Institute of Forestry & Forest Melioration, 61024, Pushkinska str. 86, Kharkov, Ukraine. 5 Donetsk National University, Faculty of Biology, Shchors str., 46, 83050, Donetsk, Ukraine. 6*Corresponding author. E-mail: [email protected] New data on Pterophoridae from Afghanistan are considered. A checklist of Pterophoridae species of the fauna of Afghanistan is presented, as including 32 species of 14 genera. Merrifieldia tridactyla is for the first time recorded for the fauna of Afghanistan. The basic literature on the Afghanistan Pterophoridae were used in the study. Key words: Pterophoridae, plume moths, Afghanistan, fauna, new data. INTRODUCTION Many Pterophoridae as Cossidae are specific inhabitants of the arid regions of the Palaearctic. Usually deserts are good zoogeographical barriers preventing from mixing the faunas of different zoogeographical regions (Yakovlev & Dubatolov 2013; Yakovlev, 2015; Yakovlev et al., 2015). Until now there were no special publications on Pterophoridae from Afghanistan. The first description of a new species of Pterophoridae, Stenoptilia nurolhaki, from Afghanistan was in the work by Amsel (1967), In a series of works by Ernst Arenberger (1981, 1987, 1995), six new species were described from Afghanistan.
    [Show full text]
  • Microevolution and the Genetics of Populations ​ ​ Microevolution Refers to Varieties Within a Given Type
    Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations ​ ​ Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait ​ ​ ​ ​ within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift.
    [Show full text]
  • The Insect Fauna Associated with Horehound (Marrubium Vulgare L
    Plant Protection Quarterly Vol.15(1) 2000 21 belonging to eight orders were found feeding on the plant (Figure 2, Table 2). The insect fauna associated with horehound The insects included 12 polyphagous spe- (Marrubium vulgare L.) in western Mediterranean cies (44%), 8 oligophagous species (30%) and 7 monophagous species (26%). At the Europe and Morocco: potential for biological control larval stage, there were five root-feeding in Australia species (22%), one stem-boring species (4%), nine leaf-feeding species (39%), eight flower, ovary or seed feeding species A Jean-Louis Sagliocco , Keith Turnbull Research Institute, Victorian (34%). Based on adult feeding behaviour Department of Natural Resources and Environment, CRC for Weed there was one root-boring species (74%), Management Systems, PO Box 48, Frankston, Victoria 3199, Australia. six leaf-feeding species (40%) and eight A Previous address: CSIRO European Laboratory, Campus International de species feeding on flowers or ovaries or Baillarguet, 34980 Montferrier sur Lez, Cedex, France. seeds (53%). Wheeleria spilodactylus (Curtis) Summary were preserved. Immature stages were (Lepidoptera: Pterophoridae) Marrubium vulgare L. (Lamiaceae) was kept with fresh plant material until the Wheeleria spilodactylus was abundant at surveyed in western Mediterranean Eu- adult stage for identification. Insects most sites in France and Spain, and had rope and Morocco to identify the phy- were observed either in the field or the been recorded feeding on M. vulgare tophagous insect fauna associated with laboratory to confirm that they fed on the (Gielis 1996) and Ballota nigra (Bigot and this weed and to select species having plant. Insects were sent to museum spe- Picard 1983).
    [Show full text]
  • How Optimally Foraging Predators Promote Prey Coexistence in a Variable Environment
    Theoretical Population Biology 114 (2017) 40–58 Contents lists available at ScienceDirect Theoretical Population Biology journal homepage: www.elsevier.com/locate/tpb How optimally foraging predators promote prey coexistence in a variable environment Simon Maccracken Stump ∗, Peter Chesson University of Arizona, United States article info a b s t r a c t Article history: Optimal foraging is one of the major predictive theories of predator foraging behavior. However, how an Received 8 July 2016 optimally foraging predator affects the coexistence of competing prey is not well understood either in a Available online 18 December 2016 constant or variable environment, especially for multiple prey species. We study the impact of optimal foraging on prey coexistence using an annual plant model, with and without annual variation in seed Keywords: germination. Seed predators are modeled using Charnov's model of adaptive diet choice. Our results Optimal foraging theory reveal that multiple prey species can coexist because of this type of predator, and that their effect is Storage effect not greatly modified by environmental variation. However, in diverse communities, the requirements Apparent competition Coexistence for coexistence by optimal foraging alone are very restrictive. Optimally foraging predators can have a Annual plant model strong equalizing effect on their prey by creating a competition–predation trade-off. Thus, their main Type II functional response role in promoting diversity may be to reduce species-average fitness differences, making it easier for other mechanisms, such as the storage effect, to allow multiple species to coexist. Like previous models, our model showed that when germination rates vary, the storage effect from competition promotes coexistence.
    [Show full text]
  • Gene Flow by Pollen Into Small Populations
    Proc. Natl. Acad. Sci. USA Vol. 86, pp. 9044-9047, November 1989 Population Biology Gene flow by pollen into small populations: Data from experimental and natural stands of wild radish (Raphanus sativus/spatial isolation/interpopulation mating) NORMAN C. ELLSTRANDt, B. DEVLINt, AND DIANE L. MARSHALL§ Department of Botany and Plant Sciences and Program in Genetics, University of California, Riverside, CA 92521-0124 Communicated by R. W. Allard, August 14, 1989 (received for review August 18, 1988) ABSTRACT Gene flow can have an especially strong im- much from population to population, whether it varies within pact on the evolution of small populations. However, empirical a population over a season, and whether it varies with spatial studies on the actual rates and patterns of gene flow into small isolation from the nearest conspecific. More data are needed populations are few. Thus, we sought to measure gene flow into that focus more closely on a number ofpopulations ofa single small populations of wild radish, Raphanus sativus. We found species. significant differences in gene flow receipt among experimental Therefore, we selected wild radish, Raphanus sativus L. populations and within those populations over a season. A (Brassicaceae), to measure patterns of gene flow by pollen maximum-likelihood estimate revealed that almost all of the into small populations. This species is especially suitable for gene flow into these synthetic populations had its origin in both experimental and descriptive gene flow studies because relatively distant (>650 m), large natural populations rather it is a common outcrossing weed in southern California (8), than the proximal (255400 m), small synthetic populations.
    [Show full text]
  • Groundwater Storage Effects from Restoring, Constructing Or Draining
    Bring et al. Environ Evid (2020) 9:26 https://doi.org/10.1186/s13750-020-00209-5 Environmental Evidence SYSTEMATIC REVIEW PROTOCOL Open Access Groundwater storage efects from restoring, constructing or draining wetlands in temperate and boreal climates: a systematic review protocol Arvid Bring1* , Lars Rosén2, Josefn Thorslund3, Karin Tonderski4, Charlotte Åberg1, Ida Envall1 and Hjalmar Laudon5 Abstract Background: Wetlands in many parts of the world have been degraded, as use of the land for food production and forestry for human needs have taken precedence. Drainage of wetlands has led to deteriorated wetland conditions and lowered water tables. Across the world, there are several programs for wetland restoration and construction, primarily to reintroduce lost habitats for wildlife, and to obtain nutrient retention functions. In Sweden, recent dry and hot summers have reinforced interest in the hydrological functions that wetlands may have, in particular as poten- tial support for water storage in the landscape and added groundwater storage during dry periods. However, the agreement on substantial efects on groundwater is limited, and there are several critical knowledge gaps, including the extent to which such efects extend outside the wetland itself, and how they vary with local conditions, such as topography, soil, and climate. Therefore, this review will address the groundwater storage efect of restoring, con- structing or draining wetlands in the boreo-temperate region. Methods: We will conduct a systematic review of the evidence, drawing on both peer-reviewed and grey literature. Articles in English, Swedish, Norwegian, Danish, French, German and Polish will be retrieved from academic data- bases, Google Scholar, and websites of specialist organizations.
    [Show full text]
  • Saving Our Tree HUMAN GENETICS
    HIGHLIGHTS EVOLUTION IN BRIEF Saving our tree HUMAN GENETICS Identification of a gene responsible for familial For several years, evolutionary biolo- Wolff–Parkinson–White syndrome. gists interested in gene flow between species have been investigating and Gollob, M. H. et al. N. Engl. J. Med. 344, 1823–1831 (2001) debating a controversial issue: the hor- Wolff–Parkinson–White (WPW) syndrome is an inherited heart izontal exchange of genes between dis- defect associated with arrhythmia, cardiac arrest and sudden death. tantly related species, its extent and Gollob et al. studied two large families with autosomal-dominant possible adaptive significance. WPW syndrome, and used a positional candidate-gene approach to Horizontal gene transfer (HGT) is an identify the causative gene, which encodes a regulatory subunit of important evolutionary force in appears in a cluster of bacterial AMP-activated protein kinase. This finding should shed light on prokaryotes, as their life cycles facilitate sequences, then the vertebrate gene the mechanisms that lead to heart arrhythmias. the exchange of genes between even was probably horizontally transferred distantly related species. However, this from bacteria. Conversely, if all GENETIC NETWORKS is trickier in multicellular organisms, eukaryotic sequences cluster together, in which the fixation of horizontally then HGT has probably not occurred Ordering genes in a flagella pathway by analysis of transferred genes can only occur if as this grouping is most parsimo- expression kinetics from living bacteria. they are transmitted through the germ niously explained by vertebrates hav- Kalir, S. et al. Science 292, 2080–2083 (2001) line. It was therefore surprising when ing acquired the sequence by descent the International Human Genome through other eukaryotes.
    [Show full text]
  • Invasion in a Heterogeneous World: Resistance, Coexistence Or Hostile Takeover?
    Ecology Letters, (2007) 10: 77–94 doi: 10.1111/j.1461-0248.2006.00987.x REVIEW AND SYNTHESIS Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Abstract Brett A. Melbourne,1* Howard We review and synthesize recent developments in the study of the invasion of V. Cornell,1 Kendi F. Davies,1 communities in heterogeneous environments, considering both the invasibility of the Christopher J. Dugaw,2 Sarah community and impacts to the community. We consider both empirical and theoretical 1 3 Elmendorf, Amy L. Freestone, studies. For each of three major kinds of environmental heterogeneity (temporal, spatial Richard J. Hall,4 Susan Harrison,1 1 1 and invader-driven), we find evidence that heterogeneity is critical to the invasibility of Alan Hastings, Matt Holland, the community, the rate of spread, and the impacts on the community following Marcel Holyoak,1 John invasion. We propose an environmental heterogeneity hypothesis of invasions, whereby Lambrinos,5 Kara Moore1 and Hiroyuki Yokomizo6 heterogeneity both increases invasion success and reduces the impact to native species in the community, because it promotes invasion and coexistence mechanisms that are not possible in homogeneous environments. This hypothesis could help to explain recent findings that diversity is often increased as a result of biological invasions. It could also explain the scale dependence of the diversity–invasibility relationship. Despite the undoubted importance of heterogeneity to the invasion of communities, it has been studied remarkably little and new research is needed that simultaneously considers invasion, environmental heterogeneity and community characteristics. As a young field, there is an unrivalled opportunity for theoreticians and experimenters to work together to build a tractable theory informed by data.
    [Show full text]
  • New Methods for Quantifying the Spatial Storage Effect: an Illustration with Desert Annuals
    Ecology, 88(9), 2007, pp. 2240–2247 Ó 2007 by the Ecological Society of America NEW METHODS FOR QUANTIFYING THE SPATIAL STORAGE EFFECT: AN ILLUSTRATION WITH DESERT ANNUALS 1,3 2,4 ANNA L. W. SEARS AND PETER CHESSON 1Center for Population Biology, University of California, Davis, California 95616 USA 2Department of Evolution and Ecology, University of California, Davis, California 95616 USA Abstract. Recent theory supports the long-held proposition that coexistence is promoted by species-specific responses to a spatially varying environment. The underlying coexistence mechanism, the spatial storage effect, can be quantified by the covariance between response to the environment and competition. Here, ‘‘competition’’ is generalized to encompass similar processes such as facilitation and apparent competition. In the present study, we use a model field system of desert annual plants to demonstrate this method and to provide insight into the dynamics of the field system. Specifically, we use neighborhood competition experiments to quantify the spatial storage effect and compare it to the separate (but not mutually exclusive) process of neighborhood-scale resource partitioning. As our basic experimental design has been used frequently in community ecology, these methods can be applied to many existing data sets, as well as future field studies. Key words: coexistence mechanisms; competition along gradients; environmental variation; facilitation; neighborhood competition; spatial heterogeneity; spatial storage effect. INTRODUCTION effect, frequency dependence arises at scales that According to theory, species can coexist stably in a encompass environmental heterogeneity, for example, community if each has a positive population growth rate patches with different soil conditions. at low population density (Ellner 1989, and see review in Local resource partitioning—in which different spe- Chesson 2000b).
    [Show full text]
  • Density-Dependent Selection in Evolutionary Genetics: a Lottery Model of Grime’S Triangle
    bioRxiv preprint doi: https://doi.org/10.1101/102087; this version posted February 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Density-dependent selection in evolutionary genetics: a lottery model of Grime's triangle J Bertram1 and J Masel1 1Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721 February 7, 2017 Corresponding author; e-mail: [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/102087; this version posted February 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Fitness is typically represented in heavily simplified terms in evolutionary genetics, often using constant selection coefficients. This excludes fundamental ecological factors such as dynamic population size or density-dependence from the most genetically-realistic treatments of evolution, a problem that inspired MacArthur's influential but problematic r/K theory. Following in the spirit of r/K-selection as a general-purpose theory of density-dependent se- lection, but grounding ourselves empirically in \primary strategy" trait classification schemes like Grime's triangle, we develop a new model of density-dependent selection which revolves around territorial contests. To do so, we generalize the classic lottery model of territorial acquisition, which has primarily been used for studying species co-existence questions, to accommodate arbitrary densities.
    [Show full text]
  • Gene Flow 1 6 James Mallet
    Gene Flow 1 6 James Mallet Calton Laboratory, Department of Biology, Univetsity College London, 4 Stephenson Way, London NWI 2HE, UK What is Gene Flow? 'Gene flow' means the movement of genes. In some cases, small fragments of DNA may pass from one individual directly into the germline of another, perhaps transduced by a pathogenic virus or other vector, or deliberately via a human transgenic manipulation. However, this kind of gene flow, known as horizontal gene transfer, is rare. Most of the time, gene flow is caused by the movement or dispersal of whole organisms or genomes from one popula- tion to another. After entering a new population, immigrant genomes may become incorporated due to sexual reproduction or hybridization, and will be gradually broken up by recombination. 'Genotype flow' would therefore be a more logical term to indicate that the whole genome is moving at one time. The term 'gene flow' is used probably because of an implicit belief in abundant recombination, and because most theory is still based on simple single locus models: it does not mean that genes are transferred one at a time. The fact that gene flow is usually caused by genotype flow has important consequences for its measurement, as we shall see. Two Meanings of 'Gene Flow' We are often taught that 'dispersal does not necessarily lead to gene flow'. The term 'gene flow' is then being used in the sense of a final state of the population, i.e. successful establishment of moved genes. This disagrees somewhat with a more straightforward interpretation of gene flow as actual EICAR International 2001.
    [Show full text]