Interdisciplinary Mathematics Education the State of the Art and Beyond ICME-13 Monographs

Total Page:16

File Type:pdf, Size:1020Kb

Interdisciplinary Mathematics Education the State of the Art and Beyond ICME-13 Monographs ICME-13 Monographs Brian Doig · Julian Williams · David Swanson · Rita Borromeo Ferri · Pat Drake Editors Interdisciplinary Mathematics Education The State of the Art and Beyond ICME-13 Monographs Series editor Gabriele Kaiser, Faculty of Education, Didactics of Mathematics, Universität Hamburg, Hamburg, Germany Each volume in the series presents state-of-the art research on a particular topic in mathematics education and reflects the international debate as broadly as possible, while also incorporating insights into lesser-known areas of the discussion. Each volume is based on the discussions and presentations during the ICME-13 conference and includes the best papers from one of the ICME-13 Topical Study Groups, Discussion Groups or presentations from the thematic afternoon. More information about this series at http://www.springer.com/series/15585 Brian Doig • Julian Williams • David Swanson • Rita Borromeo Ferri • Pat Drake Editors Interdisciplinary Mathematics Education The State of the Art and Beyond Editors Brian Doig Julian Williams Faculty of Arts and Education Ellen Wilkinson Building Deakin University The University of Manchester Victoria, VIC, Australia Manchester, UK David Swanson Rita Borromeo Ferri Manchester Institute of Education Institut für Mathematik The University of Manchester Universität Kassel Manchester, UK Kassel, Hessen, Germany Pat Drake Victoria University Melbourne, VIC, Australia ISSN 2520-8322 ISSN 2520-8330 (electronic) ICME-13 Monographs ISBN 978-3-030-11065-9 ISBN 978-3-030-11066-6 (eBook) https://doi.org/10.1007/978-3-030-11066-6 Library of Congress Control Number: 2018966113 © The Editor(s) (if applicable) and The Author(s) 2019. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adap- tation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publi- cation does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Contents 1 Introduction to Interdisciplinary Mathematics Education ........ 1 Brian Doig and Julian Williams Part I Conceptualising and Theorising Interdisciplinarity in Research, Policy and Practice Julian Williams 2 Introduction .......................................... 9 Julian Williams 3 Theoretical Perspectives on Interdisciplinary Mathematics Education ............................................ 13 Julian Williams and Wolff-Michael Roth 4 Integration from a Commognitive Perspective: An Experience with Mathematics and Music Students ...................... 35 M. Alicia Venegas-Thayer 5 Challenges and Opportunities for a STEM Interdisciplinary Agenda .............................................. 51 Russell Tytler, Gaye Williams, Linda Hobbs and Judy Anderson Part II Focus on Cross-Cutting Skills: A Glass Half-Full? Pat Drake 6 Introduction: A Glass Half Full? .......................... 85 Pat Drake 7 Developing Mathematical Reasoning Using a STEM Platform .... 93 Andrzej Sokolowski 8 Quantitative Reasoning and Its Rôle in Interdisciplinarity ....... 113 Robert Mayes v vi Contents 9 Modelling and Programming of Digital Video: A Source for the Integration of Mathematics, Engineering, and Technology ....... 135 Carlos A. LópezLeiva, Marios S. Pattichis and Sylvia Celedón-Pattichis Part III Case Studies in Inter-Disciplinarity: Mathematics as Tool and Mathematics as (Conscious) Generalisation David Swanson 10 Introduction .......................................... 157 David Swanson 11 Mathematics in an Interdisciplinary STEM Course (NLT) in The Netherlands ..................................... 167 Nelleke den Braber, Jenneke Krüger, Marco Mazereeuw and Wilmad Kuiper 12 Maths Adds up ........................................ 185 Maite Gorriz and Santi Vilches 13 The Successful Students STEM Project: A Medium Scale Case Study ........................................... 209 Linda Hobbs, Brian Doig and Barry Plant 14 “Draw What You See” Transcending the Mathematics Classroom ............................................ 229 Signe E. Kastberg, Rachel Long, Kathleen Lynch-Davis and Beatriz S. D’Ambrosio 15 Inter-disciplinary Mathematics: Old Wine in New Bottles? ...... 245 Brian Doig and Wendy Jobling Part IV Teacher Education and Teacher Development Rita Borromeo Ferri 16 Teacher Education and Teacher Development ................ 259 Rita Borromeo Ferri 17 Inclusion of Interdisciplinary Approach in the Mathematics Education of Biology Trainee Teachers in Slovakia ............ 263 Ivana Boboňová,Soňa Čeretková, Anna Tirpáková and Dagmar Markechová 18 Creating Academic Teacher Scholars in STEM Education by Preparing Preservice Teachers as Researchers ............. 281 Jennifer Wilhelm and Molly H. Fisher Contents vii Part V Conclusion to Interdisciplinary Mathematics Education Brian Doig 19 Conclusion to Interdisciplinary Mathematics Education ......... 299 Brian Doig and Julian Willams Chapter 1 Introduction to Interdisciplinary Mathematics Education Brian Doig and Julian Williams Abstract The purpose of this chapter is to preface, and introduce, the content of this book, but also to help clarify concepts and terms addressed, set the stage by summarising our previous work, and issue some caveats about our limitations. We will close with a discussion of the mathematics in Interdisciplinary Mathematics Education (IdME), which we see as a lacuna in the literature, and even in this book. Keywords Interdisciplinary · Mathematics · Education · Introduction 1.1 Origins and Context of This Volume The origins of this book emerged after some of us were invited to lead a Topic Study Group (TSG-22) at the International Conference on Mathematics Education in Hamburg in 2016 (ICME-13). Initially the suggestion was for a topic on Science, Technology, Engineering and Mathematics (STEM) education, a topic that has been increasingly prominent in educational policy, and practice, in the last decade. How- ever, we preferred to go to the concept of ‘interdisciplinarity’ as the focus of interest for several reasons. First, while much STEM-related work does involve interdisci- plinarity, much does not—it had emerged as a funding priority, and is often related more to political and economic expediencies, than to educational principles. Second, much STEM work does little to emphasise mathematics, and when it does so, it does not always relate the mathematics to the other disciplines or subjects involved. Third, much good interdisciplinary mathematics involves non-STEM disciplines, and we wanted to include the arts, music, and other disciplines that might be excluded from STEM. Finally, however, we hoped that “Interdisciplinary mathematics education” would include much STEM work, and even most of STEM work, that might be of contemporary interest. B. Doig Deakin University, Melbourne, Australia J. Williams (B) University of Manchester, Manchester M13 9PL, UK e-mail: [email protected] © The Author(s) 2019 1 B. Doig et al. (eds.), Interdisciplinary Mathematics Education, ICME-13 Monographs, https://doi.org/10.1007/978-3-030-11066-6_1 2 B. Doig and J. Williams 1.2 The State of the Art in 2016: What Next? Prior to the ICME-13 conference, the organisers were invited to produce a State of the art in the topic, which was published immediately prior to the conference, and is available freely on-line (see, Williams et al., 2016). This provided the base level of knowledge that all papers in Topic Group 22 built on, and many of the chapters in this book refer to it, so it is worth summarising some of its key points here. In the State of the art, the authors make clear that previous research in the topic suffers from several key problems, or even flaws. First, there is confusion over the key concepts and terms, making it hard for research to become cumulative. Much of the writing in the topic assumes that a discipline equates with a school curricu- lum subject, and that any form of collaboration, or integration, between subjects is therefore ‘interdisciplinary’, whereas, we prefer to use the term ‘curriculum inte- gration’ or ‘subject
Recommended publications
  • JOHN NOVEMBRE, Phd
    JOHN NOVEMBRE, PhD The University of Chicago Department of Human Genetics 920 E 58th Steet CLSC 421 Chicago, IL 60637 Email: [email protected] Webpage: http://jnpopgen.org/ Curriculum Vitae Formatted to Guidelines for UChicago Biological Sciences Division ACADEMIC APPOINTMENTS 2017- Professor, University of Chicago, Department of Human Genetics, Department of Ecology and Evolutionary Biology (secondary appointment) 2013-2017 Associate Professor, University of Chicago, Department of Human Genetics, Department of Ecology and Evolutionary Biology (secondary appointment) 2012-2013 Associate Professor, University of California–Los Angeles, Department of Ecology and Evolutionary Biology, Interdepartmental Program in Bioinformatics 2008-2012 Assistant Professor, University of California–Los Angeles, Department of Ecology and Evolutionary Biology, Interdepartmental Program in Bioinformatics Ph.D.-Granting Committee, Program, Institute, and Center Appointments 2013- Committee on Evolutionary Biology, University of Chicago 2013- Committee on Genetics, Genomics, and Systems Biology, University of Chicago 2008-2013 Indepartmental Program in Bioinformatics, UCLA 2012-2009 Center for Society and Genetics, UCLA ACADEMIC TRAINING 2006-2008 Postdoctoral training, Department of Human Genetics University of Chicago, Chicago, IL. Advisor: Matthew Stephens 2006 PhD, Integrative Biology, designated emphasis in Computational Biology/Genomics University of California-Berkeley, Berkeley, CA. Advisor: Montgomery Slatkin Dissertation title: Statistical methods
    [Show full text]
  • SKA-Athena Synergy White Paper
    SKA-Athena Synergy White Paper SKA-Athena Synergy Team July 2018. Edited by: Francisco J. Carrera and Silvia Martínez-Núñez on behalf of the Athena Community Office. Revisions provided by: Judith Croston, Andrew C. Fabian, Robert Laing, Didier Barret, Robert Braun, Kirpal Nandra Authorship Authors Rossella Cassano (INAF-Istituto di Radioastronomia, Italy). • Rob Fender (University of Oxford, United Kingdom). • Chiara Ferrari (Observatoire de la Côte d’Azur, France). • Andrea Merloni (Max-Planck Institute for Extraterrestrial Physics, Germany). • Contributors Takuya Akahori (Kagoshima University, Japan). • Hiroki Akamatsu (SRON Netherlands Institute for Space Research, The Netherlands). • Yago Ascasibar (Universidad Autónoma de Madrid, Spain). • David Ballantyne (Georgia Institute of Technology, United States). • Gianfranco Brunetti (INAF-Istituto di Radioastronomia, Italy) and Maxim Markevitch (NASA-Goddard • Space Flight Center, United States). Judith Croston (The Open University, United Kingdom). • Imma Donnarumma (Agenzia Spaziale Italiana, Italy) and E. M. Rossi (Leiden Observatory, The • Netherlands). Robert Ferdman (University of East Anglia, United Kingdom) on behalf of the SKA Pulsar Science • Working Group. Luigina Feretti (INAF-Istituto di Radioastronomia, Italy) and Federica Govoni (INAF Osservatorio • Astronomico,Italy). Jan Forbrich (University of Hertfordshire, United Kingdom). • Giancarlo Ghirlanda (INAF-Osservatorio Astronomico di Brera and University Milano Bicocca, Italy). • Adriano Ingallinera (INAF-Osservatorio Astrofisico di Catania, Italy). • Andrei Mesinger (Scuola Normale Superiore, Italy). • Vanessa Moss and Elaine Sadler (Sydney Institute for Astronomy/CAASTRO and University of Sydney, • Australia). Fabrizio Nicastro (Osservatorio Astronomico di Roma,Italy), Edvige Corbelli (INAF-Osservatorio As- • trofisico di Arcetri, Italy) and Luigi Piro (INAF, Istituto di Astrofisica e Planetologia Spaziali, Italy). Paolo Padovani (European Southern Observatory, Germany). • Francesca Panessa (INAF/Istituto di Astrofisica e Planetologia Spaziali, Italy).
    [Show full text]
  • See Tony's Slides Here
    Climate change the science & the lies Tony Eggleton Outline Some basic climate stuff – what the science says About trust and lies How to misinform 1. Attack the person 2. “It stands to reason” 3. Cherry pick or brush aside 4. Use lots of wrong numbers 5. Use the wrong data 6. Be important, be wrong, and say it anyway The pillars of climate science causes causes Global warming. • What is the evidence? • Land-based thermometers Boulia, Qld Of course one Met station is not enough, but 30,000 is C) 14.8 ° 14.6 14.4 14.2 14.0 13.8 13.6 Temperature rise ( rise Temperature 13.4 1880 1900 1920 1940 1960 1980 2000 2020 NASA Goddard Space Institute Don’t like scientists’ measurements? • What about oenologists? Date of maturity for grapes is getting earlier every year Mar 20 Mar 1 1930 2010 The Greenhouse Warm body radiates heat away and gets cold Add a blanket, reduce heat loss Thicker blanket, more heat trapped, now a hot dog We are warmed by the sun and radiate our warmth out into space sun earth . There is a lot of cold space out there to accept our radiated heat OK, so you can see - 23° C 14° C We have an atmosphere blanket, the moon does not Sun’s heat comes in 29% is reflected back into space That is known as Earth’s albedo. Compare Venus 90%, the moon 7%. Earth warms air, air radiates heat away 1.8 ppm 0.3 ppm Greenhouse gases and their part in keeping us warm 400 ppm = 0.04% 4%± Why has the Earth warmed over the past two centuries? Because we have added a lot of CO2 Are you sure? Perhaps it is just a coincidence! And what does a bit of warming do? Melts ice, mainly in the Arctic.
    [Show full text]
  • Bachelor of Engineering Program in Robotics Engineering and Automation System
    Bachelor of Engineering Program in Robotics Engineering and Automation System Production Engineering Department, Faculty of Engineering King Mongkut's University of Technology North Bangkok 1518 Pracharad 1 Rd., Wongsawang, Bangsue, Bangkok 10800 Thailand Tel. 02-555-2000 ext 8208 Fax 02-587-0029 Brief History Since founded in 1984, Production Engineering Department has offered only one undergraduate curriculum. With ample available resources, the department identifies the next step as a new curriculum responding to industrial needs. PE Students become so skillful that they have won many prizes in various robot competitions. Curriculum Objectives Produce graduates in Robotics Engineering and Automation System for industry and ASEAN. Produce students with skills and knowledge to proudly represent KMUTNB uniqueness. Support innovative creation according to KMUTNB philosophy Program of Study for Robotics Engineering & Automation System ( . 2556) Total = 143 Credits Semester 1 Semester 2 Semester 3 Semester 4 Semester 5 Semester 6 Summer Semester 7 Semester 8 = 18 Credits = 20 Credits = 22 Credits = 21 Credits = 18 Credits = 19 Credits = 240 hours = 11 Credits = 14 Credits 040203111 3(3-0-6) 040203112 3(3-0-6) 040203211 3(3-0-6) 010243102 3(3-0-6) 010243xxx 3(x-x-x) 010243xxx 3(x-x-x) 010243210 1(0-2-1) 010243211 3(0-6-3) Engineering Engineering Engineering Mechanics of Technical Elective Technical Elective p RE Project I RE Project II Course I Course II ) Mathematics I Mathematics II Mathematics III i Materials 0 - h 0 s 4 n 2 r - 0 e
    [Show full text]
  • Augmented Reality in Teaching Descriptive Geometry, Engineering and Computer Graphics – Systematic Review and Results of the Russian Teachers’ Experience
    EURASIA Journal of Mathematics, Science and Technology Education, 2019, 15(12), em1816 ISSN:1305-8223 (online) OPEN ACCESS Research Paper https://doi.org/10.29333/ejmste/113503 Augmented Reality in Teaching Descriptive Geometry, Engineering and Computer Graphics – Systematic Review and Results of the Russian Teachers’ Experience Marianna V. Voronina 1, Zlata O. Tretyakova 1*, Ekaterina G. Krivonozhkina 2, Stanislav I. Buslaev 3, 3 Grigory G. Sidorenko 1 Saint-Petersburg Mining University, Saint Petersburg, RUSSIA 2 Kazan (Volga region) Federal University, Kazan, RUSSIA 3 Financial University under the Government of the Russian Federation, Moscow, RUSSIA Received 10 June 2019 ▪ Revised 25 September 2019 ▪ Accepted 14 October 2019 ABSTRACT The relevance and feasibility of this study are determined by the absence of serious, scientific research, as well as teaching materials, when it comes to the use of Augmented Reality (AR) in teaching students and future teachers Descriptive Geometry, Engineering and Computer Graphics (DGECG). The purpose of the study is to examine the current state of knowledge and practice of existing courses, which use the AR concept; to conduct a pedagogical experiment by teaching students how to create an information model of a building structure using the AR concept; to study the impact of the AR technology on students, lecturers, on the quality of students’ design works and project presentation. The research methods used were a set of various, complementing each other methods, which can be divided into two groups: 1) theoretical: analysis of the teachers’ and psychologists’ works on the point of the research, analysis of methodological and educational literature; empirical: observation, statement, pedagogical experiment.
    [Show full text]
  • The Center for Nanotechnology in Society at Arizona State University
    The Center for Nanotechnology in Society at Arizona State University NSF #0937591 September 1, 2012 – August 31, 2013 PI: David H. Guston, Arizona State University Co-PIs: Elizabeth Corley, Arizona State University Deirdre Meldrum, Arizona State University Clark Miller, Arizona State University Dietram Scheufele, University of Wisconsin, Madison Jan Youtie, Georgia Institute of Technology Annual Report for the Period September 1, 2012 to August 31, 2013 This report includes work conducted at three collaborating universities of NSEC/CNS-ASU: Arizona State University, Georgia Institute of Technology, and the University of Wisconsin-Madison. Annual Report for Award #0937591 September 1, 2012 – August 31, 2013 2. Table of Contents Project Summary 3 List of Center Participants, Advisory Boards, and Participating Institutions 4 Quantifiable Outputs – Table 1 44 Mission, Significant Advances, and Broader Impacts 45 Highlights 61 Strategic Research Plan 70 Research Program, Accomplishments, and Plans 73 a. RTTA 1 73 b. RTTA 2 78 c. RTTA 3 83 d. RTTA 4 92 e. TRC 1 98 f. TRC 2 101 Center Diversity – Progress and Plans 109 Education 113 Outreach and Knowledge Transfer 128 Shared and Other Experimental Facilities 138 Personnel 141 Publications and Patents 146 Biographical Information 263 Honors and Awards 272 Fiscal Sections 274 Cost-Sharing Section 295 Leverage 307 Current and Pending Support 317 1 Annual Report for Award #0937591 September 1, 2012 – August 31, 2013 (2. Table of Contents continued) Tables Table 1 44 Table 2 108 Table 3A 127 Table 3B 127 Table 4A 144 Table 4B 145 Table 5 310 Table 6 311 2 Annual Report for Award #0937591 September 1, 2012 – August 31, 2013 3.
    [Show full text]
  • Nanosicence & Nanoengineering
    Why Study at Sakarya University? Nanosicence & Sakarya is one of the most central states in Turkey. The city hosts a number of industrial companies such as Toyata Motor Manufac- Nanoengineering turing Turkey, Hyundai EURotem Train Factory and Otokar. It is Graduate Studies surrounded by beautiful landscapes and historical places, and an economical city for students. Istanbul is about one and half hour from the campus by car or bus. The capital city, Ankara, is nearly 300 km’s away. The campus is fully equipped with modern buildings and overlooks the very famous Sapanca Lake. Sakarya University has more than 60,000 students enrolled in higher-education, undergraduate and graduate studies in such areas as Engineering, Natural Sciences, Medicine, Law and Management. Each year hundreds of international students also pursue their studies individually or through some programs such as ERASMUS Student Exchange. Sakarya University is constantly seeking for improvements in CONTACT US educational processes and is the first university in Turkey to start quality development and evaluation and to receive the National Tel : +90 264 295 50 42 Quality Reward. Fax: +90 264 295 50 31 E-mail: [email protected] Address: Sakarya University Esentepe Campus TR - 54187 Sakarya / TURKIYE www.sakarya.edu.tr/en www.sakarya.edu.tr/en Nanoscience and Nanoengineering Graduation Requirements & Courses** Why Master’s or Ph.D. Degree in Graduate Program* Nanoscience and Nanoengineering? The graduate program in Nanosci- Eight courses with a total of 60 ECTS Current research in nanoscience ence and Nanoengineering is an course credits, both Master’s and and nanotechnology requires an inter-disciplinary study and aims to Ph.D.
    [Show full text]
  • Mathematics and Engineering in Computer Science
    NBSIR 75-780 Mathematics and Engineering in Computer Science Christopher J. Van Wyk Institute for Computer Sciences and Technology National Bureau of Standards Washington, D. C. 20234 August, 1975 Final Report U S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS NBSIR 75-780 MATHEMATICS AND ENGINEERING IN COMPUTER SCIENCE Christopher J. Van Wyk Institute for Computer Sciences and Technology National Bureau of Standards Washington, D. C. 20234 August, 1975 Final Report U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secretary James A. Baker, III, Under Secretary Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director I I. Introduction The objective of the research which culminated in this document 'was to identify and characterize areas of mathematics and engineering v/hich are relevant to computer science. The descriptions of technical fields were to be comprehensible to laymen, yet accurate enough to satisfy technically knowledgeable personnel, and informative for all readers. The division of the fields, shown in the table of contents, is somewhat arbitrary, but it is also quite convenient. A short expla- nation might be helpful. The mathematical fields can be grouped by noting the importance of a field to computer science, and, to a lesser extent, the existence of the field independent of computer science. For example. Boolean algebra and information theory could (and did) exist without computers being available. On the other hand, most problems in artificial intelligence or optimization, once they reach even moderate complexity, must be solved with a computer, since hand solution would take too much time.
    [Show full text]
  • Robotics and Early-Years STEM Education: the Botstem Framework and Activities
    European Journal of STEM Education, 2020, 5(1), 01 ISSN: 2468-4368 Robotics and Early-years STEM Education: The botSTEM Framework and Activities Ileana M. Greca Dufranc 1, Eva M. García Terceño 1, Marie Fridberg 2, Björn Cronquist 2, Andreas Redfors 2* 1 Universidad de Burgos, SPAIN 2 Kristianstad University, SWEDEN *Corresponding Author: [email protected] Citation: Greca Dufranc, I. M., García Terceño, E. M., Fridberg, M., Cronquist, B. and Redfors, A. (2020). Robotics and Early-years STEM Education: The botSTEM Framework and Activities. European Journal of STEM Education, 5(1), 01. https://doi.org/10.20897/ejsteme/7948 Published: April 17, 2020 ABSTRACT botSTEM is an ERASMUS+ project aiming to raise the utilisation of inquiry-based collaborative learning and robots-enhanced education. The project outputs are specifically aimed to provide in- and pre-service teachers in Childhood and Primary Education and children four-eight years old, with research-based materials and practices that use integrated Science Technology Engineering Mathematics (STEM) and robot-based approaches, including code-learning, for enhancing scientific literacy in young children. This article presents the outputs from the botSTEM project; the didactical framework underpinning the teaching material, addressing pedagogy and content. It is a gender inclusive pedagogy that makes use of inquiry, engineering design methodology, collaborative work and robotics. The article starts with a presentation of the botSTEM toolkit with assorted teaching practices and finishes with examples of preliminary results from a qualitative analysis of implemented activities during science teaching in preschools. It turns out that despite perceived obstacles that teachers initially expressed, the analysis of the implementations indicates that the proposed STEM integrated framework, including inquiry teaching and engineering design methodologies, can be used with children as young as four years old.
    [Show full text]
  • A Veteran Science Teacher's Transitions to NGSS Corey Edward
    Electronic Journal of Science Education Vol. 23, No. 4 A Veteran Science Teacher’s Transitions to NGSS Corey Edward Nagle University of West Florida, USA John L. Pecore University of West Florida, USA Abstract Curricular reforms in science education represent an opportunity for changes in instructional approaches with the intent of making learning and teaching more meaningful and effective. While beginning teachers may receive instruction on pedagogy aligned with adopted reforms, veteran teachers need support and development to implement instruction aligned with reforms. This qualitative case study focused on the transitions of a veteran, Grade 6 science teacher to implement instruction consistent with three-dimensional instruction outlined in the Next Generation Science Standards (NGSS Lead States, 2013). Themes that emerged through analyses of data included the desire and methods for developing pedagogical knowledge, collaborative supports for changing pedagogy, and resulting changes in pedagogy. Suggestions for further study include exploration of types of professional development that support changing pedagogy and a long-term study of teacher efficacy in three-dimensional instructional approaches outlined in NGSS (NGSS Lead States, 2013). Key words: Changing pedagogy, Curricular reforms, Instruction, Middle School, Next Generation Science Standards (NGSS), Science and Engineering Practices, Veteran Science Teachers Please address all correspondence to: Corey E. Nagle, Ed. D., [email protected] Introduction Implicit in the development and adoption of standards is the expectation of uniform outcomes throughout a district, region, state, or country as measured by standardized assessments (Deboer, 2002; Eisner, 2005; Qureshi et al., 2016). While a focus on standardization frames opportunities for accountability measures, the consequence is a narrowing of curricula to focus instruction and learning on what is tested (Eisner, 2005).
    [Show full text]
  • To What Extent Are Higher-Order Thinking Questions Posed During the Mission to Mars Program?
    To what extent are higher-order thinking questions posed during the Mission to Mars program? Sonia Hankova Melbourne Graduate School of Education, Melbourne University In affiliation with the Victorian Space Science Education Centre (VSSEC) 2nd November 2016 Abstract This paper explores the role of questioning as a key pedagogic strategy to engaging learners in higher orders thinking and presents the results from observational research undertaken at the Victorian Space Science Education Centre. The research focused on investigating questioning strategies used to facilitate the inquiry-based Mission to Mars program that aims to engage and immerse students in a technology rich and sensory stimulating environment based on real-life scenarios and hands-on approach to science learning within the context of space. The current paper highlights the importance of questioning in science education and presents VSSEC with some valuable feedback and recommendations for improvement. Keywords: questioning strategies, higher orders thinking, science education, VSSEC, inquiry-based learning Introduction There is a general consensus that science education is fundamental to developing citizens who can become ‘effective explorers of the world’ (Gregson, 2012, p. 7) . Connecting students with science, regardless of whether they wanted to pursue it as a career or not, is central to education in order to cultivate investigative, creative, path- finding and opportunity-seizing risk takers who are unafraid to undertake the journey of curiosity and wonder about
    [Show full text]
  • Use of Robotics in First-Year Engineering Math Laboratory
    Session F1C Use of Robotics in First-Year Engineering Math Laboratory Rod Foist and Grace Ni Dept. of Electrical & Computer Engineering, California Baptist University 8432 Magnolia Avenue, Riverside, CA, 92504 [email protected], gni@ calbaptist.edu Abstract - According to National Science Foundation was to increase student retention, motivation, and success in (NSF) research, engineering mathematics courses with a engineering. The WSU model focuses on a novel first-year laboratory (“hands-on”) component are more effective engineering math course, taught by engineering faculty, in helping students grasp concepts, than lecture-only which includes lecture, lab, and recitation. The course uses approaches. Beginning in 2008, California Baptist an application-oriented, hands-on approach—and only University (CBU) received NSF funding through Wright covers the math topics that students actually use in their State University to develop a first-year Engineering core engineering courses. Klingbeil et al reported in 2013, Math course (EGR 182) with laboratory projects. Our based on careful assessments, that the results have been new College of Engineering currently offers nine degrees encouraging [2]. They also point out that a student’s and all freshmen must take this course. The lab projects success in engineering is strongly linked to his/her success aim to illustrate key mathematic concepts via hands-on in math “and perhaps more importantly, on the ability to experiments representing each discipline. Two new connect the math to the engineering”. That is, to see the projects were introduced during the 2013-2014 school relevance of math to engineering. year. This paper reports on a trigonometry-with- Beginning in 2008, California Baptist University robotics lab.
    [Show full text]