Changes in Expression of Class 3 Semaphorins and Their Receptors During Development of the Rat Retina and Superior Colliculus

Total Page:16

File Type:pdf, Size:1020Kb

Changes in Expression of Class 3 Semaphorins and Their Receptors During Development of the Rat Retina and Superior Colliculus Sharma et al. BMC Developmental Biology 2014, 14:34 http://www.biomedcentral.com/1471-213X/14/34 RESEARCH ARTICLE Open Access Changes in expression of Class 3 Semaphorins and their receptors during development of the rat retina and superior colliculus Anil Sharma1*, Chrisna J LeVaillant1, Giles W Plant1,2 and Alan R Harvey1 Abstract Background: Members of the Semaphorin 3 family (Sema3s) influence the development of the central nervous system, and some are implicated in regulating aspects of visual system development. However, we lack information about the timing of expression of the Sema3s with respect to different developmental epochs in the mammalian visual system. In this time-course study in the rat, we document for the first time changes in the expression of RNAs for the majority of Class 3 Semaphorins (Sema3s) and their receptor components during the development of the rat retina and superior colliculus (SC). Results: During retinal development, transcript levels changed for all of the Sema3s examined, as well as Nrp2, Plxna2, Plxna3, and Plxna4a. In the SC there were also changes in transcript levels for all Sema3s tested, as well as Nrp1, Nrp2, Plxna1, Plxna2, Plxna3, and Plxna4a. These changes correlate with well-established epochs, and our data suggest that the Sema3s could influence retinal ganglion cell (RGC) apoptosis, patterning and connectivity in the maturing retina and SC, and perhaps guidance of RGC and cortical axons in the SC. Functionally we found that SEMA3A, SEMA3C, SEMA3E, and SEMA3F proteins collapsed purified postnatal day 1 RGC growth cones in vitro. Significantly this is a developmental stage when RGCs are growing into and within the SC and are exposed to Sema3 ligands. Conclusion: These new data describing the overall temporal regulation of Sema3 expression in the rat retina and SC provide a platform for further work characterising the functional impact of these proteins on the development and maturation of mammalian visual pathways. Keywords: Retinal ganglion cells, Collapse assay, qPCR, Neuropilins, Plexins, Cell adhesion molecules Background of visual pathways in mammals. It is likely then that other The mammalian visual system is complex, and the de- molecules are also involved during the development and velopmental events that give rise to this highly organised maturation of the mammalian visual system, and in this system are similarly complex and exquisitely ordered. context recent attention has turned to the Semaphorins. The timing of the major developmental events of the Semaphorins (Semas) have been implicated in neural mammalian visual system has been well characterised, and vascular aspects of visual system development in and many of the molecular cues controlling these critical various species including frog [8,9], zebrafish [10-14], events have been elucidated (for example Ephs/Ephrins, goldfish [15], and chicken [16-21]. In mouse the mem- Slits/Robo, Netrin/DCC, and various neurotrophic factors brane bound Class 5 and Class 6 Semaphorins are in- [1-7]). However despite our increased knowledge about volved in lamination of the retina [22-24], and guidance these molecular cues, they are not sufficient to explain of retinal ganglion cell (RGC) axons [25] via contact- completely the complexity and timing of the development mediated interactions. However many previously discov- ered molecular cues in the mammalian visual system are * Correspondence: [email protected] diffusible, and the only vertebrate secreted members of 1School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia the Semaphorins are the Class 3 Semaphorins (Sema3s) Full list of author information is available at the end of the article [26] which are known to be expressed in the developing © 2014 Sharma et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Sharma et al. BMC Developmental Biology 2014, 14:34 Page 2 of 14 http://www.biomedcentral.com/1471-213X/14/34 rat retina [27]. It is possible then that the Sema3s also Changes in Class 3 Semaphorins and their receptor influence the complexity and timing of the developing components during rat retinal development mammalian visual system. Expression levels in the retina could be separated into three The Sema3s consist of Sema3a through Sema3g qualitative groups: relatively high expression of Sema3f and [16,26,28-36] and their main receptors are the Neuropilins Plxna2; moderate expression of Nrp1 and Plxna1;andrela- which form multimeric receptor complexes with Plexins tively low expression of the rest (Figures 2, and 3). There and cell adhesion molecules [37]. Sema3s were initially dis- were statistically significant changes in the level of expres- covered as axon guidance molecules [30,38], but are now sion of all Sema3 RNAs in the retina, while of the receptors known to also mediate apoptosis, cell migration, immune only Nrp2, Plxna2, Plxna3,andPlxna4a showed statisti- response, organogenesis, tumour suppression and promo- cally significant changes (Figures 2, and 3; Additional file 1: tion, and vasculature development [39-44]. Sema3s affect at Table S1). least some aspects of the development of the visual system Relative to other time points, Sema3a transcript ex- of rodents [45,46], from where much of our knowledge of pression levels were significantly increased at P14 and in molecular and activity-driven influences on mammalian the adult. Similar to Sema3a, Sema3b transcript expres- visual system development has come [6,47]. sion was relatively stable during retinal development In summary, while we understand much about the until P14, at which time there was increased expression timing of developmental events in the mammalian visual that was maintained into adulthood. Sema3c RNA ex- system, investigation of a potential role for the Sema3s pression was also relatively steady through to P0, in- in these events would benefit from knowledge about the creasing significantly through to P21, and remaining at timing of expression of Sema3s and their receptors dur- that level into the adult. Sema3e RNA levels appeared to ing visual system maturation. We sought to address this increase gradually with retinal maturation and were sig- gap in our knowledge by building on a previous study nificantly higher than E16-P7 levels at P21 and in adult from our laboratory [27], focusing on Sema3s known to rats. Sema3f transcription was temporarily greater at P0 be expressed in RGCs and extending the work to include and then increased again at P21 and beyond. Nrp2 RNA a greater number of receptors as well as analysis of a expression gradually increased throughout retina matur- major central target for those RGCs, the superior collicu- ation, levels at P7 and beyond being significantly greater lus (SC). To that end, we quantified transcript expression than in embryos. Plxna2 and Plxna3 showed nearly in the rat retina and SC over a range of embryonic (E) and identical patterns of altered transcript expression during postnatal (P) developmental time points (E16, E19, birth – development, both peaking significantly at the time of P0, P7, P14, P21 and adult) which were chosen to corres- birth (P0). Plxna4a RNA levels peaked later at P7, but pond to previously established developmental epochs such also again in the adult. as the timing of cell birth, migration, naturally occurring Many of the significant peaks in transcript expression cell death, axonal and dendritic growth, and synaptogene- occurred after the main developmental epochs. However, sis (Figure 1). We also investigated the hypothesis that the changes that were quantified in the retina before P21 Sema3 ligands in the SC can influence RGC axon guid- occurred during periods of RGC apoptosis, and synapse ance using an in vitro growth cone collapse assay on iso- generation and maturation. lated RGCs from a developmental stage when they would be growing into and within the SC in vivo. Changes in Class 3 Semaphorins and their receptor components during development of the rat superior Results colliculus Developmental expression profiles for the Sema3s and There were four qualitative groups of transcript expression their receptors are presented in Figures 2, 3, 4 and 5, levels in the SC: Plxna1 having the highest; followed by with those showing statistically significant changes in Sema3f, Nrp1,andNrp2;thenSema3b, Sema3c and Plxna3; expression explored further. Statistical comparisons il- and lower amounts for the remainder (Figures 4, and 5). lustrated in Figures 2, 3, 4 and 5 are summaries of sta- With the exception of L1cam, all genes of interest changed tistically significant peaks in expression; the entirety of expression significantlyduringSCmaturation. statistical comparisons can be found in Additional file 1: Sema3a RNA levels were highly variable at E16 (149% Table S1. Plxna3 in situ hybridisations at P1 and P7 are coefficient of variance; CV), peaked at E19, and a decline presented in Figure 6 showing co-expression in βIII- with increasing postnatal age. The expression profile of tubulin positive cells (presumptive RGCs). The effects of Sema3b differed from other transcripts; there was large exogenous recombinant Sema3s on RGC growth cone biological variation at many time points, with CVs greater collapse are presented in Figure 7, and data detailing ex- than 100%, and four apparent peaks in expression, only pression and detection of those recombinant Sema3s are one of which reached significance (E19). Sema3c tran- presented in Additional file 2: Figure S1. script expression peaked at E19 and P0, before falling to Sharma et al. BMC Developmental Biology 2014, 14:34 Page 3 of 14 http://www.biomedcentral.com/1471-213X/14/34 Figure 1 Developmental epochs in the rat neural retina and superior colliculus.
Recommended publications
  • Mutations in CHMP2B in Lower Motor Neuron Predominant Amyotrophic Lateral Sclerosis (ALS)
    This is a repository copy of Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/10846/ Article: Cox, L.E., Ferraiuolo, L., Goodall, E.F. et al. (13 more authors) (2010) Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). Plos One, 5 (3). Art no.e9872. ISSN 1932-6203 https://doi.org/10.1371/journal.pone.0009872 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Mutations in CHMP2B in Lower Motor Neuron Predominant Amyotrophic Lateral Sclerosis (ALS) Laura E. Cox1, Laura Ferraiuolo1, Emily F. Goodall1, Paul R. Heath1, Adrian Higginbottom1, Heather Mortiboys1, Hannah C. Hollinger1, Judith A. Hartley1, Alice Brockington1, Christine E.
    [Show full text]
  • Plexin A4 (PLXNA4) (NM 181775) Human Tagged ORF Clone Lentiviral Particle Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC206375L2V Plexin A4 (PLXNA4) (NM_181775) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: Plexin A4 (PLXNA4) (NM_181775) Human Tagged ORF Clone Lentiviral Particle Symbol: PLXNA4 Synonyms: FAYV2820; PLEXA4; PLXNA4A; PLXNA4B; PRO34003 Vector: pLenti-C-mGFP (PS100071) ACCN: NM_181775 ORF Size: 1566 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC206375). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_181775.2, NP_861440.1 RefSeq Size: 2020 bp RefSeq ORF: 1569 bp Locus ID: 91584 UniProt ID: Q9HCM2 Protein Families: Druggable Genome MW: 58.1 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Plexin A4 (PLXNA4) (NM_181775) Human Tagged ORF Clone Lentiviral Particle – RC206375L2V Gene Summary: Coreceptor for SEMA3A.
    [Show full text]
  • Itraq-BASED QUANTITATIVE ANALYSIS of HIPPOCAMPAL POSTSYNAPTIC DENSITY-ASSOCIATED PROTEINS in a RAT CHRONIC MILD STRESS MODEL of DEPRESSION
    Neuroscience 298 (2015) 220–292 iTRAQ-BASED QUANTITATIVE ANALYSIS OF HIPPOCAMPAL POSTSYNAPTIC DENSITY-ASSOCIATED PROTEINS IN A RAT CHRONIC MILD STRESS MODEL OF DEPRESSION X. HAN, a,b,c W. SHAO, a,b,c Z. LIU, a,b,c S. FAN, a,b,c displayed differences in the abundance of several types of J. YU, b,c J. CHEN, b,c R. QIAO, b,c J. ZHOU b,c* AND proteins. A detailed protein functional analysis pointed to a,b,c,d P. XIE * a role for PSD-associated proteins involved in signaling a Department of Neurology, The First Affiliated Hospital, and regulatory functions. Within the PSD, the N-methyl-D-as- Chongqing Medical University, Chongqing, China partate (NMDA) receptor subunit NR2A and its downstream targets contribute to CMS susceptibility. Further analysis b Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China of disease relevance indicated that the PSD contains a com- c plex set of proteins of known relevance to mental illnesses Chongqing Key Laboratory of Neurobiology, Chongqing, China including depression. In sum, these findings provide novel d Department of Neurology, Yongchuan Hospital, Chongqing insights into the contribution of PSD-associated proteins Medical University, Chongqing, China to stress susceptibility and further advance our understand- ing of the role of hippocampal synaptic plasticity in MDD. Ó 2015 IBRO. Published by Elsevier Ltd. All rights reserved. Abstract—Major depressive disorder (MDD) is a prevalent psychiatric mood illness and a major cause of disability and suicide worldwide. However, the underlying pathophys- iology of MDD remains poorly understood due to its hetero- Key words: major depressive disorder, chronic mild stress, genic nature.
    [Show full text]
  • The Role of Semaphorins and Their Receptors in Vascular Development and Cancer
    EXPERIMENTAL CELL RESEARCH ] ( ]]]]) ]]]– ]]] Available online at www.sciencedirect.com journal homepage: www.elsevier.com/locate/yexcr Review Article The role of semaphorins and their receptors in vascular development and cancer Chenghua Gua,n, Enrico Giraudob,nn aDepartment of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA 02115, USA bInstitute for Cancer Research at Candiolo (IRC@C), and Department of Science and Drug Technology, University of Torino, Str. Prov. 142 Km.3,95 10060 Candiolo, Turin, Italy article information abstract Article Chronology: Semaphorins (Semas) are a large family of traditional axon guidance molecules. Through Received 1 February 2013 interactions with their receptors, Plexins and Neuropilins, Semas play critical roles in a Accepted 6 February 2013 continuously growing list of diverse biological systems. In this review, we focus on their function in regulating vascular development. In addition, over the past few years a number of Keywords: findings have shown the crucial role that Semas and their receptors play in the regulation of Semaphorin cancer progression and tumor angiogenesis. In particular, Semas control tumor progression by Plexin directly influencing the behavior of cancer cells or, indirectly, by modulating angiogenesis and Neuropilin the function of other cell types in the tumor microenvironment (i.e., inflammatory cells and Angiogenesis fibroblasts). Some Semas can activate or inhibit tumor progression and angiogenesis, while Cancer others may have the opposite effect depending on specific post-translational modifications. Here Tumor we will also discuss the diverse biological effects of Semas and their receptor complexes on Development cancer progression as well as their impact on the tumor microenvironment. & Vasculature 2013 Elsevier Inc.
    [Show full text]
  • Plexin A4 (PLXNA4) (NM 181775) Human Recombinant Protein – TP761981 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP761981 Plexin A4 (PLXNA4) (NM_181775) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Purified recombinant protein of Human plexin A4 (PLXNA4), transcript variant 2,full length, with N-terminal GST and C-terminal His tag, expressed in E. coli, 50ug Species: Human Expression Host: E. coli Tag: N-GST and C-His Predicted MW: 86 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25mM Tris, pH8.0, 150 mM NaCl, 10% glycerol,1% Sarkosyl. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_861440 Locus ID: 91584 UniProt ID: Q9HCM2 RefSeq Size: 2020 Cytogenetics: 7q32.3 RefSeq ORF: 1566 Synonyms: FAYV2820; PLEXA4; PLXNA4A; PLXNA4B; PRO34003 Summary: Coreceptor for SEMA3A. Necessary for signaling by class 3 semaphorins and subsequent remodeling of the cytoskeleton. Plays a role in axon guidance in the developing nervous system. Class 3 semaphorins bind to a complex composed of a neuropilin and a plexin. The plexin modulates the affinity of the complex for specific semaphorins, and its cytoplasmic domain is required for the activation of down-stream signaling events in the cytoplasm (By similarity).[UniProtKB/Swiss-Prot Function] Protein Families: Druggable Genome This product is to be used for laboratory only.
    [Show full text]
  • Expression of a Mirna Targeting Mutated SOD1 in Astrocytes Induces Motoneuron Plasticity and Improves Neuromuscular Function in ALS Mice
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.08.425706; this version posted January 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Expression of a miRNA targeting mutated SOD1 in astrocytes induces motoneuron plasticity and improves neuromuscular function in ALS mice Rochat C.1, Bernard-Marissal N.1,6, Pradervand S.3, Perrin F.E.4, Raoul C.5, Aebischer P.1, Schneider B.L.1,2* 1 Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland 2 Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland 3 Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland. 4 INSERM U1198, University of Montpellier, EPHE, Place Eugène Bataillon CC105, F-34095, Montpellier, France 5 The Neuroscience Institute of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France 6 Aix Marseille Univ, INSERM, MMG, Marseille, France *Correspondence should be addressed to B.L.S. ([email protected]) Short title: miRNA gene therapy targeting astrocytes in ALS Study was performed in Lausanne, Switzerland Current address of corresponding author: Bernard Schneider EPFL SV PTECH PTBTG Ch. des Mines 9 CH-1202 Genève Switzerland Email: [email protected] Tel: +41 21 693 95 05 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.08.425706; this version posted January 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism
    New Research Development The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism Jung-Lynn Jonathan Yang, Gabriel E. Bertolesi, Stephanie Dueck, Carrie L. Hehr, and Sarah McFarlane https://doi.org/10.1523/ENEURO.0086-19.2019 Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada Abstract During development the axons of neurons grow toward and locate their synaptic partners to form functional neural circuits. Axons do so by reading a map of guidance cues expressed by surrounding tissues. Guidance cues are expressed at a precise space and time, but how guidance cue expression is regulated, and in a coordinated manner, is poorly understood. Semaphorins (Semas) and Slits are families of molecular ligands that guide axons. We showed previously that fibroblast growth factor (Fgf) signaling maintains sema3a and slit1 forebrain expres- sion in Xenopus laevis, and these two repellents cooperate to guide retinal ganglion cell (RGC) axons away from the mid-diencephalon and on towards the optic tectum. Here, we investigate whether there are common features of the regulatory pathways that control the expression of these two guidance cues at this single axon guidance decision point. We isolated the sema3a proximal promoter and confirmed its responsiveness to Fgf signaling. Through misexpression of truncated Fgf receptors (Fgfrs), we found that sema3a forebrain expression is dependent on Fgfr2-4 but not Fgfr1. This is in contrast to slit1, whose expression we showed previously depends on Fgfr1 but not Fgfr2-4.
    [Show full text]
  • © 2014 Jonathan Guo-Han Mun
    © 2014 Jonathan Guo-Han Mun HYPOGLYCEMIA-INDUCED CHANGES IN GLUCOSE METABOLISM IN THE HYPOTHALAMUS BY JONATHAN GUO-HAN MUN DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Nutritional Sciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Professor Rodney W. Johnson, Chair Professor J. Lee Beverly, Director of Research Associate Professor Justin S. Rhodes Associate Professor Manabu T. Nakamura ABSTRACT Hypoglycemia is the most common acute complication associated with insulin-dependent diabetes mellitus (Type 1 and advanced Type 2), which affects 300,000-500,000 individuals of all ages in the United States, with 30,000 new cases each year (1). It is characterized by low blood glucose concentration (less than 70 mg/dL or 4 mM) that can be attributed to a mismatch of insulin, food intake, sleep, and physical activity and can result in serious morbidity or death (2). The glucose counterregulatory response is the primary defense against hypoglycemia and involves (A) secretion of epinephrine and glucagon to elevate blood glucose concentration and (B) sympathetic activation to prompt the individual to take action against hypoglycemia through symptoms that include hunger, shaking, rapid heart rate, and sweating (2). Recurrent episodes of hypoglycemia result in failure of the counterregulatory response, which increases the frequency and severity of subsequent hypoglycemia. The underlying physiology by which this occurs is not well understood (3), but changes occurring in the ventromedial hypothalamus (VMH), a brain region that is responsible for initiating the counterregulatory response to hypoglycemia (4) is the most promising target.
    [Show full text]
  • Taqman® Human Protein Kinase Array
    TaqMan® Gene Signature Arrays TaqMan® Human Protein Kinase Array This array is part of a collection of TaqMan® Gene Signature these kinases are from receptor protein-tyrosine kinase (RPTK) Arrays that enable analysis of hundreds of TaqMan® Gene families: EGFR, InsulinR, PDGFR, VEGFR, FGFR, CCK, NGFR, Expression Assays on a micro fluidic card with minimal effort. HGFR, EPHR, AXL, TIE, RYK, DDR, RET, ROS, LTK, ROR and MUSK. The remaining 15 kinases are Ser/Thr kinases from the Protein kinases are one of the largest families of genes in kinase families: CAMKL, IRAK, Lmr, RIPK and STKR. eukaryotes. They belong to one superfamily containing a eukaryotic protein kinase catalytic domain. The ability of kinases We have also selected assays for 26 non-kinase genes in the to reversibly phosphorylate and regulate protein function Human Protein Kinase Array. These genes are involved in signal has been a subject of intense investigation. Kinases are transduction and mediate protein-protein interaction, transcrip- responsible for most of the signal transduction in eukaryotic tional regulation, neural development and cell adhesion. cells, affecting cellular processes including metabolism, References: angiogenesis, hemopoiesis, apoptosis, transcription and Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and differentiation. Protein kinases are also involved in functioning Sudarsanam, S. 2002. The Protein Kinase Complement of the of the nervous and immune systems, in physiologic responses Human Genome. Science 298:1912–34. and in development. Imbalances in signal transduction due to accumulation of mutations or genetic alterations have Blume-Jensen, P. and Hunter, T. 2001. Oncogenic kinase been shown to result in malignant transformation.
    [Show full text]
  • Viewers: This Article Was Reviewed by Lan Hu, Tim Beissbarth and Dimitar Vassilev
    Polewko-Klim et al. Biology Direct (2018) 13:17 https://doi.org/10.1186/s13062-018-0222-9 RESEARCH Open Access Integration of multiple types of genetic markers for neuroblastoma may contribute to improved prediction of the overall survival Aneta Polewko-Klim1*, Wojciech Lesinski´ 1, Krzysztof Mnich2, Radosław Piliszek2 andWitoldR.Rudnicki1,2,3 Abstract Background: Modern experimental techniques deliver data sets containing profiles of tens of thousands of potential molecular and genetic markers that can be used to improve medical diagnostics. Previous studies performed with three different experimental methods for the same set of neuroblastoma patients create opportunity to examine whether augmenting gene expression profiles with information on copy number variation can lead to improved predictions of patients survival. We propose methodology based on comprehensive cross-validation protocol, that includes feature selection within cross-validation loop and classification using machine learning. We also test dependence of results on the feature selection process using four different feature selection methods. Results: The models utilising features selected based on information entropy are slightly, but significantly, better than those using features obtained with t-test. The synergy between data on genetic variation and gene expression is possible, but not confirmed. A slight, but statistically significant, increase of the predictive power of machine learning models has been observed for models built on combined data sets. It was found while using both out of bag estimate and in cross-validation performed on a single set of variables. However, the improvement was smaller and non-significant when models were built within full cross-validation procedure that included feature selection within cross-validation loop.
    [Show full text]
  • Kinesin-3 Family Members in Hereditary Spastic Paraplegia
    fncel-13-00419 September 25, 2019 Time: 15:27 # 1 REVIEW published: 26 September 2019 doi: 10.3389/fncel.2019.00419 Going Too Far Is the Same as Falling Short†: Kinesin-3 Family Members in Hereditary Spastic Paraplegia Dominik R. Gabrych1, Victor Z. Lau1, Shinsuke Niwa2 and Michael A. Silverman1,3* 1 Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada, 2 Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan, 3 Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada Proper intracellular trafficking is essential for neuronal development and function, and Edited by: when any aspect of this process is dysregulated, the resulting “transportopathy” causes Tomas Luis Falzone, neurological disorders. Hereditary spastic paraplegias (HSPs) are a family of such National Scientific and Technical Research Council (CONICET), diseases attributed to over 80 spastic gait genes (SPG), specifically characterized by Argentina lower extremity spasticity and weakness. Multiple genes in the trafficking pathway such Reviewed by: as those relating to microtubule structure and function and organelle biogenesis are Craig Blackstone, National Institute of Neurological representative disease loci. Microtubule motor proteins, or kinesins, are also causal Disorders and Stroke (NINDS), in HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two kinesin-3 family United States members; KIF1A (SPG30) and KIF1C (SPG58). KIF1A is a motor enriched in neurons, Thomas Huckaba, Xavier University of Louisiana, and involved in the anterograde transport of a variety of vesicles that contribute to United States pre- and post-synaptic assembly, autophagic processes, and neuron survival. KIF1C is *Correspondence: ubiquitously expressed and, in addition to anterograde cargo transport, also functions in Michael A.
    [Show full text]
  • Trka Mediates Retrograde Semaphorin 3A Signaling Through Plexin A4 To
    © 2016. Published by The Company of Biologists Ltd | Journal of Cell Science (2016) 129, 1802-1814 doi:10.1242/jcs.184580 RESEARCH ARTICLE TrkA mediates retrograde semaphorin 3A signaling through plexin A4 to regulate dendritic branching Naoya Yamashita1,2,*, Masayuki Yamane1, Fumikazu Suto3 and Yoshio Goshima1,* ABSTRACT subcellular compartments of neurons – axons, dendrites and cell – Semaphorin 3A (Sema3A), a secretory semaphorin, exerts various body need to communicate with each other. biological actions through a complex between neuropilin-1 and plexin- Semaphorin 3A (Sema3A), one of the first repulsive axon As (PlexAs). Sema3A induces retrograde signaling, which is involved guidance molecules to be recognized (Raper, 2000; Tran et al., in regulating dendritic localization of GluA2 (also known as GRIA2), 2007), plays an important role in proper neuronal network formation an AMPA receptor subunit. Here, we investigated a possible by regulating not only growth cone motility but also dendritic – interaction between retrograde signaling pathways for Sema3A and development and maturation through neuropilin-1 (NRP1) Plexin- nerve growth factor (NGF). Sema3A induces colocalization of PlexA4 A (PlexA) receptor complexes (Campbell et al., 2001; Morita et al., (also known as PLXNA4) signals with those of tropomyosin-related 2006; Polleux et al., 2000; Sasaki et al., 2002; Shelly et al., 2011; kinase A (TrkA, also known as NTRK1) in growth cones, and these Suto et al., 2003; Yamashita et al., 2014). Sema3A accelerates colocalized signals were then observed along the axons. The time- endocytosis during growth cone collapse (Fournier et al., 2000; lapse imaging of PlexA4 and several TrkA mutants showed that the Hida et al., 2012), and also induces bidirectional axonal transport kinase and dynein-binding activity of TrkA were required for Sema3A- (Goshima et al., 1999, 1997; Li et al., 2004; Yamane et al., 2012).
    [Show full text]