Over 45 Years of Credibility & Reliability

Total Page:16

File Type:pdf, Size:1020Kb

Over 45 Years of Credibility & Reliability G.J. CHEMICAL CO., INC. • 40 Veronica Ave • Somerset NJ 08873 • P 973.589.1450 • F 732.249.0082 Over 45 years of Credibility & Reliability G.J. Chemical is an active member of The National Association of Chemical Distributors (NACD), as well as SOCMA, DCAT and ILDA. We operate under Responsible Care Guidelines, maintain an extensive on-site laboratory and adhere to strict QC/QA practices such as cGMP guidelines. G.J. Chemical is family owned and operated and has been in the chemical business for over 45 years. G.J. Chemical is also certified by the New Jersey Commerce & Economic Growth Commission as a Women Business Enterprise. G.J. has solidified its presence in the industry by making substantial investments into expansion and diversification programs. G.J. Chemical is a credible, reliable partner that can help you succeed well into the next century. Corporate Offices: 40 Veronica Ave Somerset, NJ 08873 Phone: 973-589-1450 Fax: 732-249-0082 Production Facility: 128 Doremus Ave., Newark, NJ 07105 Phone: 973-589-4176 Fax: 973-589-3072 Warehouse Location: 370-376 Adams St., Newark, NJ 07114 Phone: 973-589-1450 Fax: 732-249-0082 Minimum Order: $150 for orders shipped F.O.B. our facilities, Newark, NJ $250 or orders shipped prepaid (delivered price). Terms: Net 30 days after shipment Office Hours: 9:00 a.m. to 5:00 p.m. Monday - Friday EST G.J. Chemical is Customer Driven: We offer the flexibility in product lines, product specifications, custom formulations, packaging and labeling to help you meet your changing needs and solve your most pressing problems. We provide what is needed most, not what we want to sell. G.J. CHEMICAL CO., INC. • 40 Veronica Ave • Somerset NJ 08873 • P 973.589.1450 • F 732.249.0082 Acids & Anhydrides Alcohols Alcohol - Denatured Aliphatic Solvents Amines Acetic Acid Glacial Benzyl Alochol Duplicating Fluid Heptane Cyclohexylamine Acetic Anhydrides Isobutyl Alcohol Proprietary Solvent #1 190 Hexane Diethanolamine Acrylic Acid Isopropyl Alcohol 99% Proprietary Solvent #1 200 Lactol Spirits Diethylethanolamine Formic Acid 90% Isopropyl Alcohol 91% Proprietary Solvent #3 190 Laktane Dimethylaminopropylamine Methacrylic Acid Galcial Methanol Proprietary Solvent #3 200 Mineral Spirits Regular Dimethyloethanol Muratic Acid 90% Normal Butyl Alcohol Special Denatured Alcohols Mineral Spirits Ec (Rule 66) Methoxypropylamine Muratic Acid 22º Bé Normal Propyl Alcohol All Formulas 190/200 Proof Mineral Spirits Ec (Low Aromatic) Monoethanolamine Phosphoric Acid Tertiary Butyl Alcohol Mineral Spirits Odorless Morpholine Tetrhydrofurfural Alcohol Chlorinated Solvents Rubber Solvent Triethanolamine 85 & 99% Aromatic Solvents Ethylene Dichloride Solvent 5,19, 25, 40 Triethylamine Aromatic 100 Automotive Methylene Chloride Solvent 140, 340 Aromatic 150 Antifreeze Perchlorethylene VM&P Naptha Esters Methyl Naothaline #5 Wind Shield Washer Trichlorethylene Ethyl Acetate 99% Orthoxylene Enamel Reducer Epoxy Resins Glycol Ether DB Acetate Tolunene Fast Auto Laquer Thinner Cosmetic Preservatives 828 Type Glycol Ether DPM Acetate Xylenes Fast Enamel Reducer Ethyl Paraen 826 Type Glycol Ether EB Acetate High Temp Auto Laquer Isopropyl Myristate 8132 Type Glycol Ether EE Acetate Glycol Ethers Laquer Thinner Isopropyl Palmitate Aliphatic Reactive Diluent Glycol Ether EM Acetate Glycol Ether DB, DE Mid Temp Reducer Methyl Paraben Bge Reactive Diluent Glycol Ether PM Acetate Glycol Ether DM, DPM Mid Temp Thinner Octyl Palmitate Nonyl-Phenol Isobutyl Acetate Glycol Ether EB, EE Retarder Propyl Paraben Isopropyl Acetate Glycol Ether EM, EP, PE Slow Reducer Keytone Normal Butyl Acetate Wash Thinner Normal Propyl Acetate Glycol Ether PM Acetone Wax, Oil & Grease Remover Intermediate Primary Amyl Acetate Glycol Ether PTB Cyclohexanone Glycol Ether TPM Alcohols 2-Ethyl Hexanol Diacetone Alcohol Heat Trans Tridecyl Alcohol Isophrone Monomers Glycols Propylene Glycol Xylenes Methyl Amyl Ketone Butyl Acrylate Diethylene Glycol Ethylene Glycol Methyl Ethyl Ketone Ethyl Acrylate Dipropylene Glycol Methyl Isoamyl Ketone Ethyl Hexyl Acrylate Ethylene Glycol Specialties Methyl Isobutyl Ketone Methyl Acrylate Plastricizers Acetonitrile Hexylene Glycol Dibutyl Phthalate Methyl N-Propyl Ketone Methyl Methacrylate Styrene Amonium Benzoate Polyethylene Glycol 200 Diethyl Pthalate 2-Hydroxyethyl Acrylate Anti Static Additives Stadis Polyethylene Glycol 300 Diisodecyl Phthalate N-Butyl Methacrylate Benzaldehyde Silicones Polyethylene Glycol 400 Diisononyl Phthalate Ethyl Methacrylate Castor Oil Dimethyl Fluids Polyethylene Glycol 600 Dimethyl Phthalate Hydroxypropyl Acrylate Dimethyl Formanide Propylene Glycol Ind. Dioctyl Adipate Isobutyl Methacrylate Glycerine 99.5% & 99.8% Propylene Glycol Usp Dioctyl Phthalate Surfactants (Non Ionic) Isobornyl Methacrylate Triethylene Glycol Isobutyl Isobutyrate Surfonic N-40, 60, 95, 100 Ethylene Glycol Dimethacrylate Liquid Caustic Soda 25% Surfonic N102, 102, 150 Hydroxyethyl Methacrylate Liquid Caustic Soda 50% Surfonic LF-17 Hydroxypropyl Methacrylate N-Methyl 2-Pyrrolidone Surfonic JL-80X Lauryl Methacrylate Phenol 90% & Solutions Tetrahydrofuran.
Recommended publications
  • Safety Assessment of Alkyl Esters As Used in Cosmetics
    PINK Safety Assessment of Alkyl Esters as Used in Cosmetics CIR EXPERT PANEL MEETING DECEMBER 10-11, 2012 Memorandum To: CIR Expert Panel Members and Liaisons From: Monice M. Fiume MMF Senior Scientific Analyst/Writer Date: November 16, 2012 Subject: Amended Safety Assessment of Alkyl Esters as Used in Cosmetics Enclosed in the Amended Safety Assessment of Alkyl Esters as Used in Cosmetics. The status of this document is draft tentative amended report for CIR Expert Panel Review. This report was tabled at the September meeting so that historical use data from reports on ingredients previously reviewed by CIR could be added to the safety assessment. You will find these data incor- porated into Table 8. Incorporation of the historical data into the table allows the Panel a side-by-side comparison of the concentration reported when determining safety in the original safety assessments compared to the use data submitted with the current re-review. Increases in reported concentrations are highlighted. Also at the September meeting, the Panel deleted 16 alkyl ethylhexanoates from the report. Concern about the possible fetotoxicity of 2-ethylhexanoic acid, a possible metabolite of the ethylhexanoates, led to a determination that these ingredients are not “no brainers” and therefore, the ethylhexanoates should not be included in this review. The following unpublished data have been received since the last review. These data, which are included under the data tab of this submission, have been incorporated. 1. Personal Care Products Council. 2012. Updated concentration of use by FDA product category: alkyl esters and ethylhexanoates; 2. Personal Care Products Council.
    [Show full text]
  • Isopropyl Acetate Iac
    ISOPROPYL ACETATE IAC CAUTIONARY RESPONSE INFORMATION 4. FIRE HAZARDS 7. SHIPPING INFORMATION 4.1 Flash Point: 60°F O.C. 37°F C.C. 7.1 Grades of Purity: 95-99+% Common Synonyms Watery liquid Colorless Pleasant fruity 4.2 Flammable Limits in Air: 1.8%-8.0% 7.2 Storage Temperature: Ambient Acetic acid, isopropyl ester odor 4.3 Fire Extinguishing Agents: Alcohol foam, 2-Propyl acetate 7.3 Inert Atmosphere: No requirement dry chemical, carbon dioxide 7.4 Venting: Open (flame arrester) or pressure- Floats and mixes slowly with water. Flammable, irritating vapor is 4.4 Fire Extinguishing Agents Not to Be vacuum produced. Used: Not pertinent 7.5 IMO Pollution Category: Currently not available 4.5 Special Hazards of Combustion Keep people away. Products: Not pertinent 7.6 Ship Type: Currently not available Shut off ignition sources and call fire department. 4.6 Behavior in Fire: Not pertinent 7.7 Barge Hull Type: Currently not available Stay upwind and use water spray to ``knock down'' vapor. Avoid contact with liquid and vapor. 4.7 Auto Ignition Temperature: 860°F Notify local health and pollution control agencies. 4.8 Electrical Hazards: Not pertinent 8. HAZARD CLASSIFICATIONS Protect water intakes. 4.9 Burning Rate: Currently not available 8.1 49 CFR Category: Flammable liquid 4.10 Adiabatic Flame Temperature: Currently 8.2 49 CFR Class: 3 FLAMMABLE. not available Fire Flashback along vapor trail may occur. 8.3 49 CFR Package Group: Not listed. 4.11 Stoichometric Air to Fuel Ratio: 30.9 Vapor may explode if ignited in an enclosed area.
    [Show full text]
  • Isoamyl Acetate
    SUMMARY OF DATA FOR CHEMICAL SELECTION Isoamyl Acetate CAS No. 123-92-2 Prepared for NTP by Technical Resources International, Inc Prepared on 11/94 Under NCI Contract No. N01-CP-56019 Table of Contents I. Chemical Identification II. Exposure Information Table 1. Levels of isoamyl acetate reported in foods III. Evidence for Possible Carcinogenic Activity Appendix A: Structural Analogs of Isoamyl Acetate IV. References SUMMARY OF DATA FOR CHEMICAL SELECTION CHEMICAL IDENTIFICATION CAS Registry No.: 123-92-2 Chem. Abstr. Name: 1-Butanol, 3-methyl-, acetate Synonyms: Acetic acid 3-methylbutyl ester; acetic acid, isopentyl ester; AI3-00576; banana oil; isoamyl ethanoate; isopentyl acetate; isopentyl alcohol, acetate; pear oil; 3-methyl-1-butanol acetate; 3-methyl-1-butyl acetate; 3-methylbutyl acetate; 3-methylbutyl ethanoate; i-amyl acetate Structure: Molecular Formula and Molecular Weight: C7H14O2 Mol. Wt.: 130.18 Chemical and Physical Properties: Description: Colorless, flammable liquid with a banana-like odor (ACGIH, 1993). Boiling Point: 142°C (Lide, 1993) Melting Point: -78.5°C (Mark, et al, 1984; Lide, 1993) Solubility: Soluble in water (2000 mg/L at 25°C) (Howard, 1990); soluble in ethanol, diethyl ether, and acetone (Lide, 1993). Vapor 4.5 mm Hg at 20°C (Howard, 1990) Pressure: Refractive 1.4003 (Lide, 1993) Index: Flash Point: closed cup, 33°C; open cup, 38°:C (Budavari, 1989) Density: 0.876 (Lewis, 1993) Reactivity: Thermal decomposition of isoamyl acetate may produce acrid fumes. Contact with strong oxidizing agents, strong acids, and alkaline materials should be avoided (Haarmann & Reimer Corp., 1994). Hazardous decomposition products of isoamyl acetate include CO and CO2 (AESAR/Alfa, 1994) Log 2.13 (Howard, 1990) P(octanol/water partition coefficient): Technical Isoamyl acetate is commercially available as both a natural and synthetic product with a purity Products and range of 95-99+%.
    [Show full text]
  • Comprehensive Characterization of Toxicity of Fermentative Metabolites on Microbial Growth Brandon Wilbanks1 and Cong T
    Wilbanks and Trinh Biotechnol Biofuels (2017) 10:262 DOI 10.1186/s13068-017-0952-4 Biotechnology for Biofuels RESEARCH Open Access Comprehensive characterization of toxicity of fermentative metabolites on microbial growth Brandon Wilbanks1 and Cong T. Trinh1,2* Abstract Background: Volatile carboxylic acids, alcohols, and esters are natural fermentative products, typically derived from anaerobic digestion. These metabolites have important functional roles to regulate cellular metabolisms and broad use as food supplements, favors and fragrances, solvents, and fuels. Comprehensive characterization of toxic efects of these metabolites on microbial growth under similar conditions is very limited. Results: We characterized a comprehensive list of thirty-two short-chain carboxylic acids, alcohols, and esters on microbial growth of Escherichia coli MG1655 under anaerobic conditions. We analyzed toxic efects of these metabo- lites on E. coli health, quantifed by growth rate and cell mass, as a function of metabolite types, concentrations, and physiochemical properties including carbon number, chemical functional group, chain branching feature, energy density, total surface area, and hydrophobicity. Strain characterization revealed that these metabolites exert distinct toxic efects on E. coli health. We found that higher concentrations and/or carbon numbers of metabolites cause more severe growth inhibition. For the same carbon numbers and metabolite concentrations, we discovered that branched chain metabolites are less toxic than the linear chain ones. Remarkably, shorter alkyl esters (e.g., ethyl butyrate) appear less toxic than longer alkyl esters (e.g., butyl acetate). Regardless of metabolites, hydrophobicity of a metabolite, gov- erned by its physiochemical properties, strongly correlates with the metabolite’s toxic efect on E. coli health.
    [Show full text]
  • BLUE BOOK 1 Methyl Acetate CIR EXPERT PANEL MEETING
    BLUE BOOK 1 Methyl Acetate CIR EXPERT PANEL MEETING AUGUST 30-31, 2010 Memorandum To: CIR Expert Panel Members and Liaisons From: Bart Heldreth Ph.D., Chemist Date: July 30, 2010 Subject: Draft Final Report of Methyl Acetate, Simple Alkyl Acetate Esters, Acetic Acid and its Salts as used in Cosmetics . This review includes Methyl Acetate and the following acetate esters, relevant metabolites and acetate salts: Propyl Acetate, Isopropyl Acetate, t-Butyl Acetate, Isobutyl Acetate, Butoxyethyl Acetate, Nonyl Acetate, Myristyl Acetate, Cetyl Acetate, Stearyl Acetate, Isostearyl Acetate, Acetic Acid, Sodium Acetate, Potassium Acetate, Magnesium Acetate, Calcium Acetate, Zinc Acetate, Propyl Alcohol, and Isopropyl Alcohol. At the June 2010 meeting, the Panel reviewed information submitted in response to an insufficient data announcement for HRIPT data for Cetyl Acetate at the highest concentration of use (lipstick). On reviewing the data in the report, evaluating the newly available unpublished studies and assessing the newly added ingredients, the Panel determined that the data are now sufficient, and issued a Tentative Report, with a safe as used conclusion. Included in this report are Research Institute for Fragrance Materials (RIFM) sponsored toxicity studies on Methyl Acetate and Propyl Acetate, which were provided in “wave 2” at the June Panel Meeting but are now incorporated in full. The Tentative Report was issued for a 60 day comment period (60 days as of the August panel meeting start date). The Panel should now review the Draft Final Report, confirm the conclusion of safe, and issue a Final Report. All of the materials are in the Panel book as well as in the URL for this meeting's web page http://www.cir- safety.org/aug10.shtml.
    [Show full text]
  • RE-REVIEW Supplement Book 1 Alkyl Esters CIR EXPERT PANEL
    RE-REVIEW Supplement Book 1 Alkyl Esters CIR EXPERT PANEL MEETING MARCH 5-6, 2012 ALKYL ESTERS RE-REVIEW – SUPPLEMENTAL BOOK 1 Cetyl Esters and Other Previously Reviewed Alkyl Esters Cetyl Esters ...................................................................................................................................................... 1 Isopropyl Linoleate .......................................................................................................................................... 9 Cetearyl Octanoate (now Cetearyl Ethylhexanoate) ...................................................................................... 15 Octyl, Cetyl, and Isopropyl Palmitate ............................................................................................................ 25 Decyl and Isodecyl Oleate ............................................................................................................................. 48 Butyl, Cetyl Isobutyl, Isocetyl, Isopropyl, Myristyl, and Octyl Stearate ....................................................... 59 Isostearyl Neopentanoate ............................................................................................................................... 99 Arachidyl Propionate ................................................................................................................................... 121 Isopropyl Isostearate .................................................................................................................................... 131 Cetyl,
    [Show full text]
  • Syringe Filters Solvent Compatibility Chart
    Syringe Filters Solvent Compatibility Chart Group of Substance & Cellulose Nylon PES PTFE PVDF Chemical Reagents Acetate ACIDS Acetic, 5% L R R R R Acetic, 10% L R R R R Acetic, 25% N L R R R Acetic, Glacial N N R R R Boric - L - R - Formic 25% L N - R - Hydrochloric 15% L L R R L Hydrochloric 25% N N R R - Hydrochloric concentrated N N L R N Hydrofluoric 10% N N - - - Hydrofluoric 35% N N - R - Nitric 25% N N R R - Nitric 6N, 38% N N L R R Top 10 Reasons to Use Restek Syringe Filters Nitric concentrated N N N R N Phosphoric 25% L N R R - 1 Protect any analytical system. Sulfuric 25% N N N R - 2 Extend LC column lifetime. Sulfuric 6N, 29% N N N R - 3 Achieve more reproducible analyses. Sulfuric concentrated N N N R N Trichloroacetic 10% N N - R R 4 Variety of membranes, porosities, and diameters available. ALKALINES 5 Luer lock inlet provides strong, leak-tight syringe connection to Ammonium Hydroxide 25% N R R R L withstand filtration pressure. Formalin 30% L L R - - 6 Rugged polypropylene construction— autoclavable to 121 °C for Sodium Hydroxide 3N, 12% N R R R R 15 minutes (75 psi). ALCOHOLS 7 Color coded by membrane for easy identification. Amyl Alcohol L R N R R 8 Convenient dispenser box. Benzyl Alcohol L L L L L 9 FREE sample pack available. Contact your Restek sales Butyl Alcohol L R L R R representative today.
    [Show full text]
  • Amended Safety Assessment of Alkyl Esters As Used in Cosmetics
    Amended Safety Assessment of Alkyl Esters as Used in Cosmetics Status: Tentative Amended Report for Public Comment Release Date: December 18, 2012 Panel Meeting Date: March 18-19, 2013 All interested persons are provided 60 days from the above release date to comment on this safety assessment and to identify additional published data that should be included or provide unpublished data which can be made public and included. Information may be submitted without identifying the source or the trade name of the cosmetic product containing the ingredient. All unpublished data submitted to CIR will be discussed in open meetings, will be available at the CIR office for review by any interested party and may be cited in a peer-reviewed scientific journal. Please submit data, comments, or requests to the CIR Director, Dr. F. Alan Andersen. The 2012 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is F. Alan Andersen, Ph.D. This report was prepared by Monice M. Fiume, Senior Scientific Analyst/Writer, and Bart Heldreth, Ph.D., Chemist CIR. Cosmetic Ingredient Review 1101 17th Street, NW, Suite 412 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] TABLE OF CONTENTS Abstract .....................................................................................................................................................................................................................
    [Show full text]
  • DESIGN of a FLEXIBLE PROCESS for the PRODUCTION of N-BUTYL ACETATE and ISOPROPYL ACETATE
    Department of Chemical Engineering, Auburn University CHEN 4470, Spring 2012 DESIGN OF A FLEXIBLE PROCESS FOR THE PRODUCTION OF n-BUTYL ACETATE AND ISOPROPYL ACETATE 1. Background Esters are widespread in nature and are responsible for the aroma of many fruits including apples, pears, bananas, pineapples and strawberries. This characteristic has led to extensive use of esters in the fragrance and flavor industries. Furthermore, ester bonds are also found in many polymers and several million tons of polyesters are produced industrially every year. This project involves the production of two different esters: A) n-Butyl Acetate (BuAc) - a chemical used as a solvent for various chemicals including inks, paints, and lacquers; and B) iso-Propyl Acetate (IPAc) – a solvent for cellulose, plastics, oil and fats, and a ingredient in some printing inks and perfumes. 2. Design Objectives In this project, you will utilize your process design knowledge to develop candidate process flowsheets from the initial concept through material balances, equipment sizing, control system design, and economic analysis. The processes should include all equipment needed to produce the products. A given process may include (but is not limited to) reactors, columns, heat exchangers, extractors, decanters, reflux pots, pumps, storage tanks. The primary objective of this project is to design a grass-roots facility capable of producing a total of 10,000 metric tons per year of 99.5 wt% Butyl Acetate. Due to similarities in the reaction schemes and to provide the ability to adapt to changes in market demand, a secondary objective is to evaluate the retrofitting requirements (if any) for switching the Butyl Acetate facility to produce 99.5 wt% iso-Propyl Acetate instead.
    [Show full text]
  • Isopropyl Acetate Secondary Propyl Acetate Acetic Acid, Isopropyl Ester Isopropyl Ethanoate
    Product Information Isopropyl Acetate Secondary Propyl Acetate Acetic Acid, Isopropyl Ester Isopropyl Ethanoate (CH3)2CHOC(O)CH3 Description Physical properties A colorless liquid with an aromatic Molecular Weight 102.13 fruity odor with moderate solubility in water and a low flash point. Relative Evaporation Rate nBuAc=1 5 ° Vapor Pressure at 20 C, mmHg 47.0 ° Density at 20 C lb/gal 7.28 ° Specific Gravity at 20/20 C 0.869 ° Viscosity at 20 C cP 0.5 Surface Tension (dynes/cm at 20°C) 22.3 ° (dynes/cm at 25 C) - Hansen Solubility Parameters, [cal/cm3]1/2 Total 8.6 Non-Polar 7.3 Polar 2.2 Hydrogen Bonding 4.0 ° Boiling Point, C at 760mm Hg 88.5 Solubility at 20°C %Wt In Water 3 %Wt Water in 1.9 ° Closed Cup Flash Point F36 † SARA 313 (see note 1 )N †† Hazardous Air Pollutant (see note 2 )N † Note 1: Superfund Amendments and Reauthorization Act of 1986 (SARA) Title III Section 313 †† Note 2: Hazardous Air Pollutants listed under Title III of the Clean Air Act Classification/Registry Numbers CAS Number 108-21-4 (Please see second page) EINECS 203-5611 DOW RESTRICTED - For internal use only*Trademark of The Dow Chemical Company Isopropyl Acetate Secondary Propyl Acetate Acetic Acid Isopropyl Ester Features • Non-HAP (Hazardous air pollutant) Solvent • Good resin solvent • Mild odor • Fast evaporating Applications • Coatings • Cleaning fluids • Printing inks • Cosmetic / personal care solvent • Fragrance solvent How supplied Region Packaging Transport Mode Europe/Africa Bulk or Drum Isotank/Marine Vessel/Tank Truck/Package Truck Latin America
    [Show full text]
  • “Inert” Ingredients Used in Organic Production
    “Inert” Ingredients Used in Organic Production Terry Shistar, PhD A Beyond Pesticides Report he relatively few registered pesticides allowed in organic production are contained in product formulations with so-called “inert” ingredients that are not disclosed on the T product label. The “inerts” make up the powder, liquid, granule, or spreader/sticking agents in pesticide formulations. The “inerts” are typically included in products with natural or synthetic active pesticide ingredients recommended by the National Organic Standards Board (NOSB) and listed by the National Organic Program (NOP) on the National List of Allowed and Prohibited Substances. Any of the pesticides that meet the standards of public health and environmental protection and organic compatibility in the Organic Foods Production Act (OFPA) may contain “inert” ingredients. Because the standards of OFPA are different from those used by the U.S. Environmental Protection Agency (EPA) to regulate pesticides and given changes in how the agency categorizes inerts, the NOSB has adopted a series of recommendations since 2010 that established a substance review process as part of the sunset review. NOP has not followed through on the Board’s recommendations and, as a result, there are numerous materials in use that have not been subject to OFPA criteria. This report (i) traces the history of the legal requirements for review by the NOSB, (ii) identifies the universe of toxic and nontoxic materials that make of the category of “inerts” used in products permitted in organic production, and (iii) suggests a path forward to ensure NOSB compliance with OFPA and uphold the integrity of the USDA organic label.
    [Show full text]
  • Sorbent Pens™ for Next Generation Headspace Analysis Featured Chromatograms
    Sorbent Pens™ For Next Generation Headspace Analysis Featured Chromatograms Abundance 15 2e+08 1.8e+08 1.6e+08 1.4e+08 1.2e+08 1e+08 13 6 8e+07 2 6e+07 8 5 4e+07 4 11 14 3 2e+07 7 10 1 9 12 0 Time--> 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 Brie Cheese Duplicate Analysis TIC: 16081501.D\data.ms SORBENT PEN™ #1 Abundance 1.1e+07 8 23 1e+07 9000000 8000000 2 7000000 6000000 5000000 4000000 3000000 19 4 2000000 7 15 *20 22 24 1000000 1 9 11 14 16 17 10 12 21 3 5 6 13 18 0 Time--> 10.00 15.00 20.00 25.00 30.00 35.00 SORBENT PEN™ #2 Abundance 8 23 1.1e+07 1e+07 9000000 8000000 2 7000000 6000000 5000000 4000000 3000000 19 4 7 15 2000000 22 14 17 24 1000000 1 9 10 11 *20 21 12 16 3 5 6 13 18 0 Time--> 10.00 15.00 20.00 25.00 30.00 35.00 *Difference in Dodecanoic acid, ethyl ester caused by difficulty in maintaining exact amount of cheese sample oxidation from run to run, and expected variations in sample homegeneity. Instrument: 5800-SPDU (Sorbent Pen Desorption Unit) 1. 4-Heptanone 14. 2-Undecanone Technique: VASE (Vacuum Assisted Sorbent Extraction) 2. 2-Heptanone 15. n-Decanoic acid Run date: August 15, 2016 3. Benzaldehyde 16. Decanoic acid, ethyl ester Sample description: Brie Cheese 4. 2-Octanone 17.
    [Show full text]