Separable Algebras
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Injective Modules: Preparatory Material for the Snowbird Summer School on Commutative Algebra
INJECTIVE MODULES: PREPARATORY MATERIAL FOR THE SNOWBIRD SUMMER SCHOOL ON COMMUTATIVE ALGEBRA These notes are intended to give the reader an idea what injective modules are, where they show up, and, to a small extent, what one can do with them. Let R be a commutative Noetherian ring with an identity element. An R- module E is injective if HomR( ;E) is an exact functor. The main messages of these notes are − Every R-module M has an injective hull or injective envelope, de- • noted by ER(M), which is an injective module containing M, and has the property that any injective module containing M contains an isomorphic copy of ER(M). A nonzero injective module is indecomposable if it is not the direct • sum of nonzero injective modules. Every injective R-module is a direct sum of indecomposable injective R-modules. Indecomposable injective R-modules are in bijective correspondence • with the prime ideals of R; in fact every indecomposable injective R-module is isomorphic to an injective hull ER(R=p), for some prime ideal p of R. The number of isomorphic copies of ER(R=p) occurring in any direct • sum decomposition of a given injective module into indecomposable injectives is independent of the decomposition. Let (R; m) be a complete local ring and E = ER(R=m) be the injec- • tive hull of the residue field of R. The functor ( )_ = HomR( ;E) has the following properties, known as Matlis duality− : − (1) If M is an R-module which is Noetherian or Artinian, then M __ ∼= M. -
AZUMAYA, SEMISIMPLE and IDEAL ALGEBRAS* Introduction. If a Is An
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 78, Number 4, July 1972 AZUMAYA, SEMISIMPLE AND IDEAL ALGEBRAS* BY M. L. RANGA RAO Communicated by Dock S. Rim, January 31, 1972 Introduction. If A is an algebra over a commutative ring, then for any ideal I of R the image of the canonical map / ® R A -» A is an ideal of A, denoted by IA and called a scalar ideal. The algebra A is called an ideal algebra provided that / -> IA defines a bijection from the ideals of R to the ideals of A. The contraction map denned by 21 -> 91 n JR, being the inverse mapping, each ideal of A is a scalar ideal and every ideal of R is a contraction of an ideal of A. It is known that any Azumaya algebra is an ideal algebra (cf. [2], [4]). In this paper we initiate the study of ideal algebras and obtain a new characterization of Azumaya algebras. We call an algebra finitely genera ted (or projective) if the R-module A is, and show that a finitely generated algebra A is Azumaya iff its enveloping algebra is ideal (1.7). Hattori introduced in [9] the notion of semisimple algebras over a commutative ring as those algebras whose relative global dimension [10] is zero. If R is a Noetherian ring, central, finitely generated semisimple algebras have the property that their maximal ideals are all scalar ideals [6, Theorem 1.6]. It is also known that for R, a Noetherian integrally closed domain, finitely generated, projective, central semisimple algebras are maximal orders in central simple algebras [9, Theorem 4.6]. -
Multiplicative Theory of Ideals This Is Volume 43 in PURE and APPLIED MATHEMATICS a Series of Monographs and Textbooks Editors: PAULA
Multiplicative Theory of Ideals This is Volume 43 in PURE AND APPLIED MATHEMATICS A Series of Monographs and Textbooks Editors: PAULA. SMITHAND SAMUELEILENBERG A complete list of titles in this series appears at the end of this volume MULTIPLICATIVE THEORY OF IDEALS MAX D. LARSEN / PAUL J. McCARTHY University of Nebraska University of Kansas Lincoln, Nebraska Lawrence, Kansas @ A CADEM I C P RE S S New York and London 1971 COPYRIGHT 0 1971, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY PHOTOSTAT, MICROFILM, RETRIEVAL SYSTEM, OR ANY OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS. ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. Berkeley Square House, London WlX 6BA LIBRARY OF CONGRESS CATALOG CARD NUMBER: 72-137621 AMS (MOS)1970 Subject Classification 13F05; 13A05,13B20, 13C15,13E05,13F20 PRINTED IN THE UNITED STATES OF AMERICA To Lillie and Jean This Page Intentionally Left Blank Contents Preface xi ... Prerequisites Xlll Chapter I. Modules 1 Rings and Modules 1 2 Chain Conditions 8 3 Direct Sums 12 4 Tensor Products 15 5 Flat Modules 21 Exercises 27 Chapter II. Primary Decompositions and Noetherian Rings 1 Operations on Ideals and Submodules 36 2 Primary Submodules 39 3 Noetherian Rings 44 4 Uniqueness Results for Primary Decompositions 48 Exercises 52 Chapter Ill. Rings and Modules of Quotients 1 Definition 61 2 Extension and Contraction of Ideals 66 3 Properties of Rings of Quotients 71 Exercises 74 Vii Vlll CONTENTS Chapter IV. -
Commutative Algebra, Lecture Notes
COMMUTATIVE ALGEBRA, LECTURE NOTES P. SOSNA Contents 1. Very brief introduction 2 2. Rings and Ideals 2 3. Modules 10 3.1. Tensor product of modules 15 3.2. Flatness 18 3.3. Algebras 21 4. Localisation 22 4.1. Local properties 25 5. Chain conditions, Noetherian and Artin rings 29 5.1. Noetherian rings and modules 31 5.2. Artin rings 36 6. Primary decomposition 38 6.1. Primary decompositions in Noetherian rings 42 6.2. Application to Artin rings 43 6.3. Some geometry 44 6.4. Associated primes 45 7. Ring extensions 49 7.1. More geometry 56 8. Dimension theory 57 8.1. Regular rings 66 9. Homological methods 68 9.1. Recollections 68 9.2. Global dimension 71 9.3. Regular sequences, global dimension and regular rings 76 10. Differentials 83 10.1. Construction and some properties 83 10.2. Connection to regularity 88 11. Appendix: Exercises 91 References 100 1 2 P. SOSNA 1. Very brief introduction These are notes for a lecture (14 weeks, 2×90 minutes per week) held at the University of Hamburg in the winter semester 2014/2015. The goal is to introduce and study some basic concepts from commutative algebra which are indispensable in, for instance, algebraic geometry. There are many references for the subject, some of them are in the bibliography. In Sections 2-8 I mostly closely follow [2], sometimes rearranging the order in which the results are presented, sometimes omitting results and sometimes giving statements which are missing in [2]. In Section 9 I mostly rely on [9], while most of the material in Section 10 closely follows [4]. -
No Transcendental Brauer-Manin Obstructions on Abelian Varieties
THERE ARE NO TRANSCENDENTAL BRAUER-MANIN OBSTRUCTIONS ON ABELIAN VARIETIES BRENDAN CREUTZ Abstract. Suppose X is a torsor under an abelian variety A over a number field. We show that any adelic point of X that is orthogonal to the algebraic Brauer group of X is orthogonal to the whole Brauer group of X. We also show that if there is a Brauer-Manin obstruction to the existence of rational points on X, then there is already an obstruction coming from the locally constant Brauer classes. These results had previously been established under the assumption that A has finite Tate-Shafarevich group. Our results are unconditional. 1. Introduction Let X be a smooth projective and geometrically integral variety over a number field k. In order that X possesses a k-rational point it is necessary that X has points everywhere locally, i.e., that the set X(Ak) of adelic points on X is nonempty. The converse to this statement is called the Hasse principle, and it is known that this can fail. When X(k) is nonempty one can ask if weak approximation holds, i.e., if X(k) is dense in X(Ak) in the adelic topology. Manin [Man71] showed that the failure of the Hasse principle or weak approximation can, in many cases, be explained by a reciprocity law on X(Ak) imposed by the Brauer group, 2 Br X := Hét(X, Gm). Specifically, each element α ∈ Br X determines a continuous map, α∗ : X(Ak) → Q/Z, between the adelic and discrete topologies with the property that the subset X(k) ⊂ X(Ak) of rational points is mapped to 0. -
A Non-Slick Proof of the Jordan Hölder Theorem E.L. Lady This Proof Is An
A Non-slick Proof of the Jordan H¨older Theorem E.L. Lady This proof is an attempt to approximate the actual thinking process that one goes through in finding a proof before one realizes how simple the theorem really is. To start with, though, we motivate the Jordan-H¨older Theorem by starting with the idea of dimension for vector spaces. The concept of dimension for vector spaces has the following properties: (1) If V = {0} then dim V =0. (2) If W is a proper subspace of V ,thendimW<dim V . (3) If V =6 {0}, then there exists a one-dimensional subspace of V . (4) dim(S U ⊕ W )=dimU+dimW. W chain (5) If SI i is a of subspaces of a vector space, then dim Wi =sup{dim Wi}. Now we want to use properties (1) through (4) as a model for defining an analogue of dimension, which we will call length,forcertain modules over a ring. These modules will be the analogue of finite-dimensional vector spaces, and will have very similar properties. The axioms for length will be as follows. Axioms for Length. Let R beafixedringandletM and N denote R-modules. Whenever length M is defined, it is a cardinal number. (1) If M = {0},thenlengthM is defined and length M =0. (2) If length M is defined and N is a proper submodule of M ,thenlengthN is defined. Furthermore, if length M is finite then length N<length M . (3) For M =0,length6 M=1ifandonlyifM has no proper non-trivial submodules. -
Brauer Groups of Abelian Schemes
ANNALES SCIENTIFIQUES DE L’É.N.S. RAYMOND T. HOOBLER Brauer groups of abelian schemes Annales scientifiques de l’É.N.S. 4e série, tome 5, no 1 (1972), p. 45-70 <http://www.numdam.org/item?id=ASENS_1972_4_5_1_45_0> © Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1972, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www. elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé- matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. scienL EC. Norm. Sup., 4® serie, t. 5, 1972, p. 45 ^ 70. BRAUER GROUPS OF ABELIAN SCHEMES BY RAYMOND T. HOOBLER 0 Let A be an abelian variety over a field /c. Mumford has given a very beautiful construction of the dual abelian variety in the spirit of Grothen- dieck style algebraic geometry by using the theorem of the square, its corollaries, and cohomology theory. Since the /c-points of Pic^n is H1 (A, G^), it is natural to ask how much of this work carries over to higher cohomology groups where the computations must be made in the etale topology to render them non-trivial. Since H2 (A, Gm) is essentially a torsion group, the representability of the corresponding functor does not have as much geometric interest as for H1 (A, G^). -
Section X.51. Separable Extensions
X.51 Separable Extensions 1 Section X.51. Separable Extensions Note. Let E be a finite field extension of F . Recall that [E : F ] is the degree of E as a vector space over F . For example, [Q(√2, √3) : Q] = 4 since a basis for Q(√2, √3) over Q is 1, √2, √3, √6 . Recall that the number of isomorphisms of { } E onto a subfield of F leaving F fixed is the index of E over F , denoted E : F . { } We are interested in when [E : F ]= E : F . When this equality holds (again, for { } finite extensions) E is called a separable extension of F . Definition 51.1. Let f(x) F [x]. An element α of F such that f(α) = 0 is a zero ∈ of f(x) of multiplicity ν if ν is the greatest integer such that (x α)ν is a factor of − f(x) in F [x]. Note. I find the following result unintuitive and surprising! The backbone of the (brief) proof is the Conjugation Isomorphism Theorem and the Isomorphism Extension Theorem. Theorem 51.2. Let f(x) be irreducible in F [x]. Then all zeros of f(x) in F have the same multiplicity. Note. The following follows from the Factor Theorem (Corollary 23.3) and Theo- rem 51.2. X.51 Separable Extensions 2 Corollary 51.3. If f(x) is irreducible in F [x], then f(x) has a factorization in F [x] of the form ν a Y(x αi) , i − where the αi are the distinct zeros of f(x) in F and a F . -
Math 210B. Inseparable Extensions Since the Theory of Non-Separable Algebraic Extensions Is Only Non-Trivial in Positive Charact
Math 210B. Inseparable extensions Since the theory of non-separable algebraic extensions is only non-trivial in positive characteristic, for this handout we shall assume all fields have positive characteristic p. 1. Separable and inseparable degree Let K=k be a finite extension, and k0=k the separable closure of k in K, so K=k0 is purely inseparable. 0 This yields two refinements of the field degree: the separable degree [K : k]s := [k : k] and the inseparable 0 degree [K : k]i := [K : k ] (so their product is [K : k], and [K : k]i is always a p-power). pn Example 1.1. Suppose K = k(a), and f 2 k[x] is the minimal polynomial of a. Then we have f = fsep(x ) pn where fsep 2 k[x] is separable irreducible over k, and a is a root of fsep (so the monic irreducible fsep is n n the minimal polynomial of ap over k). Thus, we get a tower K=k(ap )=k whose lower layer is separable and n upper layer is purely inseparable (as K = k(a)!). Hence, K=k(ap ) has no subextension that is a nontrivial n separable extension of k0 (why not?), so k0 = k(ap ), which is to say 0 pn [k(a): k]s = [k : k] = [k(a ): k] = deg fsep; 0 0 n [k(a): k]i = [K : k ] = [K : k]=[k : k] = (deg f)=(deg fsep) = p : If one tries to prove directly that the separable and inseparable degrees are multiplicative in towers just from the definitions, one runs into the problem that in general one cannot move all inseparability to the \bottom" of a finite extension (in contrast with the separability). -
Uniform Distribution in Subgroups of the Brauer Group of an Algebraic Number Field
Pacific Journal of Mathematics UNIFORM DISTRIBUTION IN SUBGROUPS OF THE BRAUER GROUP OF AN ALGEBRAIC NUMBER FIELD GARY R. GREENFIELD Vol. 107, No. 2 February 1983 PACIFIC JOURNAL OF MATHEMATICS Vol. 107, No. 2, 1983 UNIFORM DISTRIBUTION IN SUBGROUPS OF THE BRAUER GROUP OF AN ALGEBRAIC NUMBER FIELD GARY R. GREENFIELD We construct subgroups of the Brauer group of an algebraic number field whose member classes have Hasse invariants satisfying a rigid arithmetic structure — that of (relative) uniform distribution. After ob- taining existence and structure theorems for these subgroups, we focus on the problem of describing algebraic properties satisfied by the central simple algebras in these subgroups. Key results are that splitting fields are determined up to isomorphism, and there exists a distinguished subgroup of central automorphisms which can be extended. 1. Introduction. Let K be an algebraic number field, and let denote the class of the finite dimensional central simple X-algebra A in the Brauer group B(K) of K. The class [A] is determined arithmetically by its Hasse invariants at the primes of K. Algebraic properties of A often impose severe but interesting arithmetic properties on its invariants. As evidence we cite the important work of M. Benard and M. Schacher [2] concerning the invariants when [A] is in S(K) the Schur subgroup of K, and the surprising result of G. Janusz [4] obtained in considering the problem of when an automorphism of K extends to A. In this paper we offer a construction which gives rise to subgroups of B(K) whose member classes have invariants which possess a rigid arith- metic structure — that of uniform distribution — then search for corre- sponding algebraic properties. -
Non-Additive Ring and Module Theory IV the Brauer Group of a Symmetric
Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann 549 Brauer Groups Proceedings of the Conference Held at Evanston, October 11-15,1975 * 416 109 546 200 16 Edited by D. Zelinsky Springer-Verlag Berlin · Heidelberg · NewYork1976 Editor Daniel Zelinsky Northwestern University Department of Mathematics Evanston, II. 60091/USA Library of Congress Cataloging in Publication Data Main entry under title: Brauer groups. (Lecture notes in mathematics ; 5^9) "Sponsored by Northwestern University." Bi bli ography: ρ. Includes index. 1. Brauer group--Congresses. 2. Separable algebras—Congresses. I. Zelinsky, Daniel. II. Northwestern University, Evanston, 111. III. Series: Lecture notes in mathematics (Berlin) ; 5^9. QA3.L28 no. 5^9 [QA251.3] 510'.8s [512».2*0 76-kekie AMS Subject Classifications (1970): 13A20, 16A16, 18H20, 14C20, 14H99, 14L15, 18D10 ISBN 3-540-07989-0 Springer-Verlag Berlin · Heidelberg · New York ISBN 0-387-07989-0 Springer-Verlag New York · Heidelberg · Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, re printing, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin · Heidelberg 1976 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. CONTENTS Lindsay N, Childs On Brauer groups of some normal local rings..... 1 P. -
494 Lecture: Splitting Fields and the Primitive Element Theorem
494 Lecture: Splitting fields and the primitive element theorem Ben Gould March 30, 2018 1 Splitting Fields We saw previously that for any field F and (let's say irreducible) polynomial f 2 F [x], that there is some extension K=F such that f splits over K, i.e. all of the roots of f lie in K. We consider such extensions in depth now. Definition 1.1. For F a field and f 2 F [x], we say that an extension K=F is a splitting field for f provided that • f splits completely over K, i.e. f(x) = (x − a1) ··· (x − ar) for ai 2 K, and • K is generated by the roots of f: K = F (a1; :::; ar). The second statement implies that for each β 2 K there is a polynomial p 2 F [x] such that p(a1; :::; ar) = β; in general such a polynomial is not unique (since the ai are algebraic over F ). When F contains Q, it is clear that the splitting field for f is unique (up to isomorphism of fields). In higher characteristic, one needs to construct the splitting field abstractly. A similar uniqueness result can be obtained. Proposition 1.2. Three things about splitting fields. 1. If K=L=F is a tower of fields such that K is the splitting field for some f 2 F [x], K is also the splitting field of f when considered in K[x]. 2. Every polynomial over any field (!) admits a splitting field. 3. A splitting field is a finite extension of the base field, and every finite extension is contained in a splitting field.