Seasonal Dynamics of Methane Cycling Microbial Communities in Amazonian Floodplain Sediments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phyllosphere Microbiome
http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. Environmental and biogeographical drivers of the Leptospermum scoparium (mānuka) phyllosphere microbiome A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science (Research) at The University of Waikato by Anya Sophia Noble 2018 ii Abstract A substantial body of research exists on the physiology and genetics of Leptospermum scoparium (mānuka); however, the mānuka phyllosphere has not yet been investigated. This research, therefore, provides the first exploration of the bacterial communities comprising the mānuka phyllosphere. In total, 89 samples were collected from five native mānuka forests during the November 2016 – January 2017 mānuka flowering season, and examined alongside spatial, environmental, and host- tree related metadata. Cultivation-independent methods, including DNA extraction and 16S rRNA gene PCR amplicon sequencing analysis, were used to characterise phyllosphere communities. Using a combination of statistical tests, the BLAST algorithm, and a PICRUSt analysis, a habitat-specific core microbiome comprising members of Acidobacteria, Alphaproteobacteria, Bacteroidetes, and Verrucomicrobia, was present in all samples. -
Microbial Community Composition During Degradation of Organic Matter
TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Bodenökologie Microbial community composition during degradation of organic matter Stefanie Elisabeth Wallisch Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. A. Göttlein Prüfer der Dissertation: 1. Hon.-Prof. Dr. M. Schloter 2. Univ.-Prof. Dr. S. Scherer Die Dissertation wurde am 14.04.2015 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 03.08.2015 angenommen. Table of contents List of figures .................................................................................................................... iv List of tables ..................................................................................................................... vi Abbreviations .................................................................................................................. vii List of publications and contributions .............................................................................. viii Publications in peer-reviewed journals .................................................................................... viii My contributions to the publications ....................................................................................... viii Abstract -
Title: Investigation of the Active Biofilm Communities on Polypropylene
1 Title: Investigation of the Active Biofilm Communities on Polypropylene 2 Filter Media in a Fixed Biofilm Reactor for Wastewater Treatment 3 4 Running Title: Wastewater Treating Biofilms in Polypropylene Media Reactors 5 Contributors: 6 Iffat Naz1, 2, 3, 4*, Douglas Hodgson4, Ann Smith5, Julian Marchesi5, 6, Shama Sehar7, Safia Ahmed3, Jim Lynch8, 7 Claudio Avignone-Rossa4, Devendra P. Saroj1* 8 9 Affiliations: 10 11 1Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University 12 of Surrey, Guildford GU2 7XH, United Kingdom 13 14 2Department of Biology, Scientific Unit, Deanship of Educational Services, Qassim University, Buraidah 51452, 15 KSA 16 3Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Quaid- 17 i-Azam University, Islamabad, Pakistan 18 4 School of Biomedical and Molecular Sciences, Department of Microbial and Cellular Sciences, University of 19 Surrey, Guildford GU2 7XH, United Kingdom 20 5Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom 21 6Centre for Digestive and Gut Health, Imperial College London, London W2 1NY, United Kingdom 22 7Centre for Marine Bio-Innovation (CMB), School of Biological, Earth and Environmental Sciences (BEES), 23 University of New South Wales, Sydney, Australia 24 25 8Centre for Environment and Sustainability, Faculty of Engineering and Physical Sciences, University of Surrey, 26 Guildford GU2 7XH, United Kingdom 27 *Corresponding author 28 Devendra P. Saroj (PhD, CEnv, FHEA) 29 Department of Civil and Environmental Engineering 30 Faculty of Engineering and Physical Sciences 31 University of Surrey, Surrey GU2 7XH, United Kingdom 32 E: [email protected] 33 T : +44-0-1483 686634 34 35 1 36 Acknowledgements 37 The authors sincerely acknowledge the International Research Support Program (IRSIP) of the Higher 38 Education Commission of Pakistan (HEC, Pakistan) for supporting IN for research work at the University of 39 Surrey (UK). -
Chelatococcus Thermostellatus Sp. Nov., a New Thermophile for Bioplastic Synthesis: Comparative Phylogenetic and Physiological Study Mohammad H
Ibrahim et al. AMB Expr (2016) 6:39 DOI 10.1186/s13568-016-0209-9 ORIGINAL ARTICLE Open Access Chelatococcus thermostellatus sp. nov., a new thermophile for bioplastic synthesis: comparative phylogenetic and physiological study Mohammad H. A. Ibrahim1,5, Liesbeth Lebbe2, Anne Willems2 and Alexander Steinbüchel3,4* Abstract The poly(3-hydroxybutyrate), PHB, accumulating thermophilic strain MW9T, isolated from an aerobic organic waste treatment plant, was characterized by detailed physiological and phylogenetic studies. The strain is a Gram-stain- negative, rod shaped, non-spore forming member of Alphaproteobacteria. It shows optimum growth at 50 °C. Based on 16S rRNA gene sequence similarity, the strain together with five very similar isolates, was affiliated to the genus Chelatococcus (Ibrahim et al. in J Appl Microbiol 109:1579–1590, 2010). Rep-PCR genomic fingerprints and partial dnaK gene sequence also revealed that these isolates are very similar, but differ from other Chelatococcus type strains. The major fatty acids were similar to those of other strains of the genus Chelatococcus. DNA–DNA hybridization of strain MW9T with Chelatococcus species type strains revealed 11.0–47.7 % relatedness. G C content of DNA was 67.1 mol%, which is comparable with the other strains of Chelatococcus species. The physiological+ and phenotypic characteristics of the new strain MW9T are sufficient to differentiate it from previously described species in the genus Chelatococcus. Strain MW9T is considered to represent a novel species of the genus Chelatococcus, for which the name Chelatococcus thermostellatus is proposed. The type strain is MW9T ( LMG 27009T DSM 28244T). Compared to known Chelatococ- cus strains, strain MW9T could be a potent candidate =for bioplastic production= at elevated temperature. -
Evolution of Methanotrophy in the Beijerinckiaceae&Mdash
The ISME Journal (2014) 8, 369–382 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis Ivica Tamas1, Angela V Smirnova1, Zhiguo He1,2 and Peter F Dunfield1 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada and 2Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT. -
New Insights Into the Biology, Ecology and Control of Black-Foot Disease in Grapevine
TESIS DOCTORAL Título New insights into the biology, ecology and control of black-foot disease in grapevine Autor/es Carmen Berlanas Vicente Director/es David Gramaje Pérez y Enrique García-Escudero Domínguez Facultad Facultad de Ciencia y Tecnología Titulación Departamento Agricultura y Alimentación Curso Académico Tesis presentada como compendio de publicaciones. La edición en abierto de la misma NO incluye las partes afectadas por cesión de derechos New insights into the biology, ecology and control of black-foot disease in grapevine, tesis doctoral de Carmen Berlanas Vicente, dirigida por David Gramaje Pérez y Enrique García-Escudero Domínguez (publicada por la Universidad de La Rioja), se difunde bajo una Licencia Creative Commons Reconocimiento-NoComercial- SinObraDerivada 3.0 Unported. Permisos que vayan más allá de lo cubierto por esta licencia pueden solicitarse a los titulares del copyright. © El autor © Universidad de La Rioja, Servicio de Publicaciones, 2020 publicaciones.unirioja.es E-mail: [email protected] New insights into the biology, ecology and control of black-foot disease in grapevine Carmen Berlanas Vicente Ph.D. thesis 2020 Universidad de La Roja Departamento de Agricultura y Alimentación Los abajo firmantes, el Dr. David Gramaje Pérez y el Dr. Enrique García-Escudero Domínguez, investigadores del Instituto de Ciencias de la Vid y del Vino (Gobierno de la Rioja, Universidad de La Rioja, CSIC). CERTIFICAN: Que el presente trabajo titulado “New insights into the biology, ecology anc control of black-foot disease in grapevine” ha sido realizado en el Departamento de Agricultura y Alimentación de la Universidad de La Rioja bajo nuestra dirección, por Carmen Berlanas Vicente, y reúne las condiciones exigidas para optar al grado de Doctor con Mención Internacional. -
Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju. -
Moroccan Camel Milk Microbiota, a Source of New Lactic Acid Bacteria
Moroccan camel milk microbiota, a source of new lactic acid bacteria Zaina Kadri Promoter: Prof. Dr. Peter Vandamme Co-promoter: Prof. Dr. Mohamed Amar Co-promoter: Prof. Dr. Omar El Farricha Year: 2016 EXAMINATION COMMITTEE Prof. Dr. Saad Ibnsouda Koraichi (Chairman) Faculty of Sciences and Technology Sidi Mohamed Ben Abdellah University, Fez, Morocco Prof. Dr. Mohamed Amar (Promotor) National Center for Scientific and Technical Research, CNRST Laboratory of Microbiology and Molecular Biology, LMBM Rabat, Morocco Prof. Dr. Peter Vandamme (Promotor) Faculty of Sciences Ghent University, Ghent, Belgium Prof. Dr. Omar El Farricha (Promotor) Faculty of Sciences and Technology Sidi Mohamed Ben Abdellah University, Fez, Morocco Prof. Dr. Ir. Jean Swings Faculty of Sciences Ghent University, Ghent, Belgium Prof. Dr. Khalid Sendide Al Akhawayn University, Ifrane, Morocco Prof. Dr. Kurt Houf Faculty of Veterinary Medicine Ghent University, Ghent, Belgium Prof. Dr. Guissi Sanae Faculty of Sciences and Technology Sidi Mohamed Ben Abdellah University, Fez, Morocco Prof. Dr. Ibijbijen Jamal Faculty of Sciences Moulay Ismail University, Meknes, Morocco i ACKNOWLEDGEMENTS I would like to express my sincere gratitude and appreciation to the person who made all this possible, Prof. Dr. Mohamed Amar. You always dedicated me your time, expertise, and good proposal. I would like to express my special thanks for giving me the opportunity to do this work at the Laboratory of Microbiology and Molecular Biol- ogy of the National Center for Scientific and Technical Research. This study was only possible thanks to you. My genuine gratitude and gratefulness are extended to Prof. Peter Vandamme. Your tremendous guidance, your expertise, thoughtful insights into microbiology, un- derstanding, kindness and helpfulness would be the unforgettable blessing of this stage. -
Genomic and Phenotypic Insights Point to Diverse Ecological Strategies by Facultative Anaerobes Obtained from Subsurface Coal Seams Silas H
www.nature.com/scientificreports OPEN Genomic and phenotypic insights point to diverse ecological strategies by facultative anaerobes obtained from subsurface coal seams Silas H. W. Vick1,2*, Paul Greenfeld2, Sasha G. Tetu 1, David J. Midgley2 & Ian T. Paulsen1 Microbes in subsurface coal seams are responsible for the conversion of the organic matter in coal to methane, resulting in vast reserves of coal seam gas. This process is important from both environmental and economic perspectives as coal seam gas is rapidly becoming a popular fuel source worldwide and is a less carbon intensive fuel than coal. Despite the importance of this process, little is known about the roles of individual bacterial taxa in the microbial communities carrying out this process. Of particular interest is the role of members of the genus Pseudomonas, a typically aerobic taxa which is ubiquitous in coal seam microbial communities worldwide and which has been shown to be abundant at early time points in studies of ecological succession on coal. The current study performed aerobic isolations of coal seam microbial taxa generating ten facultative anaerobic isolates from three coal seam formation waters across eastern Australia. Subsequent genomic sequencing and phenotypic analysis revealed a range of ecological strategies and roles for these facultative anaerobes in biomass recycling, suggesting that this group of organisms is involved in the degradation of accumulated biomass in coal seams, funnelling nutrients back into the microbial communities degrading coal to methane. Globally, coal represents a key fuel, accounting for almost ~25% of the world’s energy consumption (International Energy Agency). Te use of coal for power generation, however, is associated with signifcant environmental and health impacts1,2. -
(PHA) Biopolyesters by Extremophiles?
MOJ Polymer Science Review Article Open Access Production of Poly Hydroxyalkanoate (PHA) biopolyesters by extremophiles? Abstract Volume 1 Issue 2 - 2017 The article reviews the current state of knowledge of the production of Martin Koller polyhydroxyalkanoate (PHA) biopolyesters under extreme environmental conditions. University of Graz, Austria Although PHA production by extremophiles is not realized yet at industrial scale, significant PHA accumulation under high salinity or extreme pH- or temperature Correspondence: Martin Koller, University of Graz, Office of Research Management and Service, c/o Institute of Chemistry, conditions was reported for diverse representatives of the microbial domains of both Heinrichstrasse 28/III, 8010 Graz, Austria, Tel +43-316-380-5463, Archaea and Bacteria. Several mechanisms were proposed to explain the mechanistic Email [email protected] role of PHA and their monomers as microbial cell- and enzyme protective chaperons and the factors boosting PHA biosynthesis under environmental stress conditions. Received: February 13, 2017 | Published: June 01, 2017 The potential of selected extremophile strains, isolated from extreme environments like glaciers, hot springs, saline brines, or from habitats highly polluted with heavy metals or solvents, for efficient future PHA production on an industrially relevant scale is assessed based on the basic data available in the scientific literature. The article reveals that, beside the needed optimization of other cost-decisive factors like inexpensive raw materials or efficient downstream processing, the application of extremophile production strains can drastically safe energy costs, are easily accessible towards long-term cultivation in chemostat processes, and therefore might pave the way towards cost-efficient PHA production, even combined with safe disposal of industrial waste streams. -
Functional Characterization of Thermotolerant Microbial Consortium
www.nature.com/scientificreports OPEN Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization Parmeshwar V. Gavande1,2, Arijita Basak1,2, Subhajit Sen1, Khusboo Lepcha1, Nensina Murmu1, Vijeta Rai1, Deepika Mazumdar1, Shyama Prasad Saha1, Vaskar Das1 & Shilpi Ghosh 1* Rice (Oryza sativa L.) straw, an agricultural waste of high yield, is a sustainable source of fermentable sugars for biofuel and other chemicals. However, it shows recalcitrance to microbial catalysed depolymerization. We herein describe development of thermotolerant microbial consortium (RSV) from vermicompost with ability to degrade rice straw and analysis of its metagenome for bacterial diversity, and lignocellulolytic carbohydrate active enzymes (CAZymes) and their phylogenetic afliations. RSV secretome exhibited cellulases and hemicellulases with higher activity at 60 °C. It catalysed depolymerization of chemical pretreated rice straw as revealed by scanning electron microscopy and saccharifcation yield of 460 mg g−1 rice straw. Microbial diversity of RSV was distinct from other compost habitats, with predominance of members of phyla Firmicutes, Proteobacteria and Bacteroidetes; and Pseudoclostridium, Thermoanaerobacterium, Chelatococcus and Algoriphagus being most abundant genera. RSV harboured 1389 CAZyme encoding ORFs of glycoside hydrolase, carbohydrate esterase, glycosyl transferase, carbohydrate binding module and auxiliary activity functions. Microorganisms -
Enterovirga Rhinocerotis Gen. Nov., Sp. Nov., Isolated from Rhinoceros Unicornis Faeces
Antonie van Leeuwenhoek DOI 10.1007/s10482-016-0823-1 ORIGINAL PAPER Enterovirga rhinocerotis gen. nov., sp. nov., isolated from Rhinoceros unicornis faeces Xiu Chen . Qin-Yuan Li . Gui-Ding Li . Hui Lei . Yi Jiang . Li Han . Xue-Shi Huang . Cheng-Lin Jiang Received: 15 August 2016 / Accepted: 19 December 2016 Ó Springer International Publishing Switzerland 2016 Abstract A novel strain, YIM 100770T, was isolated sequences revealed the strain show high similarities from Rhinoceros unicornis faeces collected from with the members of the genera Psychroglaciecola Yunnan Wild Animal Park, China. The taxonomic (94.5%), Methylobacterium (90.5–94.1%) and Mi- status was determined based on the physiological, crovirga (92.0–93.3%) in the family Methylobacteri- biochemical and phylogenetic characteristics. Strain aceae. In addition, the strain also showed high YIM 100770T was observed to be rod-shaped, non- similarities with the members of the genera Chelato- motile, Gram-stain negative and aerobic. The G?C coccus (93.7–94.0%) and Pseudochelatococcus content of the genomic DNA was determined to be (93.1–93.7%) in the family Beijerinckiacea, and the 68.5 mol%. The cells of strain YIM 100770T contain genus Bosea (93.1–93.8%) in the family Bradyrhizo- ubiquinone Q-10 as the respiratory quinone. The biaceae. The phylogenetic analysis, combined with major fatty acids ([1%) were identified as Summed the chemical characteristics, suggest that the strain feature 8 (C18:1 x7c and/or C18:1 x6c; 78.1%), represents a novel genus in the order Rhizobiales of the Summed feature 4 (iso-C17:1-I and/or anteiso-C17:1- class Alphaproteobacteria, for which the name En- B; 12.9%), C19:0 cyclo x8c (2.8%), C16:0 (2.2%) and terovirga rhinocerotis gen.