A the Language of Categories

Total Page:16

File Type:pdf, Size:1020Kb

A the Language of Categories 541 A The language of categories We assume that the reader is familiar with the concept of a category and of a functor. In this appendix we briefly fix some notation and recall some results which are used in Volume I. Everything in this appendix can be found in any of the standard text books to category theory, such as [McL], [Mit], or [Sch]. We avoid any discussion of set-theoretical difficulties and refer for this to the given references. (A.1) Categories. Recall that a category C consists of (1) a collection of objects, (2) for any two objects X and Y a set HomC(X, Y ) = Hom(X, Y ) of morphisms from X to Y ,(3)forevery object X an element idX ∈ Hom(X, X), (4) for any three objects X, Y , Z a composition map ◦: Hom(X, Y ) × Hom(Y,Z) → Hom(X, Z), such that composition of morphisms is associative, and the elements idX are neutral elements with respect to composition. We write f : X → Y if f is a morphism from X to Y . If f : X → Y is a morphism, then a morphism g : Y → X is called a section (resp. a retraction)iff ◦ g =idY (resp. if g ◦ f =idX ). A morphism f : X → Y is called an isomorphism if there exists a morphism g : Y → X ∼ such that f ◦ g =idY and g ◦ f =idX .Weoftenwritef : X → Y to indicate that f is an isomorphism. We also write X =∼ Y and say that X and Y are isomorphic if there exists ∼ an isomorphism X → Y . A subcategory of a category C is a category C such that every object of C is an object of C and such that HomC (X ,Y ) ⊆ HomC(X ,Y ) for any pair (X ,Y ) of objects of C , compatibly with composition of morphisms and identity elements. The subcategory C is called full if HomC (X ,Y ) = HomC(X ,Y ) for all objects X and Y of C . For every category C the opposite category, denoted by Copp, is the category with the opp same objects as C and where for two objects X and Y of C we set HomCopp (X, Y ):= HomC(Y,X) with the obvious composition law. A morphism f : X → Y in a category C is called monomorphism (resp. epimorphism)if for every object Z left composition with f is an injective map Hom(Z, X) → Hom(Z, Y ) (resp. right composition with f is an injective map Hom(Y,Z) → Hom(X, Z)). We often write f : X→ Y (resp. f : X Y ) to indicate that f is a monomorphism (resp. epimor- phism). Every isomorphism is a monomorphism and an epimorphism. The converse does not hold in general. An object Z in C is called final (resp. initial), if HomC(X, Z) (resp. HomC(Z, X)) has exactly one element for all objects X.Foranytwofinal(resp.initial)objectsZ and Z ∼ there is a unique isomorphism Z → Z. Notation A.1. Throughout this book we use the following notation for specific cate- gories: (Sets) the category of sets, C the category of all contravariant functors of C to the category of sets (see also (4.2)), 542 A The language of categories (Ring) the category of (commutative) rings, (A-Mod) the category of A-modules for a ring A, (R-Alg) the category of (commutative) R-algebras for a ring R, (Sch) the category of schemes (see (3.1)), (Sch/S) the category of S-schemes for a scheme S (if S =SpecR is affine we also write (Sch/R)) (see (3.1)). (Aff) the category of affine schemes (see (2.11)). (OX -Mod) the category of OX -modules for a sheaf of rings OX (see (7.1)). (A.2) Functors, equivalence of categories, adjoint functors. Given categories C and D, a (covariant) functor F : C→Dis given by attaching to each object C of C an object F (C)ofD, and to each morphism f : C → C in C a morphism F (f): F (C) → F (C), compatibly with composition of morphisms and identity elements. A contravariant functor from C to D is by definition a covariant functor F : Copp →D, where Copp is the opposite category of C. Sometimes we use the notation F : C→Dfor a contravariant functor, in which case we explicitly state that F is contravariant. If F is a functor from C to D and G a functor from D→E,wewriteG ◦ F for the composition. For two functors F, G: C→Dwe call a family of morphisms α(S): F (S) → G(S) for every object S of C functorial in S or a morphism of functors if for every morphism f : T → S in C the diagram α(T ) F (T ) /G/(T ) F (f) G(f) α(S) F (S) /G/(S) commutes. With this notion of morphism we obtain the category of all functors from C to D.WedenotebyC the category of all contravariant functors of C into the category of sets. A functor F : C→Dis called faithful (resp. fully faithful) if for all objects X and Y of C the map HomC(X, Y ) → HomD(F (X),F(Y )), f → F (f) is injective (resp. bijective). The functor F is called essentially surjective if for every object Y of D there exists an object X of C and an isomorphism F (X) =∼ Y . A functor F : C→Dis called an equivalence of categories if it is fully faithful and essentially surjective. This is equivalent to the existence of a quasi-inverse functor G, ∼ ∼ i.e., of a functor G: D→Csuch that G◦F = idC and F ◦G = idD. Similarly, considering contravariant functors, we obtain the notion of an anti-equivalence of categories. Let F : C→Dand G: D→Cbe functors. Then G is said to be right adjoint to F and F is said to be left adjoint to G if for all objects X in C and Y in D there exists a bijection ∼ HomC(X, G(Y )) = HomD(F (X),Y) which is functorial in X and in Y . If a functor F (resp. a functor G) has a right adjoint functor (resp. a left adjoint functor), this adjoint functor is unique up to isomorphism. If F is an equivalence of categories, then a quasi-inverse functor is right adjoint and left adjoint to F . 543 (A.3) Inductive and projective limits. Ordered sets. Let I be a set. (1) A relation ≤ on I is called partial preorder or simply preorder,ifi ≤ i for all i ∈ I and i ≤ j, j ≤ k imply i ≤ k for all i, j, k ∈ I. (2) A preorder ≤ is called partial order or simply order if i ≤ j and j ≤ i imply i = j for all i, j ∈ I. (3) A preorder ≤ is called filtered if for all i, j ∈ I there exists a k ∈ I with i ≤ k and j ≤ k. (4) A partial order ≤ is called total order if for all i, j ∈ I one has i ≤ j or j ≤ i. Every preordered set I can be made into a category, again denoted by I, whose objects are the elements of I and for two elements i, j ∈ I the set of morphisms HomI (i, j) consists of one element if i ≤ j and is empty otherwise. There is a unique way to define a composition law in this category. Projective Limits and Products. Let I be a preordered set and let C be a category. A projective system in C indexed by opp I is a functor I →C. In other words, it is a tuple (Xi)i∈I of objects in C together → ∈ ≤ with morphisms ϕij : Xj Xi for all i, j I with i j such that ϕii =idXi and ϕij ◦ ϕjk = ϕik for all i ≤ j ≤ k. A projective limit (or simply limit) of a projective system ((Xi)i∈I , (ϕij)i≤j)inC is an object X in C together with a family of morphisms (ϕi : X → Xi)i∈I such that ϕi = ϕij ◦ ϕj for all i ≤ j which is final with this property, i.e., if (Y,(ψi)i∈I )isatupleof an object Y and morphisms ψi : Y → Xi such that ψi = ϕij ◦ ψj for all i ≤ j, then there exists a unique morphism ψ : Y → X such that ϕi ◦ ψ = ψi for all i ∈ I. A projective limit (X, (ϕi)i) need not exist, but if it exists, then it is uniquely determined up to unique isomorphism, and is denoted by lim X . ←− i i∈I Example A.2. (1) If I is endowed with the discrete order, i.e., i ≤ j if and only if i = j,then X := lim X i ←− i i∈I i∈I is called the product of the family (Xi)i∈I . (2) If I consists of three elements j1,j2,k whose nontrivial order relations are k ≤ j1 and k ≤ j2,then X × X := lim X j1 Xk j2 ←− i i∈{j1,j2,k} is called the fiber product; see also (4.4). (3) For I = ∅, the notion of projective limit is the same as that of final object of C. 544 A The language of categories Example A.3. C (1) Let be the category of sets. Then i∈I Xi is the usual cartesian product, and the final object is the singleton, i.e., the set consisting of one element. For an arbitrary preordered set I the projective limit of a projective system ((Xi)i∈I , (ϕij)i≤j) exists and is given by X = lim X = { (x ) ∈ ∈ X ; ϕ (x )=x for all i ≤ j }, ←− i i i I i ij j i i∈I i∈I → → where the maps ϕi : X Xi are the restrictions of the projections i Xi Xi.
Recommended publications
  • Injective Modules: Preparatory Material for the Snowbird Summer School on Commutative Algebra
    INJECTIVE MODULES: PREPARATORY MATERIAL FOR THE SNOWBIRD SUMMER SCHOOL ON COMMUTATIVE ALGEBRA These notes are intended to give the reader an idea what injective modules are, where they show up, and, to a small extent, what one can do with them. Let R be a commutative Noetherian ring with an identity element. An R- module E is injective if HomR( ;E) is an exact functor. The main messages of these notes are − Every R-module M has an injective hull or injective envelope, de- • noted by ER(M), which is an injective module containing M, and has the property that any injective module containing M contains an isomorphic copy of ER(M). A nonzero injective module is indecomposable if it is not the direct • sum of nonzero injective modules. Every injective R-module is a direct sum of indecomposable injective R-modules. Indecomposable injective R-modules are in bijective correspondence • with the prime ideals of R; in fact every indecomposable injective R-module is isomorphic to an injective hull ER(R=p), for some prime ideal p of R. The number of isomorphic copies of ER(R=p) occurring in any direct • sum decomposition of a given injective module into indecomposable injectives is independent of the decomposition. Let (R; m) be a complete local ring and E = ER(R=m) be the injec- • tive hull of the residue field of R. The functor ( )_ = HomR( ;E) has the following properties, known as Matlis duality− : − (1) If M is an R-module which is Noetherian or Artinian, then M __ ∼= M.
    [Show full text]
  • Multiplicative Theory of Ideals This Is Volume 43 in PURE and APPLIED MATHEMATICS a Series of Monographs and Textbooks Editors: PAULA
    Multiplicative Theory of Ideals This is Volume 43 in PURE AND APPLIED MATHEMATICS A Series of Monographs and Textbooks Editors: PAULA. SMITHAND SAMUELEILENBERG A complete list of titles in this series appears at the end of this volume MULTIPLICATIVE THEORY OF IDEALS MAX D. LARSEN / PAUL J. McCARTHY University of Nebraska University of Kansas Lincoln, Nebraska Lawrence, Kansas @ A CADEM I C P RE S S New York and London 1971 COPYRIGHT 0 1971, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY PHOTOSTAT, MICROFILM, RETRIEVAL SYSTEM, OR ANY OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS. ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. Berkeley Square House, London WlX 6BA LIBRARY OF CONGRESS CATALOG CARD NUMBER: 72-137621 AMS (MOS)1970 Subject Classification 13F05; 13A05,13B20, 13C15,13E05,13F20 PRINTED IN THE UNITED STATES OF AMERICA To Lillie and Jean This Page Intentionally Left Blank Contents Preface xi ... Prerequisites Xlll Chapter I. Modules 1 Rings and Modules 1 2 Chain Conditions 8 3 Direct Sums 12 4 Tensor Products 15 5 Flat Modules 21 Exercises 27 Chapter II. Primary Decompositions and Noetherian Rings 1 Operations on Ideals and Submodules 36 2 Primary Submodules 39 3 Noetherian Rings 44 4 Uniqueness Results for Primary Decompositions 48 Exercises 52 Chapter Ill. Rings and Modules of Quotients 1 Definition 61 2 Extension and Contraction of Ideals 66 3 Properties of Rings of Quotients 71 Exercises 74 Vii Vlll CONTENTS Chapter IV.
    [Show full text]
  • Commutative Algebra, Lecture Notes
    COMMUTATIVE ALGEBRA, LECTURE NOTES P. SOSNA Contents 1. Very brief introduction 2 2. Rings and Ideals 2 3. Modules 10 3.1. Tensor product of modules 15 3.2. Flatness 18 3.3. Algebras 21 4. Localisation 22 4.1. Local properties 25 5. Chain conditions, Noetherian and Artin rings 29 5.1. Noetherian rings and modules 31 5.2. Artin rings 36 6. Primary decomposition 38 6.1. Primary decompositions in Noetherian rings 42 6.2. Application to Artin rings 43 6.3. Some geometry 44 6.4. Associated primes 45 7. Ring extensions 49 7.1. More geometry 56 8. Dimension theory 57 8.1. Regular rings 66 9. Homological methods 68 9.1. Recollections 68 9.2. Global dimension 71 9.3. Regular sequences, global dimension and regular rings 76 10. Differentials 83 10.1. Construction and some properties 83 10.2. Connection to regularity 88 11. Appendix: Exercises 91 References 100 1 2 P. SOSNA 1. Very brief introduction These are notes for a lecture (14 weeks, 2×90 minutes per week) held at the University of Hamburg in the winter semester 2014/2015. The goal is to introduce and study some basic concepts from commutative algebra which are indispensable in, for instance, algebraic geometry. There are many references for the subject, some of them are in the bibliography. In Sections 2-8 I mostly closely follow [2], sometimes rearranging the order in which the results are presented, sometimes omitting results and sometimes giving statements which are missing in [2]. In Section 9 I mostly rely on [9], while most of the material in Section 10 closely follows [4].
    [Show full text]
  • Projective, Flat and Multiplication Modules
    NEW ZEALAND JOURNAL OF MATHEMATICS Volume 31 (2002), 115-129 PROJECTIVE, FLAT AND MULTIPLICATION MODULES M a j i d M . A l i a n d D a v i d J. S m i t h (Received December 2001) Abstract. In this note all rings are commutative rings with identity and all modules are unital. We consider the behaviour of projective, flat and multipli­ cation modules under sums and tensor products. In particular, we prove that the tensor product of two multiplication modules is a multiplication module and under a certain condition the tensor product of a multiplication mod­ ule with a projective (resp. flat) module is a projective (resp. flat) module. W e investigate a theorem of P.F. Smith concerning the sum of multiplication modules and give a sufficient condition on a sum of a collection of modules to ensure that all these submodules are multiplication. W e then apply our result to give an alternative proof of a result of E l-B ast and Smith on external direct sums of multiplication modules. Introduction Let R be a commutative ring with identity and M a unital i?-module. Then M is called a multiplication module if every submodule N of M has the form IM for some ideal I of R [5]. Recall that an ideal A of R is called a multiplication ideal if for each ideal B of R with B C A there exists an ideal C of R such that B — AC. Thus multiplication ideals are multiplication modules. In particular, invertible ideals of R are multiplication modules.
    [Show full text]
  • Modules Embedded in a Flat Module and Their Approximations
    International Journal of Recent Development in Engineering and Technology Website: www.ijrdet.com (ISSN 2347 - 6435 (Online)) Volume 2, Issue 3, March 2014) Modules Embedded in a Flat Module and their Approximations Asma Zaffar1, Muhammad Rashid Kamal Ansari2 Department of Mathematics Sir Syed University of Engineering and Technology Karachi-75300S Abstract--An F- module is a module which is embedded in a Finally, the theory developed above is applied to flat flat module F. Modules embedded in a flat module approximations particularly the I (F)-flat approximations. demonstrate special generalized features. In some aspects We start with some necessary definitions. these modules resemble torsion free modules. This concept generalizes the concept of modules over IF rings and modules 1.1 Definition: Mmod-A is said to be a right F-module over rings whose injective hulls are flat. This study deals with if it is embedded in a flat module F ≠ M mod-A. Similar F-modules in a non-commutative scenario. A characterization definition holds for a left F-module. of F-modules in terms of torsion free modules is also given. Some results regarding the dual concept of homomorphic 1.2 Definition: A ring A is said to be an IF ring if its every images of flat modules are also obtained. Some possible injective module is flat [4]. applications of the theory developed above to I (F)-flat module approximation are also discussed. 1.3 Definition [Von Neumann]: A ring A is regular if, for each a A, and some another element x A we have axa Keyswords-- 16E, 13Dxx = a.
    [Show full text]
  • A Non-Slick Proof of the Jordan Hölder Theorem E.L. Lady This Proof Is An
    A Non-slick Proof of the Jordan H¨older Theorem E.L. Lady This proof is an attempt to approximate the actual thinking process that one goes through in finding a proof before one realizes how simple the theorem really is. To start with, though, we motivate the Jordan-H¨older Theorem by starting with the idea of dimension for vector spaces. The concept of dimension for vector spaces has the following properties: (1) If V = {0} then dim V =0. (2) If W is a proper subspace of V ,thendimW<dim V . (3) If V =6 {0}, then there exists a one-dimensional subspace of V . (4) dim(S U ⊕ W )=dimU+dimW. W chain (5) If SI i is a of subspaces of a vector space, then dim Wi =sup{dim Wi}. Now we want to use properties (1) through (4) as a model for defining an analogue of dimension, which we will call length,forcertain modules over a ring. These modules will be the analogue of finite-dimensional vector spaces, and will have very similar properties. The axioms for length will be as follows. Axioms for Length. Let R beafixedringandletM and N denote R-modules. Whenever length M is defined, it is a cardinal number. (1) If M = {0},thenlengthM is defined and length M =0. (2) If length M is defined and N is a proper submodule of M ,thenlengthN is defined. Furthermore, if length M is finite then length N<length M . (3) For M =0,length6 M=1ifandonlyifM has no proper non-trivial submodules.
    [Show full text]
  • Fundamental Algebraic Geometry
    http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA.
    [Show full text]
  • Lecture 1: Overview
    Lecture 1: Overview September 28, 2018 Let X be an algebraic curve over a finite field Fq, and let KX denote the field of rational functions on X. Fields of the form KX are called function fields. In number theory, there is a close analogy between function fields and number fields: that is, fields which arise as finite extensions of Q. Many arithmetic questions about number fields have analogues in the setting of function fields. These are typically much easier to answer, because they can be connected to algebraic geometry. Example 1 (The Riemann Hypothesis). Recall that the Riemann zeta function ζ(s) is a meromorphic function on C which is given, for Re(s) > 1, by the formula Y 1 X 1 ζ(s) = = ; 1 − p−s ns p n>0 where the product is taken over all prime numbers p. The celebrated Riemann hypothesis asserts that ζ(s) 1 vanishes only when s 2 {−2; −4; −6;:::g is negative even integer or when Re(s) = 2 . To every algebraic curve X over a finite field Fq, one can associate an analogue ζX of the Riemann zeta function, which is a meromorphic function on C which is given for Re(s) > 1 by Y 1 X 1 ζX (s) = −s = s 1 − jκ(x)j jODj x2X D⊆X here jκ(x)j denotes the cardinality of the residue field κ(x) at the point x, D ranges over the collection of all effective divisors in X and jODj denotes the cardinality of the ring of regular functions on D.
    [Show full text]
  • X → S Be a Proper Morphism of Locally Noetherian Schemes and Let F Be a Coherent Sheaf on X That Is flat Over S (E.G., F Is Smooth and F Is a Vector Bundle)
    COHOMOLOGY AND BASE CHANGE FOR ALGEBRAIC STACKS JACK HALL Abstract. We prove that cohomology and base change holds for algebraic stacks, generalizing work of Brochard in the tame case. We also show that Hom-spaces on algebraic stacks are represented by abelian cones, generaliz- ing results of Grothendieck, Brochard, Olsson, Lieblich, and Roth{Starr. To accomplish all of this, we prove that a wide class of relative Ext-functors in algebraic geometry are coherent (in the sense of M. Auslander). Introduction Let f : X ! S be a proper morphism of locally noetherian schemes and let F be a coherent sheaf on X that is flat over S (e.g., f is smooth and F is a vector bundle). If s 2 S is a point, then define Xs to be the fiber of f over s. If s has residue field κ(s), then for each integer q there is a natural base change morphism of κ(s)-vector spaces q q q b (s):(R f∗F) ⊗OS κ(s) ! H (Xs; FXs ): Cohomology and Base Change originally appeared in [EGA, III.7.7.5] in a quite sophisticated form. Mumford [Mum70, xII.5] and Hartshorne [Har77, xIII.12], how- ever, were responsible for popularizing a version similar to the following. Let s 2 S and let q be an integer. (1) The following are equivalent. (a) The morphism bq(s) is surjective. (b) There exists an open neighbourhood U of s such that bq(u) is an iso- morphism for all u 2 U. (c) There exists an open neighbourhood U of s, a coherent OU -module Q, and an isomorphism of functors: Rq+1(f ) (F ⊗ f ∗ I) =∼ Hom (Q; I); U ∗ XU OXU U OU where fU : XU ! U is the pullback of f along U ⊆ S.
    [Show full text]
  • Pure Exactness and Absolutely Flat Modules
    Advances in Theoretical and Applied Mathematics. ISSN 0973-4554 Volume 9, Number 2 (2014), pp. 123-127 © Research India Publications http://www.ripublication.com Pure Exactness and Absolutely Flat Modules Duraivel T Department of Mathematics, Pondicherry University, Puducherry, India, 605014, E-mail: [email protected] Mangayarcarassy S Department of Mathematics, Pondicherry Engineering College, Puducherry, 605014, India, E-mail: [email protected] Athimoolam R Department of Mathematics, Pondicherry Engineering College, Puducherry, 605014, India, E-mail: [email protected] Abstract We show that an R-module M is absolutely flat over R if and only if M is R- flat and IM is a pure submodule of M, for every finitely generated ideal I. We also prove that N is a pure submodule of M and M is absolutely flat over R, if and only if both N and M/N are absolutely flat over R. AMS Subject Classification: 13C11. Keywords: Absolutely Flat Modules, Pure Submodule and Pure exact sequence. 1. Introduction Throughout this article, R denotes a commutative ring with identity and all modules are unitary. For standard terminology, the references are [1] and [7]. The concept of absolutely flat ring is extended to modules as absolutely flat modules, and studied in [2]. An R module M is said to be absolutely flat over R, if for every 2 Duraivel T, Mangayarcarassy S and Athimoolam R R-module N, M ⊗R N is flat R-module. Various characterizations of absolutely flat modules are studied in [2] and [4]. In this article, we show that an R-module M is absolutely flat over R if and only if for every finitely generated ideal I, IM is a pure submodule of M and M is R- flat.
    [Show full text]
  • Number Theory
    Number Theory Alexander Paulin October 25, 2010 Lecture 1 What is Number Theory Number Theory is one of the oldest and deepest Mathematical disciplines. In the broadest possible sense Number Theory is the study of the arithmetic properties of Z, the integers. Z is the canonical ring. It structure as a group under addition is very simple: it is the infinite cyclic group. The mystery of Z is its structure as a monoid under multiplication and the way these two structure coalesce. As a monoid we can reduce the study of Z to that of understanding prime numbers via the following 2000 year old theorem. Theorem. Every positive integer can be written as a product of prime numbers. Moreover this product is unique up to ordering. This is 2000 year old theorem is the Fundamental Theorem of Arithmetic. In modern language this is the statement that Z is a unique factorization domain (UFD). Another deep fact, due to Euclid, is that there are infinitely many primes. As a monoid therefore Z is fairly easy to understand - the free commutative monoid with countably infinitely many generators cross the cyclic group of order 2. The point is that in isolation addition and multiplication are easy, but together when have vast hidden depth. At this point we are faced with two potential avenues of study: analytic versus algebraic. By analytic I questions like trying to understand the distribution of the primes throughout Z. By algebraic I mean understanding the structure of Z as a monoid and as an abelian group and how they interact.
    [Show full text]
  • The Family of Residue Fields of a Zero-Dimensional Commutative Ring
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 82 (1992) 131-153 131 North-Holland The family of residue fields of a zero-dimensional commutative ring Robert Gilmer Department of Mathematics BlS4, Florida State University. Tallahassee, FL 32306, USA William Heinzer* Department of Mathematics, Purdue University. West Lafayette, IN 47907, USA Communicated by C.A. Weibel Received 28 December 1991 Abstract Gilmer, R. and W. Heinzer, The family of residue fields of a zero-dimensional commutative ring, Journal of Pure and Applied Algebra 82 (1992) 131-153. Given a zero-dimensional commutative ring R, we investigate the structure of the family 9(R) of residue fields of R. We show that if a family 9 of fields contains a finite subset {F,, , F,,} such that every field in 9 contains an isomorphic copy of at least one of the F,, then there exists a zero-dimensional reduced ring R such that 3 = 9(R). If every residue field of R is a finite field, or is a finite-dimensional vector space over a fixed field K, we prove, conversely, that the family 9(R) has. to within isomorphism. finitely many minimal elements. 1. Introduction All rings considered in this paper are assumed to be commutative and to contain a unity element. If R is a subring of a ring S, we assume that the unity of S is contained in R, and hence is the unity of R. If R is a ring and if {Ma}a,, is the family of maximal ideals of R, we denote by 9(R) the family {RIM,:a E A} of residue fields of R and by 9"(R) a set of isomorphism-class representatives of S(R).In connection with work on the class of hereditarily zero-dimensional rings in [S], we encountered the problem of determining what families of fields can be realized in the form S(R) for some zero-dimensional ring R.
    [Show full text]