Making News Inside This Issue

Total Page:16

File Type:pdf, Size:1020Kb

Making News Inside This Issue GARVANGARVAN NEWSLETTER NEWSLETTER FEBRUARY AUGUST 20092011 / ISSUE 0117 11 breakthrough inside this issue In one of the most promising immunology developments in recent years, Garvan scientists Drs Helen McGuire and From the CEO 2 Cecile King have developed a reagent A legacy that lasts 2 with the potential to prevent rejection of transplanted insulin-producing cells in Opinion 3 people with Type 1 diabetes. Speak peek inside the 3 To restore insulin production, people new Kinghorn Cancer receive transplanted clusters of insulin- Centre producing cells from the pancreas known as ‘Islets of Langerhans’. Staff Profile: 4 However, factors that impact this Mara-Jean Tilley process include the fragility of islets, the body rejecting donor cells, and the high- Donor Profile: 4 toxicity of anti-rejection drugs. Plus, the MLC’s commitment has person still has Type 1 diabetes. This significant impact new reagent was given to diabetic mice for two weeks, starting the day before MSD licenses Garvan’s 4 the islet transplantation. It allowed mice Fracture Risk Calculator to accept the donor cells as their own with no need for immunosuppressive Researcher Profile: 5 drugs, and no Type 1 diabetes – Dr Goli Samimi permanently. Collaborating to create 5 Dr Cecile King and Dr Helen McGuire new cancer drugs Garvan Shines at 6 making news Inaugural Gala C Breast cancer cells create In a retrospective study of 147 women Can we cure cancer 8 conditions for their own survival by from a gestational diabetes clinic at within 20 years communicating their needs to healthy Westmead Hospital, 41% were Vitamin cells around them. Garvan researchers D deficient. The study also showed that Ask Garvan 10 have identified a new way of turning the lower the Vitamin D level, the worse Sip for Science: 10 off this communication. A molecule the woman’s blood sugar control. If the Host a Garvan High Tea known as ‘hedgehog’ is at the centre deficiency is identified and boosted of the switchboard in breast cancer, during pregnancy, it may improve Last chance to support 10 transmitting biochemical signals glucose tolerance, and in turn reduce Garvan at City2Surf between the cancer cells and healthy complications like caesarian sections, cells. When this conversation is very large babies at birth, and babies Avner Foundation: 11 blocked, tumours shrink and stop that have low blood sugars. Turning heartbreak into their spread. This finding applies to hope all breast cancers, but is particularly C Two biomarkers have been relevant for women with basal breast identified that appear to have the Clinical studies 12 cancer, for which there is no current ability to predict patient survival after targeted therapy. Drugs for silencing surgery for pancreatic cancer before Coming up 12 hedgehog are already undergoing the operation even takes place. It is the In memoriam 12 Phase 2 clinical trials in other cancer first predictive tool of its kind for this types. deadly cancer. The biomarkers are the proteins S100A2 and S100A4. Absence C Researchers have identified of both proteins results in average These biomarkers could help ensure widespread Vitamin D deficiency in post-operative survival of nearly three that the right treatment is given to pregnant women as well as a strong years. Presence of both proteins the right patient without delay, and association between low Vitamin D results in survival of less than a year. unnecessary side-effects avoided by levels and gestational diabetes. not using ineffective therapies. breakthrough11 From the CEO Welcome to the winter issue of the within twenty years? We also meet one of Breakthrough newsletter. You may our researchers, Dr Goli Samimi, who is have noticed that this issue is larger leading our ovarian cancer team. As you than previous issues. This is due to the will read, her research into this devastating increasing number of breakthroughs disease is progressing at a great pace here at the Garvan Institute of Medical due to a combination of government Research, and also due to the increasing and community support. This month we number of people, companies and are joining with our friends at Research organisations offering to support its world- Australia on a new fundraising campaign – class work. As such, we wanted to profile Cook for a Cure – a fun way to raise funds some of these for you in greater detail. to support the vital work of Dr Samimi and her team. In my first few months here at the Garvan To a ll of our supporters, thank you for your I have been impressed by the passion of Our donor spotlight is on the wonderful generous and ongoing support. Without our donors and supporters, as well as their Michael and Joy Foulsham who are not your passion and commitment we would commitment to the quality and depth of just generous current donors, but have not be able to continue our world-class the science that is undertaken here. also joined our Partners for the Future work. program. This means that they have In this issue we shine the spotlight on left a bequest to the Garvan Research Yours sincerely, our immunology programs and also ask Foundation in their wills. Such generosity the vital question, can we cure cancer Andrew Giles is truly visionary. Garvan Research Foundation A legacy that lasts Michael and Joy Foulsham have been donating to the Garvan for many years, and over those years have become increasingly passionate about its research and discoveries. It’s a passion that comes from first-hand experience. Since 1989, Mrs Foulsham has been treated for osteoporosis by Professor John Eisman AO, Director of the Michael and Joy Foulsham Garvan’s bone research program. Mrs Foulsham says, “We think it’s really The couple has left a lasting legacy to have changed by the time your estate important to support the work of the the Garvan in their will. Mrs Foulsham is realised. I personally think it’s safer Garvan. We’ve become more involved in says that the Garvan has meant so much to bequest a percentage of your estate, recent years, and we are so impressed to them over the years – the decision to rather than a set dollar figure.” leave a bequest was not difficult at all. by the researchers we meet. They The Garvan sincerely thanks Mr and Mrs are such hard working and dedicated “I would say that people need to think Foulsham for their ongoing commitment people.” carefully about how they go about to the work of the Institute. If you would Mr Foulsham adds, “They seem to be leaving a bequest,” says Michael like more information about leaving producing really worthwhile research Foulsham. “As we’ve seen recently, a bequest to the Garvan in your will, results. Almost weekly we hear finances can change in the blink of an please contact Carol O’Carroll on something in the news about important eye, so while you might be in a position 02 9295 8117, or email research coming out of the Garvan.” to bequest a certain dollar figure when [email protected] you make your will, that situation might 3 / breakthrough 11 opinion A month before the recent Federal Budget, the Australian medical research community was extremely concerned about rumoured cuts of $400m to the National Health and Medical Research Council budget – the primary source of funding for Australian medical research. Already a highly competitive process with only 30% of grant applications judged worthy of funding being supported, such a budget cut would have had devastating and long term effects of the viability of Australian Sneak peek inside the new research. Fortunately there was a swift and Kinghorn Cancer Centre passionate response across the nation with researchers being joined by patients, community groups and the Construction is progressing well on the new Kinghorn Cancer Centre. We corporate sector to remind government are pleased to offer you a sneak peek of the interior of the centre. One of of the critical role played by medical the pioneering design features is that it has been devised from the patient’s research in underpinning the excellence perspective. In addition to a focus on sunlight and landscaping, the building is of our health care system and our designed so the patient treatment areas on the lower floors can see the research quality of life. activities on the upper levels through the central stairwell. This creates true In Sydney, Garvan took the lead by connectivity between the clinical and research endeavours of the building. organising a rally in Belmore Park For more information about the Kinghorn Cancer Centre, or to make a donation on 12 April that was attended by and play your part in building this world-class facility, visit many hundreds of supporters, as www.thekinghorncancercentre.org.au well as media. Due in large part to this, and similar rallies around the country, plus an ongoing campaign that included letters, emails, tweets, Facebook updates, petitions, YouTube messages and blogs, the message was received loud and clear. The Federal Government, recognising that a vibrant medical research enterprise is central to health care reform and keeping people out of hospital, maintained NHMRC funding in the budget. The Federal Minister for Mental Health and Ageing, The Hon Mark Butler MP, also announced a review of federal medical research funding, for which the sector will be consulted about the terms of reference. These are to be decided by mid-2012. Thank you to all who were active in supporting the call to maintain funding. You can be proud that your passion and persistence has made a difference. Professor John Shine AO FAA Executive Director breakthrough11 Staff profile: Mara-Jean Tilley Breakthrough welcomes Mara-Jean Tilley to the Garvan Research Foundation communications, proposals and reports.
Recommended publications
  • Deptbiochemistry00ruttrich.Pdf
    'Berkeley University o'f California Regional Oral History Office UCSF Oral History Program The Bancroft Library Department of the History of Health Sciences University of California, Berkeley University of California, San Francisco The UCSF Oral History Program and The Program in the History of the Biological Sciences and Biotechnology William J. Rutter, Ph.D. THE DEPARTMENT OF BIOCHEMISTRY AND THE MOLECULAR APPROACH TO BIOMEDICINE AT THE UNIVERSITY OF CALIFORNIA, SAN FRANCISCO VOLUME I With an Introduction by Lloyd H. Smith, Jr., M.D. Interviews by Sally Smith Hughes, Ph.D. in 1992 Copyright O 1998 by the Regents of the University of California Since 1954 the Regional Oral History Office has been interviewing leading participants in or well-placed witnesses to major events in the development of Northern California, the West, and the Nation. Oral history is a method of collecting historical information through tape-recorded interviews between a narrator with firsthand knowledge of historically significant events and a well- informed interviewer, with the goal of preserving substantive additions to the historical record. The tape recording is transcribed, lightly edited for continuity and clarity, and reviewed by the interviewee. The corrected manuscript is indexed, bound with photographs and illustrative materials, and placed in The Bancroft Library at the University of California, Berkeley, and in other research collections for scholarly use. Because it is primary material, oral history is not intended to present the final, verified, or complete narrative of events. It is a spoken account, offered by the interviewee in response to questioning, and as such it is reflective, partisan, deeply involved, and irreplaceable.
    [Show full text]
  • 2011 Annual Report
    Mission 02 Who we are, What we do 03 Reports Chairman's Report 04 Executive Director's Report 06 Garvan Research Foundation Chairman's Report 08 Professor John Mattick 10 Garvan at a Glance Organisation Chart 13 Patent Portfolio by Category 14 Scientific Publications 14 Philanthropic Support 14 Staff Profile 15 Operating Income 15 Peer Reviewed Grant Income 15 Research Collaborations 17 Research Highlights 19 Research Programs & Initiatives Cancer Program 20 The Kinghorn Cancer Centre 28 Diabetes & Obesity Program 30 Diabetes Vaccine Development Centre 36 Immunology Program 38 Neuroscience Program 44 Professor Peter Croucher 50 Osteoporosis & Bone Biology 52 Core Research Facilities 57 Management Highlights 58 Business Development 59 Garvan Community Life Governors 61 Partners for the Future 61 Volunteers 62 Garvan Supporters 62 Garvan Gala Supporters 65 Bequests 65 Governance Garvan Institute 67 Garvan Research Foundation 70 Publications 73 Financial Highlights Income Statement 85 Balance Sheet 86 Garvan Research Foundation Statement of Funds 87 Garvan's mission is to make significant contributions to medical research that will change the directions of science and medicine and have major impacts on human health. Garvan strives to enhance and develop research programs that combine fundamental science with strong clinical interactions. The Garvan Institute of Medical Research Significant breakthroughs have been is a world leader in its field, pioneering achieved by Garvan scientists in the study into some of the most widespread understanding and treatment of diseases diseases affecting our community today. such as: Research at Garvan is focused upon understanding the role of genes in health _ Cancer and disease as the basis for developing _ Diabetes and obesity future cures.
    [Show full text]
  • EMBL in Australia EMBL in Italy Friday,Dedicated 9 June To2017 Riccardo Cortese 13:30 –19:00Friday 5 May 2017, 10:30-19:00
    EMBL in Australia EMBL in Italy Friday,Dedicated 9 June to2017 Riccardo Cortese 13:30 –19:00Friday 5 May 2017, 10:30-19:00 Venue: The Garvan Institute of Medical Research Venue: TIGEM (Auditorium) in Pozzuoli, near Naples John Shine Meeting Room, Level 6 of The Kinghorn Via Campi Flegrei 34, 80078 Cancer Centre, 370 Victoria Street, Darlinghurst [email protected] PROGRAMME 10:30-11:00 Welcome networking 11:00-11:30 In memory of Riccardo Cortese Friday 9 June Phil Avner, Head, EMBL Monterotondo Andrea Ballabio, Scientific Director, TIGEM 13:30–14:00 Welcome Coffee Alfredo Nicosia, CSO & Co-founder, Okairos 14:00–15:00 EMBL and EMBL Australia Partnership 11:30-12:30 Research at EMBL Phil Avner,John Head, Mattick EMBL Monterotondo Jamie Hackett,Executive Group Director, Leader, Garvan EMBL Institute Monterotondo Paul Heppenstall,Silke Schumacher Group Leader, EMBL Monterotondo DiscussionDirector International Relations, EMBL, Heidelberg James Whisstock 12:30-13:30 ResearchScientific at TIGEM Head, EMBL Australia Partnership GracianaNHMRC Diez Roux,Senior ChiefPrincipal Scientific Research Officer, Fellow, TIGEM Monash University Andrea Ballabio, Scientific Director, TIGEM Katharina Gaus Antonella De Matteis, Cell Biology programme coordinator, TIGEM Head, EMBL Australia Node in Single Molecule Science Carmine Settembre, Assistant investigator, TIGEM NHMRC Senior Research Fellow, University of New South Wales Diego Medina, Head, High Content Screening Facility, TIGEM 15:00–15:30 Coffee 13:30-15:00 Lunch and tour of TIGEM labs 15:30–16:50 EMBL Alumni Research 15:00-16:00 Resources in Italy Marco Foiani,Sean O’ Scientific Donoghue Director, IFOM FedericoGroup Caligaris-Cappio, Leader and Senior Scientific Faculty Director, Member, AIRC Garvan Institute Lucia Faccio,Chief Executive Director Scienceof Business Leader, Development, CSIRO Telethon Mirana Ramialison 16:00-16:30 CoffeeGroup Leader, Australian Regenerative Medicine Institute, Monash University 16:30-17:30 ResearchMichael of EMBL Parker alumni GennaroDirector, Ciliberto, St.
    [Show full text]
  • 1 Early Recombinant Protein Therapeutics Pierre De Meyts1,2,3
    3 1 Early Recombinant Protein Therapeutics Pierre De Meyts1,2,3 1Department of Cell Signalling, de Duve Institute, Catholic University of Louvain, Avenue Hippocrate 75, 1200, Brussels, Belgium 2De Meyts R&D Consulting, Avenue Reine Astrid 42, 1950, Kraainem, Belgium 3Global Research External Affairs, Novo Nordisk A/S, 2760, Måløv, Denmark 1.1 Introduction The successful purification of pancreatic insulin by Frederick Banting, Charles Best, and James Collip in the laboratory of John McLeod at the University of Toronto in the summer of 1921 [1–3], as reviewed in the magistral book of Bliss [4], ushered in the era of protein therapeutics. Banting and McLeod received the Nobel Prize in Physiology or Medicine in 1923. The discovery of insulin was truly a miracle for patients with Type 1 diabetes, for whom the only alternative to a quick death from ketoacidosis was the slow death by starvation on the low-calorie diet prescribed by Allen of the Rockefeller Institute [5–7]. Insulin went into immedi- ate industrial production (from bovine or porcine pancreata) from the Connaught laboratories of the University of Toronto and, under license from the University of Toronto by Eli Lilly and Co. in the United States, by the Danish companies Nordisk Insulin Laboratorium and Novo (who merged in 1989 as Novo Nordisk), and by the German company Hoechst (now Sanofi), all of which remain the major players in the insulin business today. Insulin also turned out to be a blessing for scientists interested in protein struc- ture. It was the first protein to be sequenced [8, 9], earning Fred Sanger his first Nobel Prize in 1958.
    [Show full text]
  • Annual Report 2013–2014
    MUSEUM OF APPLIED ARTS AND SCIENCES ANNUAL REPORT 2013–2014 POWERHOUSE MUSEUM SYDNEY OBSERVATORY POWERHOUSE DISCOVERY CENTRE The Hon Troy Grant MP Minister for the Arts Parliament House Sydney NSW 2000 Dear Minister On behalf of the Board of Trustees and in accordance with the Annual Reports (Statutory Bodies) Act 1984 and the Public Finance and Audit Act 1983, we submit for presentation to Parliament the Annual Report of the Museum of Applied Arts and Sciences for the year ending 30 June 2014. Yours sincerely Prof John Shine AO, FAA Rose Hiscock President Director ISSN 0312–6013 © Trustees of the Museum of Applied Arts and Sciences 2014 Compiled by Peter Morton The Museum of Applied Arts and Sciences is a statutory authority of, and principally funded by, the NSW State Government. 2 CONTENTS PRESIDENT’S FOREWORD 4 DIRECTOR’S REPORT 5 GOVERNANCE 6 THE YEAR IN REVIEW 7 OUR AUDIENCES 2013–14 10 ORGANISATION CHART 12 DEPARTMENT REPORTS 13 Curatorial, Collections and Exhibitions 13 Programs and Engagement 14 Corporate Resources 17 Development and External Affairs 18 ON-SITE EXHIBITIONS AND DISPLAYS 19 MUSEUM OUTREACH 20 STAFF SCHOLARSHIP AND COMMUNITY 22 ENGAGEMENT Staff professional commitments 22 Staff lectures and presentations off site 23 FINANCES: THE YEAR IN REVIEW 25 FINANCIAL REPORT 26 APPENDICES 63 1. Board of Trustees 63 2. Principal Offi cers 63 3. Off-site exhibitions 64 4. Staff overseas travel 64 5. Staffi ng by department 65 6. EEO statistics 66 7. SES positions 67 8. Audit Attestation 67 9. ICT Attestation 68 10. Life Fellows 68 11.
    [Show full text]
  • Shine-Dalgarno Anti-Shine-Dalgarno Sequence Interactions and Their Functional Role in Translational Efficiency of Bacteria and Archaea
    Shine-Dalgarno Anti-Shine-Dalgarno Sequence interactions and their functional role in translational efficiency of Bacteria and Archaea Akram Abolbaghaei Supervisor: Dr. Xuhua Xia Thesis submitted to the Faculty of Graduate and Postdoctoral Studies University of Ottawa In partial fulfillment of the requirements for a Master’s degree from the Ottawa-Carleton Institute of Biology Thèse soumise à la Faculté des Etudes Supérieures et Postdoctorales Université d’Ottawa En vue de l’obtention de la maîtrise L’Institut de Biologie d’Ottawa-Carleton © Akram Abolbaghaei, Ottawa, Canada, 2016 Abstract Translation is a crucial factor in determining the rate of protein biosynthesis; for this reason, bacterial species typically evolve features to improve translation efficiency. Biosynthesis is a finely tuned cellular process aimed at providing the cell with an appropriate amount of proteins and RNAs to fulfill all of its metabolic functions. A key bacterial feature for faster recognition of the start codon on mRNA is the binding between the anti-Shine-Dalgarno (aSD) sequence on prokaryotic ribosomes at the 3’ end of the small subunit (SSU) 16S rRNA and Shine-Dalgarno (SD) sequence, a purine-rich sequence located upstream of the start codon in the mRNA. This binding helps to facilitate positioning of initiation codon at the ribosomal P site. This pairing, as well as factors such as the location of aSD binding relative to the start codon and the sequence of the aSD motif can heavily influence translation efficiency. The objective of this thesis is to understand the SD-aSD interactions and how changes in aSD sequences can affect SD sequences in addition to the underlying impact these changes have on the translational efficiency of prokaryotes.
    [Show full text]
  • Making NEWS ‘Brown Fat’ Is Believed to Be a Wondrous Tissue That Burns Energy to Generate Heat, That Could Help Us Fi Ght Obesity
    breakthrough December 2011 | Issue 18 Professor John Mattick AO FAA Image courtesy of Paul Harris, The Garvan Institute of Medical seesaw photography Research recently announced the appointment of Professor John Mattick AO FAA as the Institute’s next Executive Director, following the retirement of Professor John Shine AO FAA. Professor Mattick will begin his tenure at Garvan in January 2012, and is taking every opportunity in the lead-up to his arrival to meet Garvan staff , board members and supporters. Read more about Professor Mattick, his impact on medical research, and his hopes for his time at the Garvan on page 5. Making NEWS ‘Brown fat’ is believed to be a wondrous tissue that burns energy to generate heat, that could help us fi ght obesity. We are obese when we have too much ‘white fat’, which is basically an organ of energy storage. In contrast, brown fat is like a heat generator. Around 50g of white fat stores 300 kilocalories of energy. The same amount of brown fat burns 300 kilocalories a day. Garvan researchers have shown that brown fat can be grown in culture from stem cells biopsied from adults – giving hope that one day we might be able to either grow someone’s brown fat outside the body and then transplant it, or else stimulate its growth using drugs. Identical twins have identical genomes, but that is where Inside this issue: it stops. There are subtle diff erences in their personalities, how they look, how they act and in their susceptibility From the CEO 2 to disease.
    [Show full text]
  • Steitz J a & Jakes K. How Ribosomes Select Initiator Regions in Mrna: Base Pair Formation Between the 3' Terminus Of
    ® This Week's Citation Classic Steitz J A & Jakes K. How ribosomes select initiator regions in mRNA: base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc. Nat. Acad. Sci. USA 72:4734-8, 1975. [Dept. Vtolec. Biophys. Biochem.. Yale Univ.. New Haven. CT; and Rockefeller Univ., New York, NY] The first experimental evidence was presented to Dalgarno and his student John Shine had supportthe hypothesis that bacterial ribosomes use undertaken the relatively prosaic task of se- base pairing to identify start sites for translation. A quencing the 3 terminal 12 nucleotides of E. coli noncovalent complex including the last 50 nucle- 16S rRNA. Their results conflicted with previous otides of 16S rRNA and an initiator region from an reports, but their corrected sequence exhibited RNA bacteriophage message was generated and limited complementarity to the purine-rich re- characterized. [The SCI® indicates that this paper gions upstream of known initiator AUGs. They has been cited in more than 530 publications.] therefore proposed that the 3' terminus of the 16S rRNA participates in the initiation of protein synthesis by forming several Watson-Crick base 2 mRNA-rRNA Base Pairing During pairs with messenger RNA. Dalgarno's preprint was very exciting, since I knew of many as-yet- Translation Initiation unpublished results that fit perfectly with the Shine-Dalgarno hypothesis. But how could the Joan A. Steitz idea be proven correct? Department of Molecular Biophysics The crucial insight came during a post-Gor- and Biochemistry don Conference hike in the White Mountains Howard Hughes Medical Institute that summer.
    [Show full text]
  • Molecular Cloning and Sequence Analysis of Adult Chicken 0 Globin Cdna Robert I.Richards*''', John Shine't, Axel Ullrich2^, Juli
    volume 7 Number 51979 Nucleic Acids Research Molecular cloning and sequence analysis of adult chicken 0 globin cDNA Robert I.Richards*''', John Shine't, Axel Ullrich2^, Julian R.E.Wells* and Howard M.Goodman^ Downloaded from https://academic.oup.com/nar/article/7/5/1137/2384214 by guest on 27 September 2021 •Department of Biochemistry, University of Adelaide, Box 498, G.P.O., Adelaide, South Australia 5001, and TThe Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA Received 4 September 1979 ABSTRACT The molecular cloning and nucleotlde sequence analysis of adult chicken (3 globin mRNA is reported. DNA sequences derived from J_n_ vitro transcription of globin mRNA were purified and amplified as recombinant DNA using the plasmid pBR322. Sequence analysis of several clones coding for 3 globin strongly suggests that transcription errors may be generated near the 5' end of transcripts \n_ vitro by reverse transcription. The complete sequence of the longest S globTn Tnsert containing 51 bases of the 5' untranslated region as well as the complete coding and 3' untranslated regions has been determined. INTRODUCTION The globin gene system, in a variety of species, has become well established as a model for extensive analysis of eukaryote gene expression (3,1*)- This has been mainly due to the accessibility of the structural sequences by mRNA isolation, and the availability of in vivo systems for study such as cultured erythroblasts (5) and Friend erythroleukaemlc cells (6). In view of the available data on the mammalian systems, similar studies of the chicken globin genes will provide information concerning the divergence of structural and putative control regions.
    [Show full text]
  • Hxdocscc UC V. Eli Lilly, Ullrich 1.Pdf 1.2 Mb
    UNITED STATES DISTRICT COURT SOUTHERN DISTRICT OF INDIANA INDIANAPOLIS DIVISION IN RE RECOMBINANT DNA TECHNOLOGY ) PATENT AND CONTRACT LITIGATION ) ) MDL Docket No. 912 THE REGENTS OF THE UNIVERSITY OF ) CALIFORNIA ) ) Plaintiff, ) ) CAUSE NO. IP 92-224-C D/G -vs- ) Indianapolis, Indiana ) August 24, 1995 ELI LILLY AND COMPANY, ) Afternoon Session ) Defendant. ) Before the HONORABLE S. HUGH DILLIN TRANSCRIPT OF PROCEEDINGS AT TRIAL •I APPEARANCES: For the Plaintiff: Arthur I. Neustadt Jean-Paul Lavalleye Marc R. Labgold William J. Healey Amy Levinson Kevin Bell Susan B. Tabler For the Defendant: Donald R. Dunner Charles E. Lipsey Amy E. Hamilton John c. Jenkins Jeffrey Karceski Court Reporter: Patricia A. Cline, CM Antonette Thompson, RPR-CSR PROCEEDINGS TAKEN BY MACHINE SHORTHAND • COMPUTER-AIDED TRANSCRIPT 784 1 (Call to order of the Court at 3:55p.m.) 2 PLAINTIFF'S WITNESS, AXEL ULLRICH, SWORN 3 DIRECT EXAMINATION 4 BY MR. LABGOLD: 5 Q. Dr. Ullrich, could you please state your full name for 6 the record. 7 A. My name is Axel Ullrich. 8 Q. Could you spell your last name for the record. 9 A. U-L-L-R-I-C-H. 10 Q. Would you give your current address. 11 A. You want my German address or my American address? 12 Q. Your German 13 A. I have two residences. I have a permanent residence in 14 the United States. My address is 70 Palmer Lane,- in 15 Portola Valley, California 94028; and my German address is 16 Munich, Adalbertstrasse 108, A-D-A-L-B-E-R-T-S-T-R-A-S-S-E 17 108.
    [Show full text]
  • Pnas11052ackreviewers 5098..5136
    Acknowledgment of Reviewers, 2013 The PNAS editors would like to thank all the individuals who dedicated their considerable time and expertise to the journal by serving as reviewers in 2013. Their generous contribution is deeply appreciated. A Harald Ade Takaaki Akaike Heather Allen Ariel Amir Scott Aaronson Karen Adelman Katerina Akassoglou Icarus Allen Ido Amit Stuart Aaronson Zach Adelman Arne Akbar John Allen Angelika Amon Adam Abate Pia Adelroth Erol Akcay Karen Allen Hubert Amrein Abul Abbas David Adelson Mark Akeson Lisa Allen Serge Amselem Tarek Abbas Alan Aderem Anna Akhmanova Nicola Allen Derk Amsen Jonathan Abbatt Neil Adger Shizuo Akira Paul Allen Esther Amstad Shahal Abbo Noam Adir Ramesh Akkina Philip Allen I. Jonathan Amster Patrick Abbot Jess Adkins Klaus Aktories Toby Allen Ronald Amundson Albert Abbott Elizabeth Adkins-Regan Muhammad Alam James Allison Katrin Amunts Geoff Abbott Roee Admon Eric Alani Mead Allison Myron Amusia Larry Abbott Walter Adriani Pietro Alano Isabel Allona Gynheung An Nicholas Abbott Ruedi Aebersold Cedric Alaux Robin Allshire Zhiqiang An Rasha Abdel Rahman Ueli Aebi Maher Alayyoubi Abigail Allwood Ranjit Anand Zalfa Abdel-Malek Martin Aeschlimann Richard Alba Julian Allwood Beau Ances Minori Abe Ruslan Afasizhev Salim Al-Babili Eric Alm David Andelman Kathryn Abel Markus Affolter Salvatore Albani Benjamin Alman John Anderies Asa Abeliovich Dritan Agalliu Silas Alben Steven Almo Gregor Anderluh John Aber David Agard Mark Alber Douglas Almond Bogi Andersen Geoff Abers Aneel Aggarwal Reka Albert Genevieve Almouzni George Andersen Rohan Abeyaratne Anurag Agrawal R. Craig Albertson Noga Alon Gregers Andersen Susan Abmayr Arun Agrawal Roy Alcalay Uri Alon Ken Andersen Ehab Abouheif Paul Agris Antonio Alcami Claudio Alonso Olaf Andersen Soman Abraham H.
    [Show full text]
  • 1 History of Industrial Biotechnology Arnold L
    3 1 History of Industrial Biotechnology Arnold L. Demain, Erick J. Vandamme, John Collins, and Klaus Buchholz 1.1 The Beginning of Industrial Microbiology Microbes have been extremely important for life on Earth. They are the pro- genitors of all life on Earth and are the preeminent system to study evolution. They provide rapid generation times, genetic flexibility, unequaled experimental scale, and manageable study systems. Estimates indicate 5 × 1031 microbial cells exist with a weight of 50 quadrillion metric tons. More photosynthesis is accomplished by microbes than by green plants. More than 60% of the earth’s biomass is that of microbes. Over 90% of the cells in human bodies are microorganisms. Sterile animals are less healthy than those colonized by microbes. Long before their discovery, microorganisms were exploited to serve the needs and desires of humans, that is, to preserve milk, fruits, and vegetables, and to enhance the quality of life with the resultant beverages, cheeses, bread, pickled foods, and vinegar. The use of yeasts dates back to ancient days. The oldest fer- mentation know-how, the conversion of sugar to alcohol by yeasts, was used to make beer in Sumeria and Babylonia before 7000 BC. By 4000 BC, the Egyptians had discovered that carbon dioxide generated by the action of brewer’s yeast could leaven bread. Ancient peoples made cheese with molds and bacteria. Wine was made in China as early as in 7000 BC [1] and in Assyria in 3500 BC. Reference to wine can be found in the Book of Genesis, where it is noted that Noah con- sumed a bit too much of the beverage.
    [Show full text]