Infants' and Toddlers' Reasoning About Others: Connections to Prosocial Development and Language

Total Page:16

File Type:pdf, Size:1020Kb

Infants' and Toddlers' Reasoning About Others: Connections to Prosocial Development and Language Infants' and toddlers' reasoning about others: Connections to prosocial development and language The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Hobbs, Kathryn Virginia. 2014. Infants' and toddlers' reasoning about others: Connections to prosocial development and language. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:13065030 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Infants’ and toddlers’ reasoning about others: Connections to prosocial development and language A dissertation presented by Kathryn Virginia Hobbs to The Department of Psychology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Psychology Harvard University Cambridge, Massachusetts September 2014 © 2014 Kathryn Virginia Hobbs All rights reserved. ! Dissertation Advisor: Professor Elizabeth Spelke Kathryn Virginia Hobbs Infants' and toddlers' reasoning about others: Connections to prosocial development and language Abstract Often overlooked in the study of theory of mind (ToM) development, the understanding of motivational states, such as goals and desires, is both important in its own right and also a likely precursor to more advanced social and cognitive skills. This dissertation explored infants’ and toddlers’ reasoning about agents’ motivational states, linking those representations to the domains of language and prosocial development. Parts I and II of the dissertation asked about toddlers’ abilities to use representations of others’ motivational states to guide helping behaviors. Part I used a spontaneous helping paradigm with two goal objects, one previously liked and the other disliked. Three- but not 2-year-olds helped appropriately by giving an actor her desired object, reflecting prosocial concern for others’ specific desires at age 3. Part II probed the understanding of goals and helping of 14- and 24-month-olds. After establishing that toddlers encode simple reaching actions as goal-directed, a series of 4 experiments using an object-giving paradigm investigated toddlers’ abilities to use goal representations to guide helping. The results indicate that 24- but not 14-month-olds used representations of prior goals to inform their helping behaviors; 14-month-olds were capable of using only current goals to guide helping. Part III of the dissertation asked whether there is continuity in the developmental relationship between language and ToM by investigating links between toddlers’ ! """! understanding of motivational states and their vocabulary size. Experiment 1 found no correlation between the vocabulary size of typically hearing toddlers and their performance on tasks measuring motivational state understanding. Experiment 2 compared the same motivational state understanding of typically hearing toddlers and deaf toddlers with smaller vocabularies, finding no differences in performance between groups. The results of these experiments indicate that the link between language and false belief that is present at age 4 does not extend to motivational state reasoning in the toddler years. Together the findings of this dissertation highlight important limits and boundary conditions on young children’s reasoning about motivational states. Further research is needed into the developmental trajectory and mechanisms of theory of mind reasoning. ! "#! Table of Contents Acknowledgements……………………………………………………………………….vi Introduction………………………………………………………………………………..1 Part I—What do you want? Three-year-olds, but not 2-year-olds help with specific desires…………………………………………………………………………....23 Part II—Goal attributions and instrumental helping at 14 and 24 months of age……….43 Part III—Relations between motivational state reasoning and vocabulary size in toddlerhood………………………………………………………………………86 Conclusion……………………………………………………………………………...127 References………………………………………………………………………………134 ! #! Acknowledgements There are many individuals to whom I owe a great deal of gratitude, and it is a pleasure to acknowledge their support here. First, I thank my committee members and advisors, each of who has made a unique contribution to my development as a scholar and a person. I credit Elizabeth Spelke, as my first and principal advisor, with getting me excited about exploring helping in infancy. As anyone will tell you, Liz’s enthusiasm for research is infectious and inspiring, and I am very grateful to have had the opportunity to learn from Liz. I thank Felix Warneken for being a fantastic mentor and collaborator, and a great role model of perseverance and dedication. Thank you to Susan Carey, whose mentorship and support were essential to my survival in graduate school. Susan’s unflagging commitment to her students is impressive, and she is of course a fantastic person to think and work with. I am very grateful to Jennie Pyers as a mentor, confidante and collaborator. Working with Jennie has been one of the most valuable experiences of my graduate school career. I am also deeply grateful to my “academic parents,” Jill and Peter de Villiers, who set me on the path to graduate school. I was spoiled working as their Research Assistant; Jill would ask me to “come up and think” with her and Peter made fresh vegan baked goods for lab tea every week. Jill and Peter represent the model of intellectual rigor paired with genuine human interest. It is an honor to be part of their lineage. I am grateful for support from various funding sources, including a Graduate Research Fellowship from the National Science Foundation, a conference travel award from Harvard’s Graduate Student Council, conference travel awards and two Restricted Funds large grant awards from the Psychology Department at Harvard. ! #"! I am indebted to all of the people who make the Lab for Developmental Studies an amazing intellectual and social community. This includes all the members of the Carey, Snedeker, Spelke & Warneken labs who have provided invaluable feedback and camaraderie over the years. A huge thanks goes to the lab managers who have tolerated me over the years: Konika Banerjee, Natalie Benjamin, Conisha Cooper, Rebecca Distefano, Danielle Hinchey, McCaila Ingold-Smith, Yeshim Iqbal, Rachel Katz, Lauren Kleutch, Kerrie Pieloch, Ellyn Schmidt and Rosemary Zeimnik. My research could not have gotten off the ground without the tireless efforts of many undergraduate research assistants. It has also been a privilege to work collaboratively with former undergraduate thesis student Westley Resendes, without whose efforts Part III of this dissertation would not have been possible. Outside of LDS I am very grateful for the support of students and staff at the Center of the Developing Child at Harvard, where the Student Seminar Series, Doctoral Working Group and Early Childhood Forum helped me stay grounded in my desire to leverage research in cognitive development to improve the lives of children and families. I extend a huge thanks to my friends and family for putting up with me during graduate school, mostly by enduring long absences on my part and in giving me a world away from cognitive developmental when I needed it. I thank my parents, Jane and Bob Hobbs, for supporting me and encouraging me in my lifelong journey of learning, but more than anything for fostering my sense of self and self-worth as separate from my accomplishments. Thanks, Mom and Dad. Lastly, I thank my wife, Anna Paskausky, who has walked with me every step of the way. Thank you, Ap, for letting me be real all the time, believing in me and ! #""! reminding me of my true self when I forgot. I promise to never let you live down falling asleep during my practice talk for my first LDS Seminar. ! #"""! Introduction Overview As humans we constantly and automatically attribute mental states to others to explain their behavior. Without a theory of mind (ToM), we would be lost in interpreting jokes, movies, literature and our spouses. The study of ToM is important both theoretically, in terms of delineating what makes us uniquely human, and practically, in its implications for social and educational competency. Within developmental psychology, research on ToM has been a dominant topic of inquiry for the past several decades (Premack & Woodruff, 1978; Wimmer & Perner, 1983). Researchers have sketched a picture of ToM development that began with gaze following, engagement in joint attention, and goal understanding in the first year of life, followed by an understanding of others’ desires, knowledge states and true beliefs in the second and third (Poulin-Dubois, Brooker & Chow, 2009). For many years, the greatest challenge to ToM researchers was how to explain the dramatic shift around the fourth birthday in children’s ability to reason about false beliefs (Wellman, Cross & Watson, 2001). With the recent barrage of findings that even infants reason about agents’ actions in terms of their mental states including false beliefs (for a review see Baillargeon et al., 2014), attention has shifted to the infant and toddler years in an attempt to characterize the earliest ToM competencies and reconcile findings of infants’ precocious abilities with toddlers’ shortcomings in explicit false belief reasoning. The questions that loom largest are those that apply to
Recommended publications
  • In Defense of Massive Modularity
    3 In Defense of Massive Modularity Dan Sperber In October 1990, a psychologist, Susan Gelman, and three anthropolo- gists whose interest in cognition had been guided and encouraged by Jacques Mehler, Scott Atran, Larry Hirschfeld, and myself, organized a conference on “Cultural Knowledge and Domain Specificity” (see Hirsch- feld and Gelman, 1994). Jacques advised us in the preparation of the conference, and while we failed to convince him to write a paper, he did play a major role in the discussions. A main issue at stake was the degree to which cognitive development, everyday cognition, and cultural knowledge are based on dedicated do- main-specific mechanisms, as opposed to a domain-general intelligence and learning capacity. Thanks in particular to the work of developmental psychologists such as Susan Carey, Rochel Gelman, Susan Gelman, Frank Keil, Alan Leslie, Jacques Mehler, Elizabeth Spelke (who were all there), the issue of domain-specificity—which, of course, Noam Chomsky had been the first to raise—was becoming a central one in cognitive psychol- ogy. Evolutionary psychology, represented at the conference by Leda Cosmides and John Tooby, was putting forward new arguments for seeing human cognition as involving mostly domain- or task-specific evolved adaptations. We were a few anthropologists, far from the main- stream of our discipline, who also saw domain-specific cognitive pro- cesses as both constraining and contributing to cultural development. Taking for granted that domain-specific dispositions are an important feature of human cognition, three questions arise: 1. To what extent are these domain-specific dispositions based on truly autonomous mental mechanisms or “modules,” as opposed to being 48 D.
    [Show full text]
  • The Idea of Universality in Linguistics and Human Rights
    The Idea of Universality in Linguistics and Human Rights SPEAKER: Noam Chomsky Institute Professor; Professor of Linguistics SPEAKER: Elizabeth S. Spelke Professor of Psychology Co- Director, Mind, Brain, and Behavior Inter-faculty Initiative, Harvard University. The Idea of SPEAKERS: Universality in Noam Chomsky: Institute Professor; Professor of Linguistics Linguistics and Human Rights Elizabeth S. Spelke: Professor of Psychology Co-Director, Noam Chomsky Mind, Brain, and Behavior Inter-faculty Initiative, Harvard March 15,2005 University. Time 00:57:13 ABOUT THE LECTURE: If humans have a common, in-born capacity for language, and Audio Only: for such complex behaviors as morality, might the faculties be QuickTime – 28MB somehow linked? Noam Chomsky perceives a mere thread of MP3 - 70MB a connection. At breakneck speed, Chomsky leads us through Audio and Video: a history of language theory, concluding with the revolutionary QuickTime - 371MB model he championed: a universal grammar underpinning all WindowsMedia - 313MB languages that corresponds to an innate capacity of the human RealVideo - 101MB brain. While scientists may now have a “clearer grasp of the universals of language,” says Chomsky, notions of universality grow murky as we move “into domains of will, choice and judgment.” Chomsky cites the 1948 Universal Declaration of Human Rights as one example of “broad cross-cultural consensus.” But he brandishes examples of how “our moral and intellectual culture….forcefully rejects universal moral judgments” -- such as continued U.S.
    [Show full text]
  • Read the Full PDF
    The Science on Women and Science The Science on Women and Science Christina Hoff Sommers Editor The AEI Press Publisher for the American Enterprise Institute WASHINGTON, D.C. Distributed to the Trade by National Book Network, 15200 NBN Way, Blue Ridge Summit, PA 17214. To order call toll free 1-800-462-6420 or 1-717-794-3800. For all other inquiries please contact the AEI Press, 1150 Seventeenth Street, N.W., Washington, D.C. 20036 or call 1-800-862-5801. Library of Congress Cataloging-in-Publication Data The science on women and science / Christina Hoff Sommers, editor. p. cm. Includes bibliographical references. ISBN-13: 978-0-8447-4281-6 ISBN-10: 0-8447-4281-3 1. Women in science. 2. Sex discrimination against women. 3. Sex differences in education. I. Sommers, Christina Hoff. Q130.S364 2009 2009022004 13 12 11 10 09 1 2 3 4 5 © 2009 by the American Enterprise Institute for Public Policy Research, Washington, D.C. All rights reserved. No part of this publication may be used or reproduced in any manner whatsoever without permission in writing from the American Enterprise Institute except in the case of brief quotations embodied in news articles, critical articles, or reviews. The views expressed in the publications of the American Enterprise Institute are those of the authors and do not necessarily reflect the views of the staff, advisory panels, officers, or trustees of AEI. Printed in the United States of America Contents INTRODUCTION: THE SCIENCE ON WOMEN IN SCIENCE, Christina Hoff Sommers 1 Notes 5 References 6 1WHY SO FEW WOMEN IN MATH AND SCIENCE? Simon Baron-Cohen 7 Sex Differences in the General Population 11 Female Advantage in Empathy 15 Culture and Biology 18 Conclusions 18 Notes 20 References 21 2GENDER, MATH, AND SCIENCE, Elizabeth S.
    [Show full text]
  • Moira Rose (Molly) Dillon
    Moira Rose Dillon Department of Psychology, New York University, 6 Washington Place, New York, NY 10003 Email – [email protected] Departmental Website – http://as.nyu.edu/psychology/people/faculty.Moira-Dillon.html Lab Website – https://www.labdevelopingmind.com Employment New York University New York, NY Assistant Professor, Department of Psychology, Faculty of Arts and Sciences (July 2017-present) Concurrent Positions New York University New York, NY Faculty Affiliate, Institute of Human Development and Social Change, Steinhardt School of Culture, Education, and Human Development (May 2019-present) Massachusetts Institute of Technology Cambridge, MA Invited Researcher, Abdul Latif Jameel Poverty Action Lab (J-PAL), Foundations of Learning (April 2021-present) Education Harvard University Cambridge, MA (August 2011-May 2017) Ph.D., Psychology (May 2017) A.M., Psychology (May 2014) Yale University New Haven, CT (August 2004-May 2008) B.A., Cognitive Science; Art (May 2008) Funding 2019-2024 National Science Foundation (PI: $1,718,437) CAREER: Becoming Euclid: Characterizing the geometric intuitions that support formal learning in mathematics (PI: $24,671) CLB: Career-Life Balance Faculty Early Career Development Program Supplement 2019-2023 DARPA (Co-PI; to NYU: $1,703,553; to Dillon: $871,874) Cognitive milestones for Machine Common Sense, Co-PI: Brenden Lake 2019-2021 Jacobs Foundation (PI: 150,000 CHF) Early Career Research Fellowship 2018-2019 Institute of Human Development and Social Change at NYU (PI: $14,848) The arc of geometric
    [Show full text]
  • Society for Research in Child Development Newsletter, 2003. INSTITUTION Society for Research in Child Development
    DOCUMENT RESUME ED 480 656 PS 031 539 AUTHOR Reid, Pamela Trotman, Ed.; Ehart, Bridget, Ed. TITLE Society for Research in Child Development Newsletter, 2003. INSTITUTION Society for Research in Child Development. PUB DATE 2003-00-00 NOTE 62p.; For the 2002 issues, see PS 031 538. AVAILABLE FROM Society for Research in Child Development, University of Michigan, 3131 South State Street, Suite 302, Ann Arbor, MI 48108-1623. Tel: 734-998-6574; Fax: 734-998-6569; e-mail: [email protected]; Web site: http://www.srcd.org. PUB TYPE Collected Works Serials (022) JOURNAL CIT Society for Research in Child Development Newsletter; v46 nl- 4 2003 EDRS PRICE EDRS Price MF01/PC03 Plus Postage. DESCRIPTORS *Child Development; Coping; *Developmental Psychology; Emotional Adjustment; Financial Support; Information Dissemination; Newsletters; **Organizations (Groups); Program Descriptions; Psychological Studies; Public Policy; School Desegregation; Terrorism IDENTIFIERS Project Head Start; *Society for Research in Child Development ABSTRACT This document consists of the four 2003 issues of a newsletter disseminating information on the Society for Research in Child Development (SRCD) and providing a forum for important news, research, and information concerning advancement in child growth and development research. Each issue of the newsletter includes announcements and notices of conferences, workshops, position openings, fellowship, and member obituaries. The January issue summarizes meetings of the Consortium for Social Science Associations and the Human Development
    [Show full text]
  • Dark, Beyond Deep: a Paradigm Shift to Cognitive AI with Humanlike Common Sense
    Dark, Beyond Deep: A Paradigm Shift to Cognitive AI with Humanlike Common Sense Yixin Zhua,∗, Tao Gaoa, Lifeng Fana, Siyuan Huanga, Mark Edmondsa, Hangxin Liua, Feng Gaoa, Chi Zhanga, Siyuan Qia, Ying Nian Wua, Joshua B. Tenenbaumb, Song-Chun Zhua aCenter for Vision, Cognition, Learning, and Autonomy (VCLA), UCLA bCenter for Brains, Minds, and Machines (CBMM), MIT Abstract Recent progress in deep learning is essentially based on a “big data for small tasks” paradigm, under which massive amounts of data are used to train a classifier for a single narrow task. In this paper, we call for a shift that flips this paradigm upside down. Specifically, we propose a “small data for big tasks” paradigm, wherein a single artificial intelligence (AI) system is challenged to develop “common sense,” enabling it to solve a wide range of tasks with little training data. We illustrate the potential power of this new paradigm by reviewing models of common sense that synthesize recent breakthroughs in both machine and human vision. We identify functionality, physics, intent, causality, and utility (FPICU) as the five core domains of cognitive AI with humanlike common sense. When taken as a unified concept, FPICU is concerned with the questions of “why” and “how,” beyond the dominant “what” and “where” framework for understanding vision. They are invisible in terms of pixels but nevertheless drive the creation, maintenance, and development of visual scenes. We therefore coin them the “dark matter” of vision. Just as our universe cannot be understood by merely studying observable matter, we argue that vision cannot be understood without studying FPICU.
    [Show full text]
  • Susan J. Hespos
    Susan J. Hespos Department of Psychology Northwestern University 2029 Sheridan Rd. Evanston, IL 60208-2710 http://www.psychology.northwestern.edu/people/faculty/core/profiles/susan-hespos.html http://sites.northwestern.edu/infantcognitionlab/ [email protected] Education 1996 Ph.D. Developmental Psychology, Emory University 1993 M.A. Cognitive Psychology, Emory University 1990 B.A. Psychology, Reed College Academic Positions 2009 – present Associate Professor of Psychology, Northwestern University Cognitive Science Program Learning Sciences Interdepartmental Neuroscience NSF Spatial Intelligence & Learning Center 2005 – 2009 Assistant Professor of Psychology, Northwestern University 2001 – 2005 Assistant Professor of Psychology and Human Development, Vanderbilt University 1998 – 2001 Postdoctoral Fellow, Massachusetts Institute of Technology Advisor: Elizabeth Spelke 1996 – 1998 Postdoctoral Fellow, University of Illinois at Champaign-Urbana Advisor: Renee Baillargeon Major Professional Interest: I uncover the earliest evidence of our cognitive capacities in infancy and describe what changes over development. Through this process we gain information critical to understanding cognition in general. Academic Awards 2011 Kellogg Management Skills for Innovative University Leaders Fellowship 2006 Distinguished Teaching Award from the Undergraduate Psychology Association Northwestern University 2004 Professor of the Month, Selected by the Greek Community / Panhellenic Council Vanderbilt University 2000 McDonnell-Pew Junior Scientist Research
    [Show full text]
  • Caleb Everett Proceedings of the 37Th Annual Meeting of the Berkeley Linguistics Society (2013), Pp
    Linguistic relativity and numeric cognition: New light on a prominent test case Author(s): Caleb Everett Proceedings of the 37th Annual Meeting of the Berkeley Linguistics Society (2013), pp. 91-103 Editors: Chundra Cathcart, I-Hsuan Chen, Greg Finley, Shinae Kang, Clare S. Sandy, and Elise Stickles Please contact BLS regarding any further use of this work. BLS retains copyright for both print and screen forms of the publication. BLS may be contacted via http://linguistics.berkeley.edu/bls/. The Annual Proceedings of the Berkeley Linguistics Society is published online via eLanguage, the Linguistic Society of America's digital publishing platform. Linguistic Relativity and Numeric Cognition: New Light on a Prominent Test Case CALEB EVERETT1 University of Miami Introduction The past two decades have seen both a resurgence and transformation of research on linguistic relativity. This is due in large part to the influential work of re- searchers such as Lucy (1992a, 1992b) and Levinson (1997, 2003, inter alia). Research on linguistic relativity has morphed from the Whorfian (1956), often anecdotally based enterprise, into one that is oriented around experiments of various sorts conducted among speakers of different languages. These languages are frequently the topic of inquiry because of some specific grammatical features they contain, features that potentially affect speakers cognitive orientations vis-à- vis a given semantic domain. Research of this type has resulted in evidence for language-mediated or influenced thought in a wide array of nonlinguistic tasks related to numeric cognition (De Cruz and Pica 2008, Pica et al. 2004), gender perception (Konishi 1993, Flaherty 2001), spatial and directional construal (Levinson 2003), substance classification (Lucy and Gaskins 2001, Imai and Mazuka 2007), the perception of time (Boroditsky et al.
    [Show full text]
  • Neuroeducation: Learning, Arts, and the Brain
    NEUROEDUCATION: LEARNING, ARTS, AND THE BRAIN Findings and Challenges for Educators and Researchers from the 2009 Johns Hopkins University Summit About The Johns Hopkins University School of Education Department of Interdisciplinary Studies in Education Neuro-Education Initiative Bringing Together Researchers, Educators, and Stakeholders Located at The Johns Hopkins University School of In partnership with The Dana Foundation and Education, the Neuro-Education Initiative (NEI) as a follow-up to the Dana Arts and Cognition bridges the gap between the brain sciences and Consortium, NEI hosted its inaugural national education by bringing together an interdisciplinary summit in May 2009 on the topic of Learning, Arts, group of researchers, educators, and stakeholders and the Brain. This publication captures the spirit of to explore the intersection and application of brain collaboration among summit participants who repre- research in education and to support potential areas sented a wide array of disciplines among the research, of translational research. academic, arts and educational practitioner commu- Supported by the Johns Hopkins University’s nities. Future summits will build on this spirit of Brain Science Institute, the Neuro-Education discovery and communication to bring the practical Initiative spearheads collaborative projects among needs of educators and stakeholders to the research research and educational faculty from across the community and the exciting discoveries of the brain University and beyond to advance the science of sciences to those who teach and nurture children. learning. Such projects include national summits For more information and future events visit and conferences on topics relevant to education, www.education.jhu.edu/nei; or contact the Neuro- graduate programs, and research initiatives to bring Education Initiative Co-Directors Mariale Hardiman new knowledge to inform educational practices at [email protected] or Susan Magsamen at and policies.
    [Show full text]
  • Annual Report 2018 Edition TABLE of CONTENTS 2018
    Annual Report 2018 Edition TABLE OF CONTENTS 2018 GREETINGS 3 Letter From the President 4 Letter From the Chair FLATIRON INSTITUTE 7 Developing the Common Language of Computational Science 9 Kavli Summer Program in Astrophysics 12 Toward a Grand Unified Theory of Spindles 14 Building a Network That Learns Like We Do 16 A Many-Method Attack on the Many Electron Problem MATHEMATICS AND PHYSICAL SCIENCES 21 Arithmetic Geometry, Number Theory and Computation 24 Origins of the Universe 26 Cracking the Glass Problem LIFE SCIENCES 31 Computational Biogeochemical Modeling of Marine Ecosystems (CBIOMES) 34 Simons Collaborative Marine Atlas Project 36 A Global Approach to Neuroscience AUTISM RESEARCH INITIATIVE (SFARI) 41 SFARI’s Data Infrastructure for Autism Discovery 44 SFARI Research Roundup 46 The SPARK Gambit OUTREACH AND EDUCATION 51 Science Sandbox: “The Most Unknown” 54 Math for America: The Muller Award SIMONS FOUNDATION 56 Financials 58 Flatiron Institute Scientists 60 Mathematics and Physical Sciences Investigators 62 Mathematics and Physical Sciences Fellows 63 Life Sciences Investigators 65 Life Sciences Fellows 66 SFARI Investigators 68 Outreach and Education 69 Simons Society of Fellows 70 Supported Institutions 71 Advisory Boards 73 Board of Directors 74 Simons Foundation Staff 3 LETTER FROM THE PRESIDENT As one year ends and a new one begins, it is always a In the pages that follow, you will also read about the great pleasure to look back over the preceding 12 months foundation’s grant-making in Mathematics and Physical and reflect on all the fascinating and innovative ideas Sciences, Life Sciences, autism science (SFARI), Outreach conceived, supported, researched and deliberated at the and Education, and our Simons Collaborations.
    [Show full text]
  • Psychologues Américains
    Psychologues américains A G (suite) M (suite) • Robert Abelson • Gustave M. Gilbert • Christina Maslach • Gordon Willard • Carol Gilligan • Abraham Maslow Allport • Stephen Gilligan • David McClelland • Richard Alpert • Daniel Goleman • Phil McGraw • Dan Ariely • Thomas Gordon • Albert Mehrabian • Solomon Asch • Temple Grandin • Stanley Milgram • Blake Ashforth • Clare Graves • Geoffrey Miller • David Ausubel • Joy Paul Guilford (psychologue) • Moubarak Awad • George Armitage H Miller B • Theodore Millon • G. Stanley Hall • James Baldwin • Daria Halprin N (psychologue) • Harry Harlow • Theodore Barber • Alan Hartman • Ulric Neisser • Gregory Bateson • Torey Hayden • Richard Noll • Diana Baumrind • Frederick Herzberg • Alex Bavelas • Ernest Hilgard O • Don Beck • James Hillman • Benjamin Bloom • Allan Hobson • James Olds • Edwin Garrigues • John L. Holland Boring • John Henry Holland P • Loretta Bradley • Evelyn Hooker • Nathaniel Branden • Carl Hovland • Baron Perlman • Urie Bronfenbrenner • Clark Leonard Hull • Walter Pitts • Joyce Brothers • Jerome Bruner J R • David Buss • Howard Buten • William James • Joseph Banks Rhine • Kay Redfield Jamison • Kenneth Ring C • Irving Janis • Judith Rodin • Arthur Janov • Carl Rogers • John Bissell Carroll • Joseph Jastrow • Milton Rokeach • James McKeen Cattell • Julian Jaynes • Eleanor Rosch • Raymond Cattell • Arthur Jensen • Marshall Rosenberg • Cary Cherniss • Frank Rosenblatt • Robert Cialdini K • Robert Rosenthal • Mary Cover Jones • Julian Rotter • Lee Cronbach • Daniel Kahneman • Paul Rozin
    [Show full text]
  • Becoming Euclid: Connecting Core Cognition, Spatial Symbols, and the Abstract Concepts of Formal Geometry
    Becoming Euclid: Connecting Core Cognition, Spatial Symbols, and the Abstract Concepts of Formal Geometry The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Dillon, Moira Rose. 2017. Becoming Euclid: Connecting Core Cognition, Spatial Symbols, and the Abstract Concepts of Formal Geometry. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41142075 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Becoming Euclid: Connecting Core Cognition, Spatial Symbols, and the Abstract Concepts of Formal Geometry A dissertation presented by Moira Rose Dillon To The Department of Psychology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Psychology Harvard University Cambridge, Massachusetts April 2017 © 2017 Moira Rose Dillon Creative Commons by Attribution 4.0 International Dissertation Advisor: Professor Elizabeth S. Spelke Moira Rose Dillon Becoming Euclid: Connecting Core Cognition, Spatial Symbols, and the Abstract Concepts of Formal Geometry Abstract Humans alone are capable of formal geometry, like the one outlined in Euclid’s Elements. We can conceive of points so infinitely small they have no size and lines that extend so infinitely far they never end. And yet, we conceive of such “points” and “lines” without having ever perceived them. Where, then, do such geometric concepts come from? This dissertation asks whether and in what way phylogenetically ancient and developmentally precocious “core” geometric representations guiding navigation and form analysis in humans may come to support uniquely human symbolic and abstract geometric thought.
    [Show full text]