Effects of the Eruptions of Mount St. Helens on Physical, Chemical, And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cladocera: Anomopoda: Daphniidae) from the Lower Cretaceous of Australia
Palaeontologia Electronica palaeo-electronica.org Ephippia belonging to Ceriodaphnia Dana, 1853 (Cladocera: Anomopoda: Daphniidae) from the Lower Cretaceous of Australia Thomas A. Hegna and Alexey A. Kotov ABSTRACT The first fossil ephippia (cladoceran exuvia containing resting eggs) belonging to the extant genus Ceriodaphnia (Anomopoda: Daphniidae) are reported from the Lower Cretaceous (Aptian) freshwater Koonwarra Fossil Bed (Strzelecki Group), South Gippsland, Victoria, Australia. They represent only the second record of (pre-Quater- nary) fossil cladoceran ephippia from Australia (Ceriodaphnia and Simocephalus, both being from Koonwarra). The occurrence of both of these genera is roughly coincident with the first occurrence of these genera elsewhere (i.e., Mongolia). This suggests that the early radiation of daphniid anomopods predates the breakup of Pangaea. In addi- tion, some putative cladoceran body fossils from the same locality are reviewed; though they are consistent with the size and shape of cladocerans, they possess no cladoceran-specific synapomorphies. They are thus regarded as indeterminate diplostracans. Thomas A. Hegna. Department of Geology, Western Illinois University, Macomb, IL 61455, USA. ta- [email protected] Alexey A. Kotov. A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, Moscow 119071, Russia and Kazan Federal University, Kremlevskaya Str.18, Kazan 420000, Russia. alexey-a- [email protected] Keywords: Crustacea; Branchiopoda; Cladocera; Anomopoda; Daphniidae; Cretaceous. Submission: 28 March 2016 Acceptance: 22 September 2016 INTRODUCTION tions that the sparse known fossil record does not correlate with a meager past diversity. The rarity of Water fleas (Crustacea: Cladocera) are small, the cladoceran fossils is probably an artifact, a soft-bodied branchiopod crustaceans and are a result of insufficient efforts to find them in known diverse and ubiquitous component of inland and new palaeontological collections (Kotov, aquatic communities (Dumont and Negrea, 2002). -
Role of the Estuary in the Recovery of Columbia River Basin Salmon and Steelhead: an Evaluation of the Effects of Selected Factors on Salmonid Population Viability
NOAA Technical Memorandum NMFS-NWFSC-69 Role of the Estuary in the Recovery of Columbia River Basin Salmon and Steelhead: An Evaluation of the Effects of Selected Factors on Salmonid Population Viability September 2005 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS Series The Northwest Fisheries Science Center of the National Marine Fisheries Service, NOAA, uses the NOAA Technical Memorandum NMFS series to issue infor- mal scientific and technical publications when com- plete formal review and editorial processing are not appropriate or feasible due to time constraints. Docu- ments published in this series may be referenced in the scientific and technical literature. The NMFS-NWFSC Technical Memorandum series of the Northwest Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest & Alaska Fisheries Science Center, which has since been split into the Northwest Fisheries Science Center and the Alaska Fisheries Science Center. The NMFS-AFSC Technical Memorandum series is now being used by the Alaska Fisheries Science Center. Reference throughout this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. This document should be cited as follows: Fresh, K.L., E. Casillas, L.L. Johnson, and D.L. Bottom. 2005. Role of the estuary in the recovery of Columbia River basin salmon and steelhead: an evaluation of the effects of selected factors on salmo- nid population viability. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-69, 105 p. NOAA Technical Memorandum NMFS-NWFSC-69 Role of the Estuary in the Recovery of Columbia River Basin Salmon and Steelhead: An Evaluation of the Effects of Selected Factors on Salmonid Population Viability Kurt L. -
A Decision Framework for Managing the Spirit Lake and Toutle River System at Mount St
THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/24874 SHARE A Decision Framework for Managing the Spirit Lake and Toutle River System at Mount St. Helens (2018) DETAILS 336 pages | 6 x 9 | PAPERBACK ISBN 978-0-309-46444-4 | DOI 10.17226/24874 CONTRIBUTORS GET THIS BOOK Committee on Long-Term Management of the Spirit Lake/Toutle River System in Southwest Washington; Committee on Geological and Geotechnical Engineering; Board on Earth Sciences and Resources; Water Science and Technology Board; Division on Earth and Life Studies; Board on Environmental Change and Society; FIND RELATED TITLES Division of Behavioral and Social Sciences and Education; National Academies of Sciences, Engineering, and Medicine SUGGESTED CITATION National Academies of Sciences, Engineering, and Medicine 2018. A Decision Framework for Managing the Spirit Lake and Toutle River System at Mount St. Helens. Washington, DC: The National Academies Press. https://doi.org/10.17226/24874. Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy -
U.S. Environmental Protection Agency's National Estuary Program
U.S. Environmental Protection Agency’s National Estuary Program Story Map Text-only File 1) Introduction Welcome to the National Estuary Program story map. Since 1987, the EPA National Estuary Program (NEP) has made a unique and lasting contribution to protecting and restoring our nation's estuaries, delivering environmental and public health benefits to the American people. This story map describes the 28 National Estuary Programs, the issues they face, and how place-based partnerships coordinate local actions. To use this tool, click through the four tabs at the top and scroll around to learn about our National Estuary Programs. Want to learn more about a specific NEP? 1. Click on the "Get to Know the NEPs" tab. 2. Click on the map or scroll through the list to find the NEP you are interested in. 3. Click the link in the NEP description to explore a story map created just for that NEP. Program Overview Our 28 NEPs are located along the Atlantic, Gulf, and Pacific coasts and in Puerto Rico. The NEPs employ a watershed approach, extensive public participation, and collaborative science-based problem- solving to address watershed challenges. To address these challenges, the NEPs develop and implement long-term plans (called Comprehensive Conservation and Management Plans (link opens in new tab)) to coordinate local actions. The NEPs and their partners have protected and restored approximately 2 million acres of habitat. On average, NEPs leverage $19 for every $1 provided by the EPA, demonstrating the value of federal government support for locally-driven efforts. View the NEPmap. What is an estuary? An estuary is a partially-enclosed, coastal water body where freshwater from rivers and streams mixes with salt water from the ocean. -
Sediment Data-Collection Techniques" (SW1 091TC) (Al 06002.01.362.530)
CENTER FOR NUCLEAR WASTE REGULATORY ANALYSES TRIP REPORT SUBJECT: U.S. Geological Survey training course entitled "Sediment Data-Collection Techniques" (SW1 091TC) (Al 06002.01.362.530) DATE/PLACE: March 13-18, 2005 Castle Rock, Washington AUTHOR: Donald Hooper, Research Scientist Center for Nuclear Waste Regulatory Analyses (CNWRA) at Southwest Research Instituter (SwRlt) DISTRIBUTION: CNWRA NRC-NMSS SwRl Contracts W. Patrick J. Trapp Record Copy B (IQS) CNWRA Directors D. DeMarco CNWRA Element Managers B. Meehan S. Mohanty J. Rubenstone R. Benke J. Guttman L. Gutierrez E. Whitt CENTER FOR NUCLEAR WASTE REGULATORY ANALYSES TRIP REPORT SUBJECT: U.S. Geological Surveytraining course entitled "Sediment Data-Collection Techniques" (SW1091TC) (Al 06002.01.362.530) DATE/PLACE: March 13-18, 2005 Castle.Rock, Washington AUTHOR: Donald Hooper, Research Scientist Center for Nuclear Waste Regulatory Analyses (CNWRA) at Southwest Research Institutee (SwRl~ PERSONS PRESENT: One staff member from the Center for Nuclear Waste Regulatory Analyses attended the training course. A total of 32 scientists enrolled in the course, which was taught by a team of U.S. Geological Survey staff members with John Gray as course leader and coordinator. BACKGROUND AND PURPOSE OF TRIP: This training course in Castle Rock, Washington, near Mount St. Helens, provided instruction in basic sediment data-collection'techniques with principal emphasis on the following: (i) basic sediment concepts; (ii) sampler characteristics; (iii) field techniques; (iv) direct sampling with suspended sediment, bed material, and bedload samplers; (v) computation of sediment discharge records; (vi) quality-assurance procedures; and (vii) estimating sediment properties from surrogate technologies based on bulk optic, digital optic, laser, acoustic, and pressure- differential principles. -
Impact of Trace Metal Concentrations on Coccolithophore Growth and Morphology: Laboratory Simulations of Cretaceous Stress
Biogeosciences Discuss., doi:10.5194/bg-2017-138, 2017 Manuscript under review for journal Biogeosciences Discussion started: 21 April 2017 c Author(s) 2017. CC-BY 3.0 License. Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress. Giulia Faucher1, Linn Hoffmann2, Lennart T. Bach3, Cinzia Bottini1, Elisabetta Erba1, Ulf Riebesell3 1 Earth Sciences Department “Ardito Desio”, Università degli Studi di Milano, Milan, Italy 5 2 Department of Botany, University of Otago, Dunedin, New Zealand 3 Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany Correspondence to: Giulia Faucher ([email protected]) 10 Abstract. The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication, and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification process in past oceans. In order to verify this hypothesis, we explored the potential effect of a 15 mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. These taxa are phylogenetically linked to the Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interaction with living coccolithophores algae. 20 Our laboratory experiments demonstrated that elevated trace metal concentrations not only affect coccolithophore algae production but, similarly to the fossil record, coccolith size and/or weight. -
Respiratory Health Effects of Volcanic Ash with Special Reference To
The Clinical Respiratory Journal REVIEW ARTICLE Respiratory health effects of volcanic ash with special reference to Iceland. A reviewcrj_231 2..9 Gunnar Gudmundsson1,2 1 Landspitali University Hospital, Reykjavik, Iceland 2 Faculty of Medicine, University of Iceland, Reykjavik, Iceland Abstract Key words Background and Aims: Volcano eruptions occur around the world and can have an health – respiratory – review – volcanic ash – impact on health in many ways both locally and on a global scale as a result of volcanic gases airborne dispersion of gases and ash or as impact on climate. In this review, a recent Correspondence volcanic eruption in Eyjafjallajökull in Iceland is described and its effects on avia- Gunnar Gudmundsson, MD, PhD, Department tion around the globe and on respiratory health in those exposed to the volcanic of Respiratory Medicine, Allergy and Sleep, ash in Iceland. Also, the effects of a large volcano eruption in Iceland in 1789 are Landspitali-University Hospital, E-7 Fossvogur, described that also had effect on a global scale by causing air pollution. IS-108 Methods and Results: The available studies reviewed here suggest that the acute Reykjavik, Iceland. and chronic health effects of volcanic ash depend on particle size (how much Tel: +354-5436876 Fax: +354-5436568 respirable), mineralogical composition (crystalline silica content) and the physico- email: [email protected] chemical properties of the surfaces of ash particles. These can vary between volca- noes and even between eruptions, making comparison difficult. Acute respiratory Received: 05 October 2010 symptoms suggesting asthma and bronchitis have been well described. Exacerba- Revision requested: 17 October 2010 tions of pre-existing lung and heart disease are common after inhalation of volcanic Accepted: 20 October 2010 ash. -
Do Sturgeon Limit Burrowing Shrimp Populations in Pacific Northwest Estuaries?
Environ Biol Fish (2008) 83:283–296 DOI 10.1007/s10641-008-9333-y Do sturgeon limit burrowing shrimp populations in Pacific Northwest Estuaries? Brett R. Dumbauld & David L. Holden & Olaf P. Langness Received: 22 January 2007 /Accepted: 28 January 2008 /Published online: 4 March 2008 # Springer Science + Business Media B.V. 2008 Abstract Green sturgeon, Acipenser medirostris, and we present evidence from exclusion studies and field white sturgeon, Acipenser transmontanus, are fre- observation that the predator making the pits can have quent inhabitants of coastal estuaries from northern a significant cumulative negative effect on burrowing California, USA to British Columbia, Canada. An shrimp density. These burrowing shrimp present a analysis of stomach contents from 95 green stur- threat to the aquaculture industry in Washington State geon and six white sturgeon commercially landed in due to their ability to de-stabilize the substrate on Willapa Bay, Grays Harbor, and the Columbia River which shellfish are grown. Despite an active burrowing estuary during 2000–2005 revealed that 17–97% had shrimp control program in these estuaries, it seems empty stomachs, but those fish with items in their unlikely that current burrowing shrimp abundance and guts fed predominantly on benthic prey items and availability as food is a limiting factor for threatened fish. Burrowing thalassinid shrimp (mostly Neo- green sturgeon stocks. However, these large predators trypaea californiensis) were important food items for may have performed an important top down control both white and especially for green sturgeon taken in function on shrimp populations in the past when they Willapa Bay, Washington during summer 2003, where were more abundant. -
Volume II, Chapter 2 Columbia River Estuary and Lower Mainstem Subbasins
Volume II, Chapter 2 Columbia River Estuary and Lower Mainstem Subbasins TABLE OF CONTENTS 2.0 COLUMBIA RIVER ESTUARY AND LOWER MAINSTEM ................................ 2-1 2.1 Subbasin Description.................................................................................................. 2-5 2.1.1 Purpose................................................................................................................. 2-5 2.1.2 History ................................................................................................................. 2-5 2.1.3 Physical Setting.................................................................................................... 2-7 2.1.4 Fish and Wildlife Resources ................................................................................ 2-8 2.1.5 Habitat Classification......................................................................................... 2-20 2.1.6 Estuary and Lower Mainstem Zones ................................................................. 2-27 2.1.7 Major Land Uses................................................................................................ 2-29 2.1.8 Areas of Biological Significance ....................................................................... 2-29 2.2 Focal Species............................................................................................................. 2-31 2.2.1 Selection Process............................................................................................... 2-31 2.2.2 Ocean-type Salmonids -
Wyoming's Bentonite and Trona Resources
Wyoming’s Bentonite and Trona Resources By Chamois Andersen, Wyoming State Geological Survey (Fall 2014) Many of the Earth’s minerals are used for industrial purposes, but consumers may not realize they also benefit from these minerals in a number of their everyday products. Bentonite and trona are two such resources, with Wyoming being home to some of the largest deposits in the world and leading the nation in their production. Bentonite is an important mineral to the energy industry because of its use in drilling mud for oil and natural gas wells. Consumers use bentonite when they buy kitty litter and cosmetics. Many industrial minerals have unique characteristics that make them particularly useful. Bentonite, for example, can swell up to 16 times its original size and hold up to 10 times its weight in water. Known as the “clay of 1,000 uses,” the mineral is also used in pharmaceuticals and as a bonding agent in molds for castings in iron and steel foundries, among many other uses. Wyoming has 70 percent of the known bentonite deposits in the world. In 2013, the state mined more than 4 million tons of bentonite. While much of this resource is used in cat litter, recent increases in overall mining and production of bentonite in the state can be directly linked to oil and gas drilling. The same is true for trona. It has a wide variety of manufacturing uses as well as consumer uses. Trona is mined to make soda ash, which is used to make flat glass for the automotive and construction industries. -
Demographics of Piscivorous Colonial Waterbirds and Management Implications for ESA-Listed Salmonids on the Columbia Plateau
Jessica Y. Adkins, Donald E. Lyons, Peter J. Loschl, Department of Fisheries and Wildlife, 104 Nash Hall, Oregon State University, Corvallis, Oregon 97331 Daniel D. Roby, U.S. Geological Survey-Oregon Cooperative Fish and Wildlife Research Unit1, Department of Fisheries and Wildlife, 104 Nash Hall, Oregon State University, Corvallis, Oregon 97331 Ken Collis2, Allen F. Evans, Nathan J. Hostetter, Real Time Research, Inc., 52 S.W. Roosevelt Avenue, Bend, Oregon 97702 Demographics of Piscivorous Colonial Waterbirds and Management Implications for ESA-listed Salmonids on the Columbia Plateau Abstract We investigated colony size, productivity, and limiting factors for five piscivorous waterbird species nesting at 18 loca- tions on the Columbia Plateau (Washington) during 2004–2010 with emphasis on species with a history of salmonid (Oncorhynchus spp.) depredation. Numbers of nesting Caspian terns (Hydroprogne caspia) and double-crested cormorants (Phalacrocorax auritus) were stable at about 700–1,000 breeding pairs at five colonies and about 1,200–1,500 breed- ing pairs at four colonies, respectively. Numbers of American white pelicans (Pelecanus erythrorhynchos) increased at Badger Island, the sole breeding colony for the species on the Columbia Plateau, from about 900 individuals in 2007 to over 2,000 individuals in 2010. Overall numbers of breeding California gulls (Larus californicus) and ring-billed gulls (L. delawarensis) declined during the study, mostly because of the abandonment of a large colony in the mid-Columbia River. Three gull colonies below the confluence of the Snake and Columbia rivers increased substantially, however. Factors that may limit colony size and productivity for piscivorous waterbirds nesting on the Columbia Plateau included availability of suitable nesting habitat, interspecific competition for nest sites, predation, gull kleptoparasitism, food availability, and human disturbance. -
Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye
Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye To cite this version: Lambert Niyoyitungiye. Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality. Biodiversity and Ecology. Assam University Silchar (Inde), 2019. English. tel-02536191 HAL Id: tel-02536191 https://hal.archives-ouvertes.fr/tel-02536191 Submitted on 9 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. “LIMNOLOGICAL STUDY OF LAKE TANGANYIKA, AFRICA WITH SPECIAL EMPHASIS ON PISCICULTURAL POTENTIALITY” A THESIS SUBMITTED TO ASSAM UNIVERSITY FOR PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN LIFE SCIENCE AND BIOINFORMATICS By Lambert Niyoyitungiye (Ph.D. Registration No.Ph.D/3038/2016) Department of Life Science and Bioinformatics School of Life Sciences Assam University Silchar - 788011 India Under the Supervision of Dr.Anirudha Giri from Assam University, Silchar & Co-Supervision of Prof. Bhanu Prakash Mishra from Mizoram University, Aizawl Defence date: 17 September, 2019 To Almighty and merciful God & To My beloved parents with love i MEMBERS OF EXAMINATION BOARD iv Contents Niyoyitungiye, 2019 CONTENTS Page Numbers CHAPTER-I INTRODUCTION .............................................................. 1-7 I.1 Background and Motivation of the Study ..........................................