University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Math Department: Class Notes and Learning Materials Mathematics, Department of 2010 Class Notes for Math 953: Algebraic Geometry, Instructor Roger Wiegand Laura Lynch University of Nebraska - Lincoln,
[email protected] Follow this and additional works at: https://digitalcommons.unl.edu/mathclass Part of the Science and Mathematics Education Commons Lynch, Laura, "Class Notes for Math 953: Algebraic Geometry, Instructor Roger Wiegand" (2010). Math Department: Class Notes and Learning Materials. 1. https://digitalcommons.unl.edu/mathclass/1 This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Math Department: Class Notes and Learning Materials by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Class Notes for Math 953: Algebraic Geometry, Instructor Roger Wiegand Topics include: Affine schemes and sheaves, morphisms, dimension theory, projective varieties, graded rings, Artin rings Prepared by Laura Lynch, University of Nebraska-Lincoln August 2010 1 Section 1.5: Projective Varieties (Ueno) De¯nition. Let W = kn=1 n f(0; 0; :::; 0)g and de¯ne an equivalence relation » by (a0; :::; an) » (b0; :::; bn) if and only if (a0; :::; an) = ®(b0; :::; bn) n for ® 2 k n f0g: De¯ne the n¡dimensional projective space as Pk = W= » : Notation. Say (a0 : a1 : ¢ ¢ ¢ : an) is the equivalence class determined by (a0; :::; an) 2 W and call (a0 : a1 : ¢ ¢ ¢ : an) a point n in Pk : 1 2 We call Pk the projective line and Pk the projective plane. n n Pk can be obtained by gluing together n + 1 copies of Ak : n a0 a1 an ² De¯ne for all j = 0; :::; n; Uj = f(a0 : a1 : ¢ ¢ ¢ : an) 2 P jaj 6= 0g: Since (a0 : a1 : ¢ ¢ ¢ : an) = ( : : ¢ ¢ ¢ : 1 : ¢ ¢ ¢ : ); k aj aj aj n » n the map Áj : Ak ! Uj de¯ned by (a1; :::; an) 7! (a1 : ¢ ¢ ¢ : aj : 1 : aj+1 : ¢ ¢ ¢ : an) is a bijection.