Stability of the Logarithmic Brunn-Minkowski inequality in the case of many hyperplane symmetries K´aroly J. B¨or¨oczky,∗† Apratim De‡ March 11, 2021 Dedicated to Prof. Erwin Lutwak on the occasion of his seventy-fifth birthday Abstract In the case of symmetries with respect to n independent linear hyperplanes, a stability versions of the Logarithmic Brunn-Minkowski inequality and the Logarithmic Minkowski inequality for convex bodies are established. MSC 52A40 1 Introduction The classical Brunn-Minkowski inequality form the core of various areas in probability, additive combinatorics and convex geometry (see Gardner [48], Schneider [83] and Tao, Vu [85]). For recent related work in the theory of arXiv:2101.02549v3 [math.MG] 10 Mar 2021 valuations, algorithmic theory and the Gaussian setting, see say Jochemko, Sanyal [60, 61], Kane [62], Gardner, Zvavitch [49], Eskenazis, Moschidis [37]. The rapidly developing new Lp-Brunn-Minkowski theory (where p = 1 is the classical case) initiated by Lutwak [68, 69, 70], has become main ∗Supported by NKFIH grant K 132002 †Alfr´ed R´enyi Institute of Mathematics, Realtanoda u. 13-15, H-1053 Budapest, Hun- gary, and Department of Mathematics, Central European University, Nador u. 9, H-1051, Budapest, Hungary,
[email protected] ‡Department of Mathematics, Central European University, Nador u. 9, H-1051, Bu- dapest, Hungary,
[email protected] 1 research area in modern convex geometry and geometric analysis. Following Firey [45] and Lutwak [68, 69, 70], major results have been obtained by Hug, Lutwak, Yang, Zhang [58], and more recently the papers Kolesnikov, Milman [65], Chen, Huang, Li, Liu [26], Hosle, Kolesnikov, Livshyts [57], Kolesnikov, Livshyts [64] present new developments and approaches.