Description of Two New Species of Didelphis from Van Diemen's Land

Total Page:16

File Type:pdf, Size:1020Kb

Description of Two New Species of Didelphis from Van Diemen's Land Harris GP (1880) Description of two new species of Didelphis from Van Diemen's Land. Trans Linn Soc Lond 9: 174-178. Muirhead J (1992) A specialised thylacinid, Thylacinus macknessi,(Marsupialia: Thylacinidae) from Miocene deposits of Riversleigh, northwestern Queensland. Aust Mammal 15: 67-76. Murray PF (1997) Thylacinus megiriani, a new species of thylacine (Marsupialia: Thylacinidae) from the Ongeva local fauna of central Australia. Rec S Aust Mus 30: 43-61. Muirhead J, Archer M (1990) Nimbacinus dicksoni, a plesiomorphic thylacine (Marsupialia: Thylacinidae) from Tertiary deposits of Queensland and the Northern Territory. Mem Queensl Mus 28: 203-221. Muirhead J, Wroe S (1998) A new genus and species, Badjcinus turnbulli (Thylacinidae: Marsupialia), from the late Oligocene of Riversleigh, northern Australia, and an investigation of thylacinid phylogeny. J Vert Paleontol 18: 612-626. Murray PF, Megirian D (2000) Two new genera and three new species of Thylacinidae (Marsupialia) from the Miocene of the Northern Territory, Australia. The Beagle, Records of the Museums and Art Galleries of the Northern Territory 16: 145-162. Murray P, Megirian D (2006) Cranial morphology of the Miocene thylacinid Mutpuracinus archibaldi (Thylacinidae, Marsupialia) and relationships within the Dasyuromorphia. Alcheringa 30: 229-276. Turnbull WD (1970) Mammalian masticatory apparatus. Fieldiana: Geology 18: 149-356. Woodburne MO (1967) The Alcoota Fauna, central Australia. An integrated palaeontological and geological study. Bureau of Mineral Resources Bulletin 87: 1-187. Wroe S (1996) Muribacinus gadiyuli, (Thylacinidae: Marsupialia), a very plesiomorphic thylacinid from the Miocene of Riversleigh, northwestern Queensland, and the problem of paraphyly for the Dasyuridae. J Paleontol 70: 1032-1044. Wroe S (2001) Maximucinus muirheadae, gen. et sp. nov. (Thylacinidae: Marsupialia), from the Miocene of Riversleigh, north-western Queensland, with estimates of body weights for fossil thylacinids. Aust J Zool 49: 603-614. Wroe S, Musser A (2001) The skull of Nimbacinus dicksoni (Thylacinidae: Marsupialia). Aust J Zool 49: 487-514. 1 .
Recommended publications
  • A Specialised Thylacinid, Thylacinus Macknessi; (Marsupialia: Thylacinidae) from Miocene Deposits of Riversleigh, Northwestern Queensland
    A SPECIALISED THYLACINID, THYLACINUS MACKNESSI; (MARSUPIALIA: THYLACINIDAE) FROM MIOCENE DEPOSITS OF RIVERSLEIGH, NORTHWESTERN QUEENSLAND JEANElTE MUIRHEAD M uirhead, J ., 1992. A specialised thylacinid, Thylacinus macknessi, (Marsupialia: Thylacinidae) from Miocene deposits of Riversleigh, northwestern Queensland. Australian Mammalogy 15: 67-76. Thylacinus macknessi is described from Miocene sediments of Riversleigh, northwestern Queensland. Comparisons with other thylacinids and dasyurids reveal it to be a new species of Thy/acinus. In most features it is as specialised as T. cynocepha/us and it is not considered to be ancestral to any other taxon. The presence of such a specialised thylacine in the Riversleigh deposits argues for a pre-Late Oligocene divergence of this group from the Dasyuridae. Key words: Thylacine, 1h)'lacinus macknessi, Thylacinidae, Riversleigh, Tertiary, Queensland, Marsupialia. I. Muirhead. Schoo/ of Bi%gica/ Sciences, University of New South Wa/es, PO Box I Kensington New South Wales 2033. Manuscript received /4 September 1991. THE Thylacinidae is a small family consisting of a abbreviations used are: QMF, Queensland Museum recently extinct form Thy/acinus cynocepha/us Harris, palaeontological collection; AR, temporary catalogue and two Tertiary taxa. Although thylacinid premolars number in School of Biological Science, U niversity of have been recovered from the Miocene Wipajiri New South Wales. Measurements of tooth dimensions Formation of South Australia and the late Pliocene of 7: macknessi are presented
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • A Dated Phylogeny of Marsupials Using a Molecular Supermatrix and Multiple Fossil Constraints
    Journal of Mammalogy, 89(1):175–189, 2008 A DATED PHYLOGENY OF MARSUPIALS USING A MOLECULAR SUPERMATRIX AND MULTIPLE FOSSIL CONSTRAINTS ROBIN M. D. BECK* School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Downloaded from https://academic.oup.com/jmammal/article/89/1/175/1020874 by guest on 25 September 2021 Phylogenetic relationships within marsupials were investigated based on a 20.1-kilobase molecular supermatrix comprising 7 nuclear and 15 mitochondrial genes analyzed using both maximum likelihood and Bayesian approaches and 3 different partitioning strategies. The study revealed that base composition bias in the 3rd codon positions of mitochondrial genes misled even the partitioned maximum-likelihood analyses, whereas Bayesian analyses were less affected. After correcting for base composition bias, monophyly of the currently recognized marsupial orders, of Australidelphia, and of a clade comprising Dasyuromorphia, Notoryctes,and Peramelemorphia, were supported strongly by both Bayesian posterior probabilities and maximum-likelihood bootstrap values. Monophyly of the Australasian marsupials, of Notoryctes þ Dasyuromorphia, and of Caenolestes þ Australidelphia were less well supported. Within Diprotodontia, Burramyidae þ Phalangeridae received relatively strong support. Divergence dates calculated using a Bayesian relaxed molecular clock and multiple age constraints suggested at least 3 independent dispersals of marsupials from North to South America during the Late Cretaceous or early Paleocene. Within the Australasian clade, the macropodine radiation, the divergence of phascogaline and dasyurine dasyurids, and the divergence of perameline and peroryctine peramelemorphians all coincided with periods of significant environmental change during the Miocene. An analysis of ‘‘unrepresented basal branch lengths’’ suggests that the fossil record is particularly poor for didelphids and most groups within the Australasian radiation.
    [Show full text]
  • Thylacinidae
    FAUNA of AUSTRALIA 20. THYLACINIDAE JOAN M. DIXON 1 Thylacine–Thylacinus cynocephalus [F. Knight/ANPWS] 20. THYLACINIDAE DEFINITION AND GENERAL DESCRIPTION The single member of the family Thylacinidae, Thylacinus cynocephalus, known as the Thylacine, Tasmanian Tiger or Wolf, is a large carnivorous marsupial (Fig. 20.1). Generally sandy yellow in colour, it has 15 to 20 distinct transverse dark stripes across the back from shoulders to tail. While the large head is reminiscent of the dog and wolf, the tail is long and characteristically stiff and the legs are relatively short. Body hair is dense, short and soft, up to 15 mm in length. Body proportions are similar to those of the Tasmanian Devil, Sarcophilus harrisii, the Eastern Quoll, Dasyurus viverrinus and the Tiger Quoll, Dasyurus maculatus. The Thylacine is digitigrade. There are five digital pads on the forefoot and four on the hind foot. Figure 20.1 Thylacine, side view of the whole animal. (© ABRS)[D. Kirshner] The face is fox-like in young animals, wolf- or dog-like in adults. Hairs on the cheeks, above the eyes and base of the ears are whitish-brown. Facial vibrissae are relatively shorter, finer and fewer than in Tasmanian Devils and Quolls. The short ears are about 80 mm long, erect, rounded and covered with short fur. Sexual dimorphism occurs, adult males being larger on average. Jaws are long and powerful and the teeth number 46. In the vertebral column there are only two sacrals instead of the usual three and from 23 to 25 caudal vertebrae rather than 20 to 21.
    [Show full text]
  • A Species-Level Phylogenetic Supertree of Marsupials
    J. Zool., Lond. (2004) 264, 11–31 C 2004 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836904005539 A species-level phylogenetic supertree of marsupials Marcel Cardillo1,2*, Olaf R. P. Bininda-Emonds3, Elizabeth Boakes1,2 and Andy Purvis1 1 Department of Biological Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, U.K. 2 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, U.K. 3 Lehrstuhl fur¨ Tierzucht, Technical University of Munich, Alte Akademie 12, 85354 Freising-Weihenstephan, Germany (Accepted 26 January 2004) Abstract Comparative studies require information on phylogenetic relationships, but complete species-level phylogenetic trees of large clades are difficult to produce. One solution is to combine algorithmically many small trees into a single, larger supertree. Here we present a virtually complete, species-level phylogeny of the marsupials (Mammalia: Metatheria), built by combining 158 phylogenetic estimates published since 1980, using matrix representation with parsimony. The supertree is well resolved overall (73.7%), although resolution varies across the tree, indicating variation both in the amount of phylogenetic information available for different taxa, and the degree of conflict among phylogenetic estimates. In particular, the supertree shows poor resolution within the American marsupial taxa, reflecting a relative lack of systematic effort compared to the Australasian taxa. There are also important differences in supertrees based on source phylogenies published before 1995 and those published more recently. The supertree can be viewed as a meta-analysis of marsupial phylogenetic studies, and should be useful as a framework for phylogenetically explicit comparative studies of marsupial evolution and ecology.
    [Show full text]
  • Australia's Biodiversity and Climate Change
    Australia’s Biodiversity and Climate Change A strategic assessment of the vulnerability of Australia’s biodiversity to climate change A report to the Natural Resource Management Ministerial Council commissioned by the Australian Government. Prepared by the Biodiversity and Climate Change Expert Advisory Group: Will Steffen, Andrew A Burbidge, Lesley Hughes, Roger Kitching, David Lindenmayer, Warren Musgrave, Mark Stafford Smith and Patricia A Werner © Commonwealth of Australia 2009 ISBN 978-1-921298-67-7 Published in pre-publication form as a non-printable PDF at www.climatechange.gov.au by the Department of Climate Change. It will be published in hard copy by CSIRO publishing. For more information please email [email protected] This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the: Commonwealth Copyright Administration Attorney-General's Department 3-5 National Circuit BARTON ACT 2600 Email: [email protected] Or online at: http://www.ag.gov.au Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for Climate Change and Water and the Minister for the Environment, Heritage and the Arts. Citation The book should be cited as: Steffen W, Burbidge AA, Hughes L, Kitching R, Lindenmayer D, Musgrave W, Stafford Smith M and Werner PA (2009) Australia’s biodiversity and climate change: a strategic assessment of the vulnerability of Australia’s biodiversity to climate change.
    [Show full text]
  • Phylogenetic Relationships of Living and Recently Extinct Bandicoots Based on Nuclear and Mitochondrial DNA Sequences ⇑ M
    Molecular Phylogenetics and Evolution 62 (2012) 97–108 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenetic relationships of living and recently extinct bandicoots based on nuclear and mitochondrial DNA sequences ⇑ M. Westerman a, , B.P. Kear a,b, K. Aplin c, R.W. Meredith d, C. Emerling d, M.S. Springer d a Genetics Department, LaTrobe University, Bundoora, Victoria 3086, Australia b Palaeobiology Programme, Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden c Australian National Wildlife Collection, CSIRO Sustainable Ecosystems, Canberra, ACT 2601, Australia d Department of Biology, University of California, Riverside, CA 92521, USA article info abstract Article history: Bandicoots (Peramelemorphia) are a major order of australidelphian marsupials, which despite a fossil Received 4 November 2010 record spanning at least the past 25 million years and a pandemic Australasian range, remain poorly Revised 6 September 2011 understood in terms of their evolutionary relationships. Many living peramelemorphians are critically Accepted 12 September 2011 endangered, making this group an important focus for biological and conservation research. To establish Available online 11 November 2011 a phylogenetic framework for the group, we compiled a concatenated alignment of nuclear and mito- chondrial DNA sequences, comprising representatives of most living and recently extinct species. Our Keywords: analysis confirmed the currently recognised deep split between Macrotis (Thylacomyidae), Chaeropus Marsupial (Chaeropodidae) and all other living bandicoots (Peramelidae). The mainly New Guinean rainforest per- Bandicoot Peramelemorphia amelids were returned as the sister clade of Australian dry-country species. The wholly New Guinean Per- Phylogeny oryctinae was sister to Echymiperinae.
    [Show full text]
  • Numbat (Myrmecobius Fasciatus) Recovery Plan
    Numbat (Myrmecobius fasciatus) Recovery Plan Wildlife Management Program No. 60 Western Australia Department of Parks and Wildlife February 2017 Wildlife Management Program No. 60 Numbat (Myrmecobius fasciatus) Recovery Plan February 2017 Western Australia Department of Parks and Wildlife Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 Foreword Recovery plans are developed within the framework laid down in Department of Parks and Wildlife Corporate Policy Statement No. 35; Conserving Threatened and Ecological Communities (DPaW 2015a), Corporate Guidelines No. 35; Listing and Recovering Threatened Species and Ecological Communities (DPaW 2015b), and the Australian Government Department of the Environment’s Recovery Planning Compliance Checklist for Legislative and Process Requirements (Department of the Environment 2014). Recovery plans outline the recovery actions that are needed to urgently address those threatening processes most affecting the ongoing survival of threatened taxa or ecological communities, and begin the recovery process. Recovery plans are a partnership between the Department of the Environment and Energy and the Department of Parks and Wildlife. The Department of Parks and Wildlife acknowledges the role of the Environment Protection and Biodiversity Conservation Act 1999 and the Department of the Environment and Energy in guiding the implementation of this recovery plan. The attainment of objectives and the provision of funds necessary to implement actions are subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. This recovery plan was approved by the Department of Parks and Wildlife, Western Australia. Approved recovery plans are subject to modification as dictated by new findings, changes in status of the taxon or ecological community, and the completion of recovery actions.
    [Show full text]
  • Lwo NEW EARL Y MIOCENE THYLACINES from RIVERSLEIGH, NORTHWESTERN QUEENSLAND
    lWO NEW EARL y MIOCENE THYLACINES FROM RIVERSLEIGH, NORTHWESTERN QUEENSLAND JEANETTE MUIRHEAD Muirhead, J. 19970630: Two new early Miocene thy1acinesfrom Rivers1eigh. northwestern Queensland. Memoirs of the Queens/and Musewn 41(2): 367-377. Brisbane. ISSN 0079- 8835. Thylacines, Wabulacinus ridei gen. et sp. nov.and Ngamalacinus timmulvaneyi gen. et sp. nov ., are described from the early Miocene of Riversleigh. northwestern Queensland. Both show carnivorous adaptation intermediate between that of the plesiomorphic Nimbacinus dicksoni and derived Thylacinus. The family concept is revised to include these new taxa. All known thylacinid genera occur in late Oligocene to middle Miocene Riversleigh faunas and some may have overlapped in time followed by a decline in family diversity since the Miocene. D Thylacine, marsupial. carnivore, Miocene, Riversleigh, Queensland. i. Muirhead, School of Biological Sciences, University of New South Wales NSW 2052 Australia; received 25 June 1995. The Thylacinidae consists of three species of Wabulacinus gen. nov. Thylacinus (T. cynocephalus Harris, 1808, T. potens Woodburne, 1967 and T. macknessi TYPE SPECIES. Wabulacinus ridei gen. et sp. nov. Muirhead, 1992) and the monotypicNimbacinus dicksoni Muirhead & Archer, 1990 from the late ETYMOLOGY. Wanyii Wabula, long ago; Greek Icynos.dog. Masculine. Oligocene to middle Miocene of Queensland and the Northern Territory (Muirhead & Archer, DIAGNOSIS. Infraorbital foramen surrounded wholll 1990). It is the oldest and most primitive thY- by the maxillary and positioned low and anterior to M ; lacinid, more closely resembling dasyurids in cenb"OCristaand preparacrista parallel, forming contin- many plesiomorphic features. Thylacinus potens uous Sb"aight line on MI; entoconid absent (on M3); from the late Miocene Alcoota Local Fauna hypoconulid enlarged (on M3).
    [Show full text]
  • Riversleigh World Heritage Area Brochure
    ecological and biological processes. processes. biological and ecological processes. biological and ecological examples representing significant ongoing ongoing significant representing examples ongoing significant representing examples in Queensland. in Queensland. in stages of earth’s history, and Outstanding Outstanding and history, earth’s of stages Outstanding and history, earth’s of stages , including Riversleigh, are are Riversleigh, including , 5 — List Heritage World are Riversleigh, including , 5 — List Heritage World Outstanding examples representing major major representing examples Outstanding major representing examples Outstanding There are 19 Australian properties on the the on properties Australian 19 are There the on properties Australian 19 are There experiencemountisa.com.au experiencemountisa.com.au two of the ten World Heritage criteria: criteria: Heritage World ten the of two criteria: Heritage World ten the of two Amazon Rainforest. Rainforest. Amazon Rainforest. Amazon of years ago. For more information visit visit information more For ago. years of visit information more For ago. years of the World Heritage List in 1994. Both areas meet meet areas Both 1994. in List Heritage World the meet areas Both 1994. in List Heritage World the Canyon, the Egyptian Pyramids and the the and Pyramids Egyptian the Canyon, the and Pyramids Egyptian the Canyon, within the Riversleigh landscape as it was millions millions was it as landscape Riversleigh the within millions was it as landscape Riversleigh the within Riversleigh and Naracoorte were inscribed on on inscribed were Naracoorte and Riversleigh on inscribed were Naracoorte and Riversleigh Other World Heritage Sites include the Grand Grand the include Sites Heritage World Other Grand the include Sites Heritage World Other fascinating reconstructions of prehistoric animals animals prehistoric of reconstructions fascinating animals prehistoric of reconstructions fascinating significance’ to all humanity.
    [Show full text]
  • Universidade Federal Do Ceará Centro De Ciências
    UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA CURSO DE CIÊNCIAS BIOLÓGICAS NÁDIA MARIA FREITAS EDUARDO ANÁLISE FUNCIONAL DO ESQUELETO APENDICULAR DE UM MARSUPIAL AUSTRALIANO DO MIOCENO FORTALEZA 2017 NÁDIA MARIA FREITAS EDUARDO ANÁLISE FUNCIONAL DO ESQUELETO APENDICULAR DE UM MARSUPIAL AUSTRALIANO DO MIOCENO Monografia apresentada ao Curso de Ciências Biológicas do Departamento de Biologia da Universidade Federal do Ceará, como requisito parcial para obtenção do Título de Bacharel em Ciências Biológicas. Orientador: Prof. Dr. Vicente Vieira Faria. Co-orientador: Dr. Michael Archer. FORTALEZA 2017 Aos meus pais, Eduardo e Kátia. Ao Grupo de Discussão sobre Mamíferos e Aves (GDMA) AGRADECIMENTOS À minha mãe, Kátia Freitas, por ter sido meu porto seguro, meu suporte e minha conselheira durante toda a graduação, desde a época do vestibular, passando pelo intercâmbio, até minha formatura. Ao meu pai, que mesmo falecido, sempre foi minha inspiração. À minha irmã, por sempre me apoiar e me provocar questionamentos. A os meus professores, colegas de graduação, colegas de trabalho e funcionários da UFC. Enfim, a todos aqueles que cruzaram meu caminho durante esses anos de graduação e, de alguma forma, colaboraram para minha formação profissional, pessoal e critica. À Pró Reitoria de Assuntos Estudantis, por ter me provido com uma vaga no programa de Residência Universitária, permitindo com que eu concluísse meus estudos em Fortaleza. Ao Grupo de Discussão sobre Mamíferos e Aves, que foi meu refúgio e principal fonte de conhecimento e discussão durante a graduação. A todos os laboratórios dos quais eu fiz parte. Em especial, durante minha Iniciação Científica no Laboratório de Histologia Animal, onde dei meus primeiros passos na pesquisa científica.
    [Show full text]
  • How Many Species of Mammals Are There?
    Journal of Mammalogy, 99(1):1–14, 2018 DOI:10.1093/jmammal/gyx147 INVITED PAPER How many species of mammals are there? CONNOR J. BURGIN,1 JOCELYN P. COLELLA,1 PHILIP L. KAHN, AND NATHAN S. UPHAM* Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725, USA (CJB) Department of Biology and Museum of Southwestern Biology, University of New Mexico, MSC03-2020, Albuquerque, NM 87131, USA (JPC) Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA (PLK) Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA (NSU) Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA (NSU) 1Co-first authors. * Correspondent: [email protected] Accurate taxonomy is central to the study of biological diversity, as it provides the needed evolutionary framework for taxon sampling and interpreting results. While the number of recognized species in the class Mammalia has increased through time, tabulation of those increases has relied on the sporadic release of revisionary compendia like the Mammal Species of the World (MSW) series. Here, we present the Mammal Diversity Database (MDD), a digital, publically accessible, and updateable list of all mammalian species, now available online: https://mammaldiversity.org. The MDD will continue to be updated as manuscripts describing new species and higher taxonomic changes are released. Starting from the baseline of the 3rd edition of MSW (MSW3), we performed a review of taxonomic changes published since 2004 and digitally linked species names to their original descriptions and subsequent revisionary articles in an interactive, hierarchical database. We found 6,495 species of currently recognized mammals (96 recently extinct, 6,399 extant), compared to 5,416 in MSW3 (75 extinct, 5,341 extant)—an increase of 1,079 species in about 13 years, including 11 species newly described as having gone extinct in the last 500 years.
    [Show full text]