Welcome to Mount St. Helens National Volcanic Monument
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Decision Framework for Managing the Spirit Lake and Toutle River System at Mount St
THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/24874 SHARE A Decision Framework for Managing the Spirit Lake and Toutle River System at Mount St. Helens (2018) DETAILS 336 pages | 6 x 9 | PAPERBACK ISBN 978-0-309-46444-4 | DOI 10.17226/24874 CONTRIBUTORS GET THIS BOOK Committee on Long-Term Management of the Spirit Lake/Toutle River System in Southwest Washington; Committee on Geological and Geotechnical Engineering; Board on Earth Sciences and Resources; Water Science and Technology Board; Division on Earth and Life Studies; Board on Environmental Change and Society; FIND RELATED TITLES Division of Behavioral and Social Sciences and Education; National Academies of Sciences, Engineering, and Medicine SUGGESTED CITATION National Academies of Sciences, Engineering, and Medicine 2018. A Decision Framework for Managing the Spirit Lake and Toutle River System at Mount St. Helens. Washington, DC: The National Academies Press. https://doi.org/10.17226/24874. Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy -
Sediment Data-Collection Techniques" (SW1 091TC) (Al 06002.01.362.530)
CENTER FOR NUCLEAR WASTE REGULATORY ANALYSES TRIP REPORT SUBJECT: U.S. Geological Survey training course entitled "Sediment Data-Collection Techniques" (SW1 091TC) (Al 06002.01.362.530) DATE/PLACE: March 13-18, 2005 Castle Rock, Washington AUTHOR: Donald Hooper, Research Scientist Center for Nuclear Waste Regulatory Analyses (CNWRA) at Southwest Research Instituter (SwRlt) DISTRIBUTION: CNWRA NRC-NMSS SwRl Contracts W. Patrick J. Trapp Record Copy B (IQS) CNWRA Directors D. DeMarco CNWRA Element Managers B. Meehan S. Mohanty J. Rubenstone R. Benke J. Guttman L. Gutierrez E. Whitt CENTER FOR NUCLEAR WASTE REGULATORY ANALYSES TRIP REPORT SUBJECT: U.S. Geological Surveytraining course entitled "Sediment Data-Collection Techniques" (SW1091TC) (Al 06002.01.362.530) DATE/PLACE: March 13-18, 2005 Castle.Rock, Washington AUTHOR: Donald Hooper, Research Scientist Center for Nuclear Waste Regulatory Analyses (CNWRA) at Southwest Research Institutee (SwRl~ PERSONS PRESENT: One staff member from the Center for Nuclear Waste Regulatory Analyses attended the training course. A total of 32 scientists enrolled in the course, which was taught by a team of U.S. Geological Survey staff members with John Gray as course leader and coordinator. BACKGROUND AND PURPOSE OF TRIP: This training course in Castle Rock, Washington, near Mount St. Helens, provided instruction in basic sediment data-collection'techniques with principal emphasis on the following: (i) basic sediment concepts; (ii) sampler characteristics; (iii) field techniques; (iv) direct sampling with suspended sediment, bed material, and bedload samplers; (v) computation of sediment discharge records; (vi) quality-assurance procedures; and (vii) estimating sediment properties from surrogate technologies based on bulk optic, digital optic, laser, acoustic, and pressure- differential principles. -
Lewis River ~ Including Clear, Quartz, Siouxon, Pine, Rush, Smith Creeks & the Muddy River
Photo by Susan Saul Wild and Scenic Rivers Support Local Communities The legendary volcanoes in southwestern Washington and the spectacular rivers that originate on their slopes are valuable to the health, economy, and cultural identity of local communities. Rivers like the Green, Cispus, and Lewis provide drinking water to thousands of local residents, world-class recreation, and a high quality of life for local residents. Designating the rivers and key tributaries in Volcano Country under the Wild and Scenic Rivers Act will increase long- term potential for recreation and tourism in the area, ensure cool clean water for fish and people, and protect these natural treasures for future generations. Just a few of the benefits of Wild and Scenic designation include: RECREATION, TOURISM, AND THE ECONOMY: According to the Outdoor Industry Association, outdoor recreation brings in more than $11.7 billion annually to our state, supports an estimated 115,000 jobs, and generates $650 million in annual sales tax revenue. Travel and tourism provide nearly 8000 jobs – or 14 percent of jobs across all economic sectors – in Lewis, Cowlitz, and Skamania counties. In addition to putting a river “on the map” for visitors and outdoor enthusiasts, a Wild and Scenic River designation can lead to access improvements and foster growth in river-based outdoor recreation and tourism. For example, a recent study of the Wild and Scenic section of the Rogue River found that commercial rafting, fishing, and other recreation contributed $30 million a year to the State of Oregon’s economy. The White Salmon and the Klickitat River are two positive examples of Wild and Scenic Rivers in Washington that benefit local recreation economies. -
FLOOD HAZARDS ALONG the TOUTLE and COWLITZ RIVERS, WASHINGTON, from a HYPOTHETICAL FAILURE of CASTLE LAKE BLOCKAGE by Antonius L
FLOOD HAZARDS ALONG THE TOUTLE AND COWLITZ RIVERS, WASHINGTON, FROM A HYPOTHETICAL FAILURE OF CASTLE LAKE BLOCKAGE By Antonius Laenen and L. L. Orzol U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 87-4055 Prepared in cooperation with the STATE OF WASHINGTON DEPARTMENT OF EMERGENCY MANAGEMENT Portland, Oregon 1987 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report can be write to: purchased from: Oregon Office Chief U.S. Geological Survey U.S. Geological Survey Books and Open-File Reports Section 847 N.E. 19th Ave., Suite 300 Federal Center Portland, OR 97232 Box 25425 Denver, CO 80225 IV CONTENTS Page Abstract --------------------------------------------------------- 1 Introduction ----------------------------------------------------- 2 Purpose and scope ------------------------------------------- 2 Acknowledgments --------------------------------------------- 3 Hypothetical blockage failure and start of flood ----------------- 6 Flood routing ---------------------------------------------------- 7 The bulking process ----------------------------------------- 10 The debulking process --------------------------------------- 11 The hypothetical flood -------------------------------------- 11 Hypothetical flood with the lake level lowered -------------- 26 Sensitivity of the routing model ---------------------------- 26 Summary and conclusions ------------------------------------------ 26 References cited ------------------------------------------------- -
Volume II, Chapter 8 Cowlitz Subbasin—Lower Cowlitz
Volume II, Chapter 8 Cowlitz Subbasin—Lower Cowlitz TABLE OF CONTENTS 8.0 COWLITZ SUBBASIN—LOWER COWLITZ ......................................................... 8-1 8.1 Subbasin Description.................................................................................................. 8-1 8.1.1 Topography & Geology ....................................................................................... 8-1 8.1.2 Climate................................................................................................................. 8-1 8.1.3 Land Use/Land Cover.......................................................................................... 8-1 8.2 Focal Fish Species....................................................................................................... 8-5 8.2.1 Fall Chinook—Cowlitz Subbasin (Lower Cowlitz).............................................. 8-5 8.2.2 Coho—Cowlitz Subbasin ..................................................................................... 8-8 8.2.3 Chum—Cowlitz Subbasin .................................................................................. 8-12 8.2.4 Winter Steelhead—Cowlitz Subbasin (Cowlitz)................................................. 8-14 8.2.5 Cutthroat Trout—Cowlitz River Subbasin......................................................... 8-17 8.3 Potentially Manageable Impacts ............................................................................... 8-19 8.4 Hatchery Programs................................................................................................... -
Mount St. Helens Long-Term Sediment Management Plan (CEQ Project Number 20180179; Region 10 Project Number 84-193-COE)
~ US Army Corps Mount St. Helens of Engineers• Long-Term Sediment Portland District Management Plan Record of Decision September 2018 Sediment retention structure and upstream sediment plain on the North Fork Toutle River U.S. Army Corps of Engineers photo RECORD OF DECISION MOUNT ST. HELENS, WASHINGTON LONG-TERM SEDIMENT MANAGEMENT PLAN The Mount St. Helens Limited Re-Evaluation Report (LRR) and Supplemental Environmental Impact Statement (SEIS), both dated 2018, address long-term sediment management actions necessary to maintain flood risk reduction for the cities of Castle Rock, Lexington, Kelso, and Longview, Washington. The purpose of the proposed action is to manage flood risk to established levels of protection (LOP) for the cities of Castle Rock, Lexington, Kelso and Longview, Washington through the year 2035, as authorized by Public Law No. 99‐88 (1985) and Section 339 of the Water Resources Development Act of 2000 (Public Law No. 106- 541), and to do so in a manner that does not jeopardize the continued existence of any endangered species or threatened species or result in the destruction or adverse modification of designated critical habitat. The recommended plan and preferred alternative described in the LRR and SEIS represent a complete and complementary effort that maintains the congressionally-authorized LOP. The recommend plan is contained in the LRR and is the preferred alternative identified in the SEIS. The 2018 LRR and SEIS are incorporated herein by reference. Based on these reports, the reviews of other Federal, State, and local agencies, Tribes, input from the public, and review by my staff, I find the plan recommended by the Commander, Portland District, to be technically feasible, economically justified, in accordance with environmental statutes, and in the public interest. -
Plant Response to 14 Engineered Log Jams on the North Fork Toutle River, WA Sediment Plain
Portland State University PDXScholar Master of Environmental Management Project Reports Environmental Science and Management 2014 Plant Response to 14 Engineered Log Jams on the North Fork Toutle River, WA Sediment Plain Todd Ashley Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/mem_gradprojects Part of the Environmental Indicators and Impact Assessment Commons, and the Natural Resource Economics Commons Let us know how access to this document benefits ou.y Recommended Citation Ashley, Todd, "Plant Response to 14 Engineered Log Jams on the North Fork Toutle River, WA Sediment Plain" (2014). Master of Environmental Management Project Reports. 45. https://pdxscholar.library.pdx.edu/mem_gradprojects/45 https://doi.org/10.15760/mem.47 This Project is brought to you for free and open access. It has been accepted for inclusion in Master of Environmental Management Project Reports by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Plant Response to 14 Engineered Log Jams on the North Fork Toutle River, WA Sediment Plain by Todd Ashley A project report submitted in partial fulfilment of the requirements for the degree of Master of Environmental Management Thesis Committee: Dr. Jennifer Allen, Chair Dr. Joseph Maser Paul Sclafani Portland State University ©2014 Abstract I sought to evaluate the vegetative response to the installation of the 14 engineered log jams (ELJs) on the North Fork Toutle River (NFTR) Sediment Plain. The NFTR sediment plain is constantly being reworked due to channel bank erosion caused by a combination of processes including flow erosion and gravitational mass failure. -
Forest Development Following Mudflow Deposition, Mount St. Helens, Washington
437 Forest development following mudflow deposition, Mount St. Helens, Washington Marc H. Weber, Keith S. Hadley, Peter M. Frenzen, and Jerry F. Franklin Abstract: Volcanic mudflows are locally important disturbance agents in the Pacific Northwest rarely studied within the context of forest succession. We describe 18 years (1981–1999) of forest development on the Muddy River mud- flow deposit following the 1980 eruption of Mount St. Helens using permanent plot data collected along two transects traversing the Cedar Flats river terrace. We analyze changing forest structure over the study period and compare results with mudflow deposition using correlation and pairwise comparisons, as well as ordination (detrended correspondence analysis) and cluster analysis. Our results show a statistically significant relationship between mudflow deposition and forest change. Following mudflow deposition, the site consisted of patches of high tree mortality caused by deep mudflow deposits in abandoned river channels as well as patches of accelerated regeneration of surviving understory trees in areas of more shallow mudflow deposition and partial overstory mortality. Mudflow deposition at the site initiated multiple stages of stand development with (1) early-colonizing red alder (Alnus rubra Bong.) dominating deep deposition sites with fewer surviving trees, (2) gap recruitment and establishment by western hemlock (Tsuga heterophylla (Raf.) Sarg.) and Douglas- fir (Pseudotsuga menziesii (Mirb.) Franco) on intermediate to deep deposition sites with more postburial surviving trees, and (3) late-seral conditions and accelerated succession on shallow burial sites, where tree mortality was low. The initia- tion of differing succession trajectories, as well as variability in the extent and timing of tree mortality following mudflow deposition, demonstrates a dynamic response to disturbance in relation to small-scale gradients of mudflow deposition. -
(Washington Geology), V. 15, No. 4, October 1987
WASHINGTON GEOLOGIC NEWSLETTER Volume 15 Number 4 October 1987 Washington State Department of Natural Resources Division of Geology and Earth Resources View west of a climber descending the 8,365-foot summit of Mount St. Helens. The mountain was recent ly re-opened to mountaineers by the U.S . Forest Service. Clouds of ash from debris avalanches obscure the crater walls. (See article, p. 3.) IN THIS ISSUE Geologic guide to the Monitor Ridge climbing route, Mount St. Helens.................................................... p. 3 Pacific Northwest AGU Meeting ................................ p. 15 New U.S. Geological Survey projects in Washington ............................................................ p. 18 WASHINGTON Mount St. Helens Scientific Advisory Board GEOLOGIC NEWSLETTER by Ray Lasmanis The Washington Geologic Newsletter is published quarterly by the Division of Geology and Earth Resources, Department of Natural Resources. The newsletter is The Mount St. Helens Scientific Advisory Board was es free upon request. The Division also publishes bulletins, information circulars, re tablished in 1983 to comply with Section 7 of Public Law ports of investigations, and geologic maps. A list of these publications will be sent upon request. 97-243, an act passed by the 97th Congress, designating the Mount St. Helens National Volcanic Monument. The DEPARTMENT Brian J. Boyle provisions of Section 7 are: OF Commissioner of Public Lands NATURAL Art Stearns Sec. 7. (a) There is hereby established the Mount St. RESOURCES Supervisor Helens S cientijic Advisory Board ( hereinafter referred to as the "Board"). The Secretary [of Agriculture] shall consult Raymond Lasmanis DIVISION OF with and seek the advice and recommendations of the GEOLOGY AND State Geologist EARTH RESOUH.CES J. -
Surveys on Gifford Pinchot NF, 2008
2008 Bridgeoporus nobilissimus surveys on the Gifford Pinchot National Forest Report authors: Kelli Van Norman, Darci Rivers-Pankratz, Andrea Ruchty, John Scott Introduction Bridgeoporus nobilissimus (BRNO8) is a fungal species that produces a perennial polypore (conk). The host species is noble fir (Abies procera), though one conk on the Olympic National Forest was found on a Pacific silver fir (Abies amabilis). The distinctive conks have been found only on very large (> 36-inch DBH, diameter breast height) snags, stumps, and a few green trees within about 4 feet of the ground and up to 6 feet from the base of the host tree growing from the host’s root collar and root crown. It has been found in stands with very few large noble fir, in dry to moist areas, and on all topographic aspects (pers. comm. Terry Fennell). Additional information is available in a species fact sheet (Lebo 2007). The Goat Marsh Research Natural Area southwest of Mount St. Helens on the Gifford Pinchot National Forest has a population of BRNO8. However, relatively few other areas on the Gifford Pinchot NF have been surveyed for BRNO8 though there are other stands of large noble fir. Surveys were conducted in 2006, approximately 100 acres, as part of an effort to evaluate a BRNO8 habitat model developed by Dr. Robin Lesher (Lippert et al., 2006). The objective of the 2008 survey effort was to inventory large-diameter noble fir stands working away from the known population at Goat Marsh. In particular, we speculated that there may be potential habitat to the northeast of Goat Marsh within the Mount. -
Effects of the Eruptions of Mount St. Helens on Physical, Chemical, And
Effects of the Eruptions of Mount St. Helens on Physical, Chemical, RECEIVED and Biological Characteristics of U.S.G,S AUG 2 i 1996 Surface Water, Ground Water, WATER Kco. J , .^^ o L'i"" and Precipitation in the Western ROLLA, MQ. United States United States Geological Survey Water-Supply Paper 2438 Effects of the Eruptions of Mount St. Helens on Physical, Chemical, and Biological Characteristics of Surface Water, Ground Water, and Precipitation in the Western United States By DOUGLAS B. LEE U.S. GEOLOGICAL SURVEY WATER-SUPPLY PAPER 2438 U. S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. UNITED STATES GOVERNMENT PRINTING OFFICE: 1996 For sale by the U.S. Geological Survey Information Services Box 25286, Federal Center Denver, CO 80225 Library of Congress Cataloging in Publication Data Lee, Douglas B. Effects of the eruptions of Mount St. Helens on physical, chemical, and biological characteristics of surface water, ground water, and precipitation in the Western United States by Douglas B. Lee p. 124 cm. -- (U.S. Geological Survey Water-Supply Paper: 2438) Includes bibliographical references. Supt.ofDocs.no.: I 19.3:2438 1. Volcanic ash, tuff, etc. Environmental aspects Northwest, Pacific. 2. Volcanic ash, tuff etc. Environmental aspects Colorado. 3. Water Pollution Northwest, Pacific. 4. Water Pollution Colorado. 5. Saint Helens, Mount (Wash.) Eruption, 1980 Environmental aspects. I. Title II. Geological Survey Water-Supply Paper 2438. -
For Shorelines in Cowlitz County and the Cities of Castle Rock, Kalama, Kelso, and Woodland
COWLITZ COUNTY Grant No. G1200052 SHORELINE RESTORATION PLAN for Shorelines in Cowlitz County and the Cities of Castle Rock, Kalama, Kelso, and Woodland Prepared for: Cowlitz –Wahkiakum Council of Governments 207 4th Avenue North Kelso, WA 98626 Prepared by: Finalized April 2015 The Watershed Company Reference Number: 110922 This report was funded in part The Watershed Company through a grant from the Washington Contact Person: Department of Ecology. Dan Nickel / Sarah Sandstrom Cite this document as: The Watershed Company. April 2015. Shoreline Restoration Plan for Shorelines in Cowlitz County and the Cities of Castle Rock, Kalama, Kelso, and Woodland. Prepared for the Cowlitz-Wahkiakum Council of Governments, Kelso, WA. TABLE OF CONTENTS 1. Introduction ................................................................................ 1 1.1. Purpose .............................................................................................. 1 1.2. Restoration Plan Requirements ....................................................... 2 1.3. Types of Restoration Activities ........................................................ 3 1.4. Restoration Plan Approach .............................................................. 4 2. Restoration Goals ...................................................................... 5 3. Existing Conditions ................................................................... 5 3.1. Unincorporated Cowlitz County ....................................................... 6 3.1.1. Columbia River Assessment Unit