Louis Roy, OP
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hosted By: Science and Mathematics Education Conference Castel, St. Patrick's Campus, Dublin City University 16Th – 17Th
Hosted by: Science and Mathematics Education Conference CASTeL, St. Patrick’s Campus, Dublin City University 16th – 17th June 2016 Acknowledgements The SMEC2016 organising committee gratefully acknowledges support from the Centre of the Advancement of STEM Teaching and Learning (CASTeL), the Institute of Physics in Ireland (IOPI), the Royal Society of Chemistry (RSC) and the Sustainable Energy Authority of Ireland (SEAI). ISBN: 978-1-873769-62-1 Address for correspondence: Centre for the Advancement of STEM Teaching and Learning (CASTeL), Faculty of Science and Health, Dublin City University, Dublin 9 Ireland E: [email protected] ii WELCOME ADDRESS SMEC 2016 took place in Dublin City University, St. Patrick’s Campus on the 16th and 17th June 2016. With a title of STEM Teacher Education - Initial and Continuing professional development, this conference focussed on teacher education in STEM with papers presented in the areas of: Initial teacher education; including professional knowledge of teachers; teaching and learning in initial teacher education; relating theory to practice; and issues related to teacher education programs, policy and reform; In-service education; including in-service education and training; curricular reform and new programmes Continuous professional development for all teachers; including teachers as lifelong learners; methods and innovation in professional development; evaluation of professional development practices; and reflective practice, teachers as researchers, and action research. SMEC 2016 was the seventh in a series of biennial international Science and Mathematics Education Conferences to be hosted by CASTeL – the Centre for the Advancement of STEM Teaching and Learning. The purpose of this conference series is to provide an international platform for teachers and educators to discuss practices and share their experiences in the teaching and learning of mathematics and science. -
JOHN NOVEMBRE, Phd
JOHN NOVEMBRE, PhD The University of Chicago Department of Human Genetics 920 E 58th Steet CLSC 421 Chicago, IL 60637 Email: [email protected] Webpage: http://jnpopgen.org/ Curriculum Vitae Formatted to Guidelines for UChicago Biological Sciences Division ACADEMIC APPOINTMENTS 2017- Professor, University of Chicago, Department of Human Genetics, Department of Ecology and Evolutionary Biology (secondary appointment) 2013-2017 Associate Professor, University of Chicago, Department of Human Genetics, Department of Ecology and Evolutionary Biology (secondary appointment) 2012-2013 Associate Professor, University of California–Los Angeles, Department of Ecology and Evolutionary Biology, Interdepartmental Program in Bioinformatics 2008-2012 Assistant Professor, University of California–Los Angeles, Department of Ecology and Evolutionary Biology, Interdepartmental Program in Bioinformatics Ph.D.-Granting Committee, Program, Institute, and Center Appointments 2013- Committee on Evolutionary Biology, University of Chicago 2013- Committee on Genetics, Genomics, and Systems Biology, University of Chicago 2008-2013 Indepartmental Program in Bioinformatics, UCLA 2012-2009 Center for Society and Genetics, UCLA ACADEMIC TRAINING 2006-2008 Postdoctoral training, Department of Human Genetics University of Chicago, Chicago, IL. Advisor: Matthew Stephens 2006 PhD, Integrative Biology, designated emphasis in Computational Biology/Genomics University of California-Berkeley, Berkeley, CA. Advisor: Montgomery Slatkin Dissertation title: Statistical methods -
DES Curriculum and Assessment Unit
Primary & Secondary Education The background paper has very little reference to STEM education in the primary and post-primary sectors. Without a firm foundation in their STEM education at both primary and post-primary there will not be third or further education students interested in seeking to continue their STEM studies. There is a lot going on in the STEM area at present, particularly at post primary level for mathematics and the sciences, but review and revision is commencing in the primary sector. The SSTI (2006 – 2013) outlined how we must build a strong science foundation in both primary and second level education. The SSTI called for a strengthening of the links between primary and post- primary. These will continue to guide work on the STEM agenda for primary and post-primary. In addition, the links between post-primary and third level education must also be strengthened so that there is a bridge and not a chasm between the two sectors. There also must continue to be links nurtured between scientific institutions – both from the academic and business sectors – so as to motivate young people to realise the importance of STEM education for their futures and for the Irish economy. The work of SFI in this agenda is vital. Initiatives such as the annual Young Scientist and Technology exhibition and Scifest also play a key role in raising awareness of the STEM agenda and provide an opportunity for students to be creative, innovative and entrepreneurial. It also assists in promoting a positive attitude to careers in the STEM areas. The Department of Education and Skills is currently overseeing a significant amount of curricular reform in the STEM area. -
SKA-Athena Synergy White Paper
SKA-Athena Synergy White Paper SKA-Athena Synergy Team July 2018. Edited by: Francisco J. Carrera and Silvia Martínez-Núñez on behalf of the Athena Community Office. Revisions provided by: Judith Croston, Andrew C. Fabian, Robert Laing, Didier Barret, Robert Braun, Kirpal Nandra Authorship Authors Rossella Cassano (INAF-Istituto di Radioastronomia, Italy). • Rob Fender (University of Oxford, United Kingdom). • Chiara Ferrari (Observatoire de la Côte d’Azur, France). • Andrea Merloni (Max-Planck Institute for Extraterrestrial Physics, Germany). • Contributors Takuya Akahori (Kagoshima University, Japan). • Hiroki Akamatsu (SRON Netherlands Institute for Space Research, The Netherlands). • Yago Ascasibar (Universidad Autónoma de Madrid, Spain). • David Ballantyne (Georgia Institute of Technology, United States). • Gianfranco Brunetti (INAF-Istituto di Radioastronomia, Italy) and Maxim Markevitch (NASA-Goddard • Space Flight Center, United States). Judith Croston (The Open University, United Kingdom). • Imma Donnarumma (Agenzia Spaziale Italiana, Italy) and E. M. Rossi (Leiden Observatory, The • Netherlands). Robert Ferdman (University of East Anglia, United Kingdom) on behalf of the SKA Pulsar Science • Working Group. Luigina Feretti (INAF-Istituto di Radioastronomia, Italy) and Federica Govoni (INAF Osservatorio • Astronomico,Italy). Jan Forbrich (University of Hertfordshire, United Kingdom). • Giancarlo Ghirlanda (INAF-Osservatorio Astronomico di Brera and University Milano Bicocca, Italy). • Adriano Ingallinera (INAF-Osservatorio Astrofisico di Catania, Italy). • Andrei Mesinger (Scuola Normale Superiore, Italy). • Vanessa Moss and Elaine Sadler (Sydney Institute for Astronomy/CAASTRO and University of Sydney, • Australia). Fabrizio Nicastro (Osservatorio Astronomico di Roma,Italy), Edvige Corbelli (INAF-Osservatorio As- • trofisico di Arcetri, Italy) and Luigi Piro (INAF, Istituto di Astrofisica e Planetologia Spaziali, Italy). Paolo Padovani (European Southern Observatory, Germany). • Francesca Panessa (INAF/Istituto di Astrofisica e Planetologia Spaziali, Italy). -
Download Free from the Itunes App Store Today!
HHMI BULLETIN F ALL ’12 V OL .25 • N O . 03 • 4000 Jones Bridge Road Chevy Chase, Maryland 20815-6789 Hughes Medical Institute Howard www.hhmi.org Out of Africa • This beauty is Aedes aegypti, a mosquito that can transmit www.hhmi.org dengue and yellow fever viruses, among others. Originally from Africa, it is now found in tropical and subtropical regions around the world. While this mosquito prefers to feast on animals over humans, it lives in close proximity to blood-hungry relatives that will choose a human meal every time. HHMI investigator Leslie Vosshall and her lab group are studying the evolutionary changes behind the insects’ diverse dietary habits. Their research may help reduce mosquito-borne illnesses. Read about Vosshall and the arc of her scientific career in “Avant Garde Scientist,” page 18. perils of fatty liver vosshall on the scent über cameras vol. vol. 25 / no. / no. Leslie Vosshall 03 ObservatiOns tHe traininG PiPeLine to prepare and retain a topnotch, diverse scientific workforce, increasingly necessary if the market for biomedical researchers trainees should be introduced to multiple career paths, according to strengthens outside of the United States in coming years). a June report by the niH biomedical Workforce Working Group. One of those options—the staff scientist—could use a boost. Co-chaired Today, these scientists bring stability to many labs and provide by Princeton University President shirley tilghman (see “the Future important functions as part of institutional core facilities, but have a of science,” HHMI Bulletin, May 2011) and sally rockey, niH deputy wide variety of titles and employment conditions. -
Educators' Perceptions of Integrated STEM: a Phenomenological Study
Journal of STEM Teacher Education Volume 53 | Issue 1 Article 3 April 2018 Educators’ Perceptions of Integrated STEM: A Phenomenological Study Brian K. Sandall University of Nebraska at Omaha, [email protected] Darrel L. Sandall Florida Institute of Technology, [email protected] Abram L. J. Walton Florida Institute of Technology, [email protected] Follow this and additional works at: https://ir.library.illinoisstate.edu/jste Part of the Curriculum and Instruction Commons, Engineering Education Commons, Other Education Commons, Other Teacher Education and Professional Development Commons, Science and Mathematics Education Commons, and the Secondary Education and Teaching Commons Recommended Citation Sandall, Brian K.; Sandall, Darrel L.; and Walton, Abram L. J. (2018) "Educators’ Perceptions of Integrated STEM: A Phenomenological Study," Journal of STEM Teacher Education: Vol. 53 : Iss. 1 , Article 3. DOI: doi.org/10.30707/JSTE53.1Sandall Available at: https://ir.library.illinoisstate.edu/jste/vol53/iss1/3 This Article is brought to you for free and open access by ISU ReD: Research and eData. It has been accepted for inclusion in Journal of STEM Teacher Education by an authorized editor of ISU ReD: Research and eData. For more information, please contact [email protected]. Journal of STEM Teacher Education 2018, Vol. 53, No. 1, 27–42 Educators’ Perceptions of Integrated STEM: A Phenomenological Study Brian K. Sandall University of Nebraska at Omaha Darrel L. Sandall and Abram L. J. Walton Florida Institute of Technology ABSTRACT The study utilized a semistructured interview approach to identify phenomena that are related to integrated STEM education by addressing the question: What are the critical components of an integrated STEM definition and what critical factors are necessary for an integrated STEM definition’s implementation? Thirteen expert practitioners were identified and interviewed. -
See Tony's Slides Here
Climate change the science & the lies Tony Eggleton Outline Some basic climate stuff – what the science says About trust and lies How to misinform 1. Attack the person 2. “It stands to reason” 3. Cherry pick or brush aside 4. Use lots of wrong numbers 5. Use the wrong data 6. Be important, be wrong, and say it anyway The pillars of climate science causes causes Global warming. • What is the evidence? • Land-based thermometers Boulia, Qld Of course one Met station is not enough, but 30,000 is C) 14.8 ° 14.6 14.4 14.2 14.0 13.8 13.6 Temperature rise ( rise Temperature 13.4 1880 1900 1920 1940 1960 1980 2000 2020 NASA Goddard Space Institute Don’t like scientists’ measurements? • What about oenologists? Date of maturity for grapes is getting earlier every year Mar 20 Mar 1 1930 2010 The Greenhouse Warm body radiates heat away and gets cold Add a blanket, reduce heat loss Thicker blanket, more heat trapped, now a hot dog We are warmed by the sun and radiate our warmth out into space sun earth . There is a lot of cold space out there to accept our radiated heat OK, so you can see - 23° C 14° C We have an atmosphere blanket, the moon does not Sun’s heat comes in 29% is reflected back into space That is known as Earth’s albedo. Compare Venus 90%, the moon 7%. Earth warms air, air radiates heat away 1.8 ppm 0.3 ppm Greenhouse gases and their part in keeping us warm 400 ppm = 0.04% 4%± Why has the Earth warmed over the past two centuries? Because we have added a lot of CO2 Are you sure? Perhaps it is just a coincidence! And what does a bit of warming do? Melts ice, mainly in the Arctic. -
STEM Education in Rural Schools: Implications of Untapped Potential
National Youth-At-Risk Journal Volume 3 Issue 1 Fall 2018 Article 2 December 2018 STEM Education in Rural Schools: Implications of Untapped Potential Rachel S. Harris Georgia Southern University Charles B. Hodges Georgia Southern University Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/nyar Recommended Citation Harris, R. S., & Hodges, C. B. (2018). STEM Education in Rural Schools: Implications of Untapped Potential. National Youth-At-Risk Journal, 3(1). https://doi.org/10.20429/nyarj.2018.030102 This essay is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in National Youth-At-Risk Journal by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. STEM Education in Rural Schools: Implications of Untapped Potential Abstract A large number of students in American public schools attend rural schools. In this paper, the authors explore rural science, technology, engineering, and math (STEM) education and the issues associated with STEM education for students, teachers, and parents in rural communities. Characteristics of rural STEM education are examined to highlight unique considerations for this context. The authors conclude with the recommendation that more research is needed that specifically addresses rural STEM education. Keywords rural education, STEM education, rural STEM education, STEM funding, education funding Cover Page Footnote This study was supported in part by funds from the Office of the Vice esidentPr for Research & Economic Development and the Jack N. Averitt College of Graduate Studies at Georgia Southern University. This essay is available in National Youth-At-Risk Journal: https://digitalcommons.georgiasouthern.edu/nyar/vol3/ iss1/2 Harris and Hodges: STEM Education in Rural Schools STEM Education in Rural Schools: Implications of Untapped Potential Rachel S. -
Augmented Reality in Teaching Descriptive Geometry, Engineering and Computer Graphics – Systematic Review and Results of the Russian Teachers’ Experience
EURASIA Journal of Mathematics, Science and Technology Education, 2019, 15(12), em1816 ISSN:1305-8223 (online) OPEN ACCESS Research Paper https://doi.org/10.29333/ejmste/113503 Augmented Reality in Teaching Descriptive Geometry, Engineering and Computer Graphics – Systematic Review and Results of the Russian Teachers’ Experience Marianna V. Voronina 1, Zlata O. Tretyakova 1*, Ekaterina G. Krivonozhkina 2, Stanislav I. Buslaev 3, 3 Grigory G. Sidorenko 1 Saint-Petersburg Mining University, Saint Petersburg, RUSSIA 2 Kazan (Volga region) Federal University, Kazan, RUSSIA 3 Financial University under the Government of the Russian Federation, Moscow, RUSSIA Received 10 June 2019 ▪ Revised 25 September 2019 ▪ Accepted 14 October 2019 ABSTRACT The relevance and feasibility of this study are determined by the absence of serious, scientific research, as well as teaching materials, when it comes to the use of Augmented Reality (AR) in teaching students and future teachers Descriptive Geometry, Engineering and Computer Graphics (DGECG). The purpose of the study is to examine the current state of knowledge and practice of existing courses, which use the AR concept; to conduct a pedagogical experiment by teaching students how to create an information model of a building structure using the AR concept; to study the impact of the AR technology on students, lecturers, on the quality of students’ design works and project presentation. The research methods used were a set of various, complementing each other methods, which can be divided into two groups: 1) theoretical: analysis of the teachers’ and psychologists’ works on the point of the research, analysis of methodological and educational literature; empirical: observation, statement, pedagogical experiment. -
The Center for Nanotechnology in Society at Arizona State University
The Center for Nanotechnology in Society at Arizona State University NSF #0937591 September 1, 2012 – August 31, 2013 PI: David H. Guston, Arizona State University Co-PIs: Elizabeth Corley, Arizona State University Deirdre Meldrum, Arizona State University Clark Miller, Arizona State University Dietram Scheufele, University of Wisconsin, Madison Jan Youtie, Georgia Institute of Technology Annual Report for the Period September 1, 2012 to August 31, 2013 This report includes work conducted at three collaborating universities of NSEC/CNS-ASU: Arizona State University, Georgia Institute of Technology, and the University of Wisconsin-Madison. Annual Report for Award #0937591 September 1, 2012 – August 31, 2013 2. Table of Contents Project Summary 3 List of Center Participants, Advisory Boards, and Participating Institutions 4 Quantifiable Outputs – Table 1 44 Mission, Significant Advances, and Broader Impacts 45 Highlights 61 Strategic Research Plan 70 Research Program, Accomplishments, and Plans 73 a. RTTA 1 73 b. RTTA 2 78 c. RTTA 3 83 d. RTTA 4 92 e. TRC 1 98 f. TRC 2 101 Center Diversity – Progress and Plans 109 Education 113 Outreach and Knowledge Transfer 128 Shared and Other Experimental Facilities 138 Personnel 141 Publications and Patents 146 Biographical Information 263 Honors and Awards 272 Fiscal Sections 274 Cost-Sharing Section 295 Leverage 307 Current and Pending Support 317 1 Annual Report for Award #0937591 September 1, 2012 – August 31, 2013 (2. Table of Contents continued) Tables Table 1 44 Table 2 108 Table 3A 127 Table 3B 127 Table 4A 144 Table 4B 145 Table 5 310 Table 6 311 2 Annual Report for Award #0937591 September 1, 2012 – August 31, 2013 3. -
Cognitive Conflict in Science: Demonstrations in What Scientists Talk About and Study
Cognitive Conflict in Science: Demonstrations in what scientists talk about and study. Dissertation der Mathematisch-Naturwissenschaflichen Fakultat der Eberhard Karls Universitat Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Brett Buttliere, M.Sc., B.A. aus Oak Brook, Illinois Vereinigte Staaten Tübingen 2017 2 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 15.12.2017 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Friedrich Hesse 2. Berichterstatter: Prof. Dr. Sonja Utz 3 Table of Contents 1.0 Introduction...........................................................................................................................9 1.1 Improving Science...........................................................................................................10 1.2 Studies of how Science should work...............................................................................11 1.3 The Psychology in the Science........................................................................................12 1.4 Cognitive Conflict in Psychology and Science...............................................................13 1.5 This, a study in two parts................................................................................................16 Cognitive Conflict in what scientists talk about................................................................16 Negativity -
Download This Article PDF Format
PCCP View Article Online PAPER View Journal | View Issue Choosing dyes for cw-STED nanoscopy using self-assembled nanorulers Cite this: Phys. Chem. Chem. Phys., 2014, 16, 6990 Susanne Beater, Phil Holzmeister, Enrico Pibiri, Birka Lalkens* and Philip Tinnefeld* Superresolution microscopy is currently revolutionizing optical imaging. A key factor for getting images of highest quality is – besides a well-performing imaging system – the labeling of the sample. We compared the fluorescent dyes Abberior Star 488, Alexa 488, Chromeo 488 and Oregon Green 488 for use in continuous wave (cw-)STED microscopy in aqueous buffer and in a durable polymer matrix. To optimize comparability, Received 10th January 2014, we designed DNA origami standards labeled with the fluorescent dyes including a bead-like DNA origami with Accepted 12th February 2014 dyesfocusedononespotandaDNAorigamiwithtwomarksatadesigneddistanceofB100 nm. Our data DOI: 10.1039/c4cp00127c show that all dyes are well suited for cw-STED microscopy but that the optimal dye depends on the embedding medium. The precise comparison enabled by DNA origami nanorulers indicates that these www.rsc.org/pccp structures have matured from the proof-of-concept to easily applicable tools in fluorescence microscopy. Creative Commons Attribution 3.0 Unported Licence. Background constrained to a subdiffraction-sized spot. By scanning this spot through the sample, a superresolution image is obtained. The theoretical and later on also experimental breaking of the For getting first class superresolution images, in addition to diffraction barrier in light microscopy almost 20 years ago1,2 a well-adjusted microscope, the quality and composition of the depicts a turning point for any science using light microscopy, sample is of crucial importance.