Entwicklung Eines Datenbank-Gestützten Computerprogramms Zur Taxonomischen Identifizierung Von Mikrobiellen Populationen Auf Molekularbiologischer Basis

Total Page:16

File Type:pdf, Size:1020Kb

Entwicklung Eines Datenbank-Gestützten Computerprogramms Zur Taxonomischen Identifizierung Von Mikrobiellen Populationen Auf Molekularbiologischer Basis Entwicklung eines Datenbank-gestützten Computerprogramms zur taxonomischen Identifizierung von mikrobiellen Populationen auf molekularbiologischer Basis Anwendung dieses Programms auf die Charakterisierung der Diversität stickstofffixierender und denitrifzierender Mikroorganismen in Abhängigkeit einer Stickstoffdüngung Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Christopher Rösch aus München Hundt Druck Köln, 2005 Berichterstatter: Prof. Dr. H. Bothe Prof. Dr. D. Schomburg Tag der mündlichen Prüfung: 11. Juli 2005 Meinen Eltern Abstract The present work aimed at developing a novel method which allows to characterize microbial communities from environmental samples in a comprehensive and rapid way. Approaches tried so far either supplied information about the identity of a small fraction of organisms within the total community (e. g. by sequencing of clone libraries), or demonstrated the diversity of organisms without identifying them (e. g. community profiling). In the approach presented here, a method for determining such profiles (by tRFLP analysis) was combined with an automatic analysis by a computer program (TReFID) newly developed for the current study. For the characterization of microorganisms, three different data bases have been constructed: (1) for denitrifying bacteria: a nosZ data base with 607 entries (2) for dinitrogen fixing bacteria: a nifH data base with 1,318 entries (3) for bacteria in general: a 16S rDNA data base with 22,145 entries Thus a comprehensive data set has been developed particularly for the 16S rRNA gene. The use of the TReFID program now allows investigators to characterize bacterial communities from any environmental sample in a rather comprehensive way. Several control analyses showed that the TReFID program is suited for the analysis of environmental samples. TReFID was also used to assess the effect of nitrogen fertilizations on the composition of the microbial community is a N- limited forest soil in the vicinity of Cologne (Dünnwald). One plot was fertilized several times with ammonium nitrate, whereas the other plot was left undisturbed as a control. Soil samples were taken at different time intervals and analyzed for the bacterial composition with respect to total bacteria (16S rRNA gene), denitrifying and N2-fixing bacteria (nifH and nosZ, respectively). The following results emerged from this study a) the diversity of N2-fixing bacteria (assessed by the nifH gene) was about the same in both plots at the beginning of the study, but – surprisingly – decreased in the control plot while the fertilized plot remained unaffected. b) The total bacterial community (16S rRNA gene) was more diverse in the fertilized plot than in control prior to the start of the fertilization. Fertilization decreased diversity. c) The data set for denitrification (nosZ) was too small to draw definitive conclusions due to the limited number of entries for this gene in TReFID. Despite the fact that the present study is seemingly the first attempt to comprehensively characterize the bacterial community in a forest soil, the obtained data set is not yet sufficient for general conclusions, since the data obtained cannot be referred to results by others due to the lack of comparable studies in the literature. In the meantime, the TReFID program has successfully been applied to characterize the microbial community along a salt gradient at an inland salt habitat (S. Eilmus, diploma thesis, 2005). Abstract Im Vordergrund dieser Arbeit stand die Entwicklung einer neuartigen Methode, um mikrobielle Ge- meinschaften aus Umweltproben schnell und umfassend charakterisieren zu können. Die bisherigen methodischen Ansätze lieferten entweder Informationen über die Identität der Organismen in einer kleinen Stichprobe (z. B. Sequenzieren von Klonbibliotheken), oder sie demonstrieren die Diversität, ohne dass die Organismen identifiziert werden können (z. B. Erstellen von Profilen). In dem hier vor- gestellten Ansatz wurde eine Methode zur Erstellung solcher Profile (tRFLP) mit einer automatisierten Auswertung über das hierfür entwickelte Computerprogramm (TReFID) verbunden. In der Aus- wertung werden die experimentell erhaltenen Profile mit eigens erstellten Datenbanken abgeglichen, um Organismenlisten von untersuchten Proben zu erstellen. Es wurden drei Datenbanken erstellt: (1) zur Charakterisierung denitrifizierender Mikroorganismen: nosZ-Datenbank (607 Einträge) (2) zur Charakterisierung stickstofffixierender Mikroorganismen: nifH-Datenbank (1318 Einträge) (3) zur Charakterisierung der bakteriellen Gemeinschaft: 16S rDNA-Datenbank (22145 Einträge) Speziell für das 16S rRNA-Gen wurde somit einumfangreicher Datensatz erarbeitet. Damit ist es jetzt unter Verwendung der TReFID-Programms möglich geworden, mikrobielle Lebensgemeinschaften von beliebigen Standorten umfassend zu charakterisieren. Eine Evaluierung der TReFID-Methode an- hand verschiedener Kontrollen zeigte, dass die Methode zur Analyse von (Umwelt-)Gemeinschaften geeignet ist. Die TReFID-Methode wurde exemplarisch auf einen Waldboden angewandt, um dort den Effekt von Stickstoffdüngung auf die mikrobielle Gemeinschaft zu untersuchen. Hierfür wurden zwei Versuchsflächen im Dünnwald (Köln) ausgewählt, dessen Boden Stickstoff-limitiert war. Eine der bei- den Versuchflächen wurde mehrfach gedüngt. Zu verschiedenen Zeitpunkten wurde Bodenproben ent- nommen und analysiert. Mit der TReFID-Methode wurde der Effekt der Düngung auf die bakterielle Gesamtgemeinschaft und auf die Teilgemeinschaften stickstofffixierender und denitrifizierender Mikroorganismen untersucht. Die Anwendung auf den Dünnwaldboden ergab unerwartete Befunde: Die nifH-Diversität war in beiden Versuchsflächen anfangs gleich; doch nach der Düngung war die Diversität in der Kontrollfläche herabgesetzt und in der gedüngten Fläche unverändert. Im Falle der 16S rDNA wies die später gedüngte Fläche anfangs eine wesentlich höhere Diversität auf, aber infolge der Düngung sank diese auf das Niveau der Kontrollfläche. Zur Charakterisierung der Diversität von Denitrifikanten war die TReFID-Methode nur eingeschränkt geeignet, da zu wenige Sequenzen dieses Gens bekannt sind und die Datengrundlage für TReFID entsprechend klein war. Da jedoch bisher keine vergleichbaren Untersuchungen durchgeführt wurden, ist eine objektive Bewertung dieser Befunde nicht möglich. Die vorliegende Arbeit ist ein erster Versuch, aus der Kom- bination von tRFLP-Profilen mit Datenbanken die Gemeinschaft denitrifizierender oder N2-fixierender Mikroorganismen eines Umweltstandortes zu beschreiben. Das TReFID-Verfahren wurde inzwischen mit Erfolg zur Charakterisierung der mikrobiellen Gemeinschaft im Salzgradienten einer Binnensalz- stelle angewandt (Diplomarbeit S. Eilmus, 2005). Inhaltsverzeichnis 1 Einleitung....................................................................................................................................... 1 1.1 Diversität und Ökologische Bedeutung von Bakterien ............................................................. 1 1.1.1 Diversität von Bodenbakterien......................................................................................................................... 1 1.1.2 Systematik und Artbegriff bei Bakterien.......................................................................................................... 2 1.1.3 „Unkultivierbarkeit“ bei Umweltbakterien ...................................................................................................... 2 1.2 Der Stickstoffkreislauf und daran beteiligte Prokaryoten........................................................ 3 1.2.1 Stickstofffixierung............................................................................................................................................ 4 1.2.2 Nitrifikation...................................................................................................................................................... 6 1.2.3 Denitrifikation.................................................................................................................................................. 6 1.3 Anlass und Zielsetzung der vorliegenden Arbeit...................................................................... 7 1.4 Zusammenfassung des experimentellen Ansatzes .................................................................... 9 2 Material und Methoden ............................................................................................................... 10 2.1 Laborkulturen von Bakterien für Kontrollversuche .............................................................. 10 2.1.1 Verwendete Bakterienstämme und ihre Herkunft .......................................................................................... 10 2.1.2 Kultivierungsbedingungen für Laborstämme von Bakterien..........................................................................11 2.1.3 Anlegen von Dauerkulturen zur Aufbewahrung von Bakterienstämmen ....................................................... 12 2.2 Standort für die Untersuchung der Bakteriengemeinschaft ................................................... 12 2.2.1 Der Standort Dünnwald und Beschreibung der Versuchsflächen................................................................... 12 2.2.2 Entnahme, Aufarbeitung und Lagerung der Bodenproben.............................................................................15 2.3 Bodenanalysen von Dünnwaldproben...................................................................................
Recommended publications
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • Brucellosis Tip Sheet June 2018
    BRUCELLOSIS Background Brucellosis is an infectious disease caused by Brucella species such as Brucella melitensis, Brucella abortus, and Brucella suis. People can get the disease when they are in contact with infected animals or animal products contaminated with the bacteria. From 1993 through 2010, the number of brucellosis cases reported in the US ranged from 79 to 139, with an average of 109 cases per year. In 2010, the highest number (56.5%) of brucellosis cases was reported by California, Texas, Arizona, and Florida. Michigan reported four cases that same year (range=0‐10 cases per year). Signs and Symptoms Acute Non‐specific: fever, sweats, malaise, anorexia, headache, pain in muscles, joint, and/or back pain, fatigue Sub‐clinical infections are common Lymphadenopathy (10–20%), splenomegaly (20–30%) Chronic Recurrent fever Arthritis and spondylitis Swelling of the testicle and scrotum area Swelling of the heart (endocarditis) Swelling of the liver and/or spleen Neurologic symptoms (in up to 5% of all cases) Possible focal organ involvement Chronic fatigue Depression Brucellosis in Pregnant Women Brucellosis during pregnancy carries the risk of causing spontaneous abortion, particularly during the first and second trimesters; therefore, women should receive prompt medical treatment with the proper antimicrobials. Incubation Period Highly variable (5 days–6 months) Average onset 2–4 weeks Transmission Ingestion: The most common way to be infected is by eating or drinking unpasteurized/raw dairy products. When sheep, goats, cows, or camels are infected, their milk becomes contaminated with the bacteria. If milk from infected animals is not pasteurized, the infection will be transmitted to people who consume the milk and/or cheese products.
    [Show full text]
  • Azorhizobium Doebereinerae Sp. Nov
    ARTICLE IN PRESS Systematic and Applied Microbiology 29 (2006) 197–206 www.elsevier.de/syapm Azorhizobium doebereinerae sp. Nov. Microsymbiont of Sesbania virgata (Caz.) Pers.$ Fa´tima Maria de Souza Moreiraa,Ã, Leonardo Cruzb,Se´rgio Miana de Fariac, Terence Marshd, Esperanza Martı´nez-Romeroe,Fa´bio de Oliveira Pedrosab, Rosa Maria Pitardc, J. Peter W. Youngf aDepto. Cieˆncia do solo, Universidade Federal de Lavras, C.P. 3037 , 37 200–000, Lavras, MG, Brazil bUniversidade Federal do Parana´, C.P. 19046, 81513-990, PR, Brazil cEmbrapa Agrobiologia, antiga estrada Rio, Sa˜o Paulo km 47, 23 851-970, Serope´dica, RJ, Brazil dCenter for Microbial Ecology, Michigan State University, MI 48824, USA eCentro de Investigacio´n sobre Fijacio´n de Nitro´geno, Universidad Nacional Auto´noma de Mexico, Apdo Postal 565-A, Cuernavaca, Mor, Me´xico fDepartment of Biology, University of York, PO Box 373, York YO10 5YW, UK Received 18 August 2005 Abstract Thirty-four rhizobium strains were isolated from root nodules of the fast-growing woody native species Sesbania virgata in different regions of southeast Brazil (Minas Gerais and Rio de Janeiro States). These isolates had cultural characteristics on YMA quite similar to Azorhizobium caulinodans (alkalinization, scant extracellular polysaccharide production, fast or intermediate growth rate). They exhibited a high similarity of phenotypic and genotypic characteristics among themselves and to a lesser extent with A. caulinodans. DNA:DNA hybridization and 16SrRNA sequences support their inclusion in the genus Azorhizobium, but not in the species A. caulinodans. The name A. doebereinerae is proposed, with isolate UFLA1-100 ( ¼ BR5401, ¼ LMG9993 ¼ SEMIA 6401) as the type strain.
    [Show full text]
  • Reconstructing the Origin of Oxygenic Photosynthesis: Do Assembly and Photoactivation Recapitulate Evolution?
    HYPOTHESIS AND THEORY published: 02 March 2016 doi: 10.3389/fpls.2016.00257 Reconstructing the Origin of Oxygenic Photosynthesis: Do Assembly and Photoactivation Recapitulate Evolution? Tanai Cardona * Department of Life Sciences, Imperial College London, London, UK Due to the great abundance of genomes and protein structures that today span a broad diversity of organisms, now more than ever before, it is possible to reconstruct the molecular evolution of protein complexes at an incredible level of detail. Here, I recount the story of oxygenic photosynthesis or how an ancestral reaction center was transformed into a sophisticated photochemical machine capable of water oxidation. First, I review the evolution of all reaction center proteins in order to highlight that Photosystem II and Photosystem I, today only found in the phylum Cyanobacteria, branched out very early in the history of photosynthesis. Therefore, it is very unlikely that they were acquired via horizontal gene transfer from any of the described phyla of Edited by: anoxygenic phototrophic bacteria. Second, I present a new evolutionary scenario for the Julian Eaton-Rye, origin of the CP43 and CP47 antenna of Photosystem II. I suggest that the antenna University of Otago, New Zealand proteins originated from the remodeling of an entire Type I reaction center protein and Reviewed by: Anthony William Larkum, not from the partial gene duplication of a Type I reaction center gene. Third, I highlight University of Technology, Sydney, how Photosystem II and Photosystem I reaction center proteins interact with small Australia Martin Hohmann-Marriott, peripheral subunits in remarkably similar patterns and hypothesize that some of this Norwegian University of Science and complexity may be traced back to the most ancestral reaction center.
    [Show full text]
  • Recent Advances in Understanding Immunity Against Brucellosis: Application for Vaccine Development
    The Open Veterinary Science Journal, 2010, 4, 101-107 101 Open Access Recent Advances in Understanding Immunity Against Brucellosis: Application for Vaccine Development Sérgio Costa Oliveira*,1, Gilson Costa Macedo1, Leonardo Augusto de Almeida1, Fernanda Souza de Oliveira1, Angel Onãte2, Juliana Cassataro3 and 3 Guillermo Hernán Giambartolomei 1Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil 2Department of Microbiology, Faculty of Biological Sciences, Molecular Immunology Laboratory, Universidad de Concepción, Concepción, Chile 3Instituto de Estudios de la Inmunidad Humoral (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina Abstract: Brucellosis is an important zoonotic disease of nearly worldwide distribution. This pathogen causes abortion in cattle and undulant fever, arthritis, endocarditis and meningitis in human. The immune response against B. abortus involves innate and adaptive immunity involving antigen-presenting cells, NK cells and CD4+ and CD8+ T cells. IFN- is a crucial immune component that results from Brucella recognition by host immune receptors such as Toll-like receptors (TLRs) that lead to IL-12 production. Although great efforts to elucidate immunity against Brucella have been employed, the subset of cells and factors involved in host immune response remains not completely understood. Our group and others have been working in an attempt to understand the mechanisms involved in innate responses to Brucella. Understanding the requirements for immune protection can help the design of alternative vaccines that would avoid the drawbacks of currently available vaccines to Brucella. This review discusses recent studies in host immunity to Brucella and new approaches for vaccine development.
    [Show full text]
  • 1 Supplementary Information Ugly Ducklings – the Dark Side of Plastic
    Supplementary Information Ugly ducklings – The dark side of plastic materials in contact with potable water Lisa Neu1,2, Carola Bänziger1, Caitlin R. Proctor1,2, Ya Zhang3, Wen-Tso Liu3, Frederik Hammes1,* 1 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland 2 Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland 3 Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, USA Table of contents Table S1 Exemplary online blog entries on biofouling in bath toys Figure S1 Images of all examined bath toys Figure S2 Additional images of bath toy biofilms by OCT Figure S3 Additional images on biofilm composition by SEM Figure S4 Number of bacteria and proportion of intact cells in bath toy biofilms Table S2 Classification of shared OTUs between bath toys Table S3 Shared and ‘core’ communities in bath toys from single households Table S4 Richness and diversity Figure S5 Classification of abundant OTUs in real bath toy biofilms Table S5 Comparison of most abundant OTUs in control bath toy biofilms Figure S6 Fungal community composition in bath toy biofilms Table S6 Conventional plating results for indicator bacteria and groups Table S7 Bioavailability of migrating carbon from control bath toys’ material Water chemistry Method and results (Table S8) Table S9 Settings for Amplification PCR and Index PCR reactions 1 Table S1: Exemplary online blog entries on biofouling inside bath toys Issue - What is the slime? Link Rub-a-dub-dub, https://www.babble.com/baby/whats-in-the-tub/ what’s in the tub? What’s the black stuff http://blogs.babycenter.com/momstories/whats-the-black- in your squeeze toys? stuff-in-your-squeeze-toys/ Friday Find: NBC’s http://www.bebravekeepgoing.com/2010/03/friday-find-nbcs- Today Show segment: today-show-segment-do.html Do bath toys carry germs? Yuck.
    [Show full text]
  • Revised Taxonomy of the Family Rhizobiaceae, and Phylogeny of Mesorhizobia Nodulating Glycyrrhiza Spp
    Division of Microbiology and Biotechnology Department of Food and Environmental Sciences University of Helsinki Finland Revised taxonomy of the family Rhizobiaceae, and phylogeny of mesorhizobia nodulating Glycyrrhiza spp. Seyed Abdollah Mousavi Academic Dissertation To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public examination in lecture hall 3, Viikki building B, Latokartanonkaari 7, on the 20th of May 2016, at 12 o’clock noon. Helsinki 2016 Supervisor: Professor Kristina Lindström Department of Environmental Sciences University of Helsinki, Finland Pre-examiners: Professor Jaakko Hyvönen Department of Biosciences University of Helsinki, Finland Associate Professor Chang Fu Tian State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University, China Opponent: Professor J. Peter W. Young Department of Biology University of York, England Cover photo by Kristina Lindström Dissertationes Schola Doctoralis Scientiae Circumiectalis, Alimentariae, Biologicae ISSN 2342-5423 (print) ISSN 2342-5431 (online) ISBN 978-951-51-2111-0 (paperback) ISBN 978-951-51-2112-7 (PDF) Electronic version available at http://ethesis.helsinki.fi/ Unigrafia Helsinki 2016 2 ABSTRACT Studies of the taxonomy of bacteria were initiated in the last quarter of the 19th century when bacteria were classified in six genera placed in four tribes based on their morphological appearance. Since then the taxonomy of bacteria has been revolutionized several times. At present, 30 phyla belong to the domain “Bacteria”, which includes over 9600 species. Unlike many eukaryotes, bacteria lack complex morphological characters and practically phylogenetically informative fossils. It is partly due to these reasons that bacterial taxonomy is complicated.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Community Structure and Function of High-Temperature Chlorophototrophic Microbial Mats Inhabiting Diverse Geothermal Environments
    ORIGINAL RESEARCH ARTICLE published: 03 June 2013 doi: 10.3389/fmicb.2013.00106 Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments Christian G. Klatt 1,2†,William P.Inskeep 1,2*, Markus J. Herrgard 3, Zackary J. Jay 1,2, Douglas B. Rusch4, Susannah G.Tringe 5, M. Niki Parenteau 6,7, David M. Ward 1,2, Sarah M. Boomer 8, Donald A. Bryant 9,10 and Scott R. Miller 11 1 Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA 2 Thermal Biology Institute, Montana State University, Bozeman, MT, USA 3 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark 4 Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA 5 Department of Energy Joint Genome Institute, Walnut Creek, CA, USA 6 Search for Extraterrestrial Intelligence Institute, Mountain View, CA, USA 7 National Aeronautics and Space Administration Ames Research Center, Mountain View, CA, USA 8 Western Oregon University, Monmouth, OR, USA 9 Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 10 Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA 11 Department of Biological Sciences, University of Montana, Missoula, MT, USA Edited by: Six phototrophic microbial mat communities from different geothermal springs (YNP) were Martin G. Klotz, University of North studied using metagenome sequencing and geochemical analyses. The primary goals of Carolina at Charlotte, USA this work were to determine differences in community composition of high-temperature Reviewed by: Andreas Teske, University of North phototrophic mats distributed across theYellowstone geothermal ecosystem, and to iden- Carolina at Chapel Hill, USA tify metabolic attributes of predominant organisms present in these communities that may Jesse Dillon, California State correlate with environmental attributes important in niche differentiation.
    [Show full text]
  • University of Groningen Labrys Portucalensis Sp Nov., A
    University of Groningen Labrys portucalensis sp nov., a fluorobenzene-degrading bacterium isolated from an industrially contaminated sediment in northern Portugal Carvalho, Maria F.; De Marco, Paolo; Duque, Anouk F.; Pacheco, Catarina C.; Janssen, Dick; Castro, Paula M. L. Published in: International Journal of Systematic and Evolutionary Microbiology DOI: 10.1099/ijs.0.65472-0 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2008 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Carvalho, M. F., De Marco, P., Duque, A. F., Pacheco, C. C., Janssen, D. B., & Castro, P. M. L. (2008). Labrys portucalensis sp nov., a fluorobenzene-degrading bacterium isolated from an industrially contaminated sediment in northern Portugal. International Journal of Systematic and Evolutionary Microbiology, 58(3), 692-698. DOI: 10.1099/ijs.0.65472-0 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • 1 Horizontal Gene Transfer of a Unique Nif Island Drives Convergent Evolution of Free-Living
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.03.429501; this version posted February 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Horizontal gene transfer of a unique nif island drives convergent evolution of free-living 2 N2-fixing Bradyrhizobium 3 4 Jinjin Tao^, Sishuo Wang^, Tianhua Liao, Haiwei Luo* 5 6 Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of 7 Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 8 9 ^These authors contribute equally to this work. 10 11 *Corresponding author: 12 Haiwei Luo 13 School of Life Sciences, The Chinese University of Hong Kong 14 Shatin, Hong Kong SAR 15 Phone: (+852) 39436121 16 E-mail: [email protected] 17 18 Running Title: Free-living Bradyrhizobium evolution 19 Keywords: free-living Bradyrhizobium, nitrogen fixation, lifestyle, HGT 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.03.429501; this version posted February 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 20 Summary 21 The alphaproteobacterial genus Bradyrhizobium has been best known as N2-fixing members that 22 nodulate legumes, supported by the nif and nod gene clusters.
    [Show full text]
  • Widespread Soil Bacterium That Oxidizes Atmospheric Methane
    Widespread soil bacterium that oxidizes atmospheric methane Alexander T. Tveita,1, Anne Grethe Hestnesa,1, Serina L. Robinsona, Arno Schintlmeisterb, Svetlana N. Dedyshc, Nico Jehmlichd, Martin von Bergend,e, Craig Herboldb, Michael Wagnerb, Andreas Richterf, and Mette M. Svenninga,2 aDepartment of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037 Tromsoe, Norway; bCenter of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria; cWinogradsky Institute of Microbiology, Research Center of Biotechnology of Russian Academy of Sciences, 117312 Moscow, Russia; dDepartment of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; eFaculty of Life Sciences, Institute of Biochemistry, University of Leipzig, 04109 Leipzig, Germany; and fCenter of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, 1090 Vienna, Austria Edited by Mary E. Lidstrom, University of Washington, Seattle, WA, and approved March 7, 2019 (received for review October 22, 2018) The global atmospheric level of methane (CH4), the second most as-yet-uncultured clades within the Alpha- and Gammaproteobacteria important greenhouse gas, is currently increasing by ∼10 million (16–18) which were designated as upland soil clusters α and γ tons per year. Microbial oxidation in unsaturated soils is the only (USCα and USCγ, respectively). Interest in soil atmMOB has known biological process that removes CH4 from the atmosphere, increased significantly since then because they are responsible but so far, bacteria that can grow on atmospheric CH4 have eluded for the only known biological removal of atmospheric CH4 all cultivation efforts.
    [Show full text]