Xth ISTT Program

Total Page:16

File Type:pdf, Size:1020Kb

Xth ISTT Program Program Chairs George Kennedy (North Carolina State University) Diane Ullman (University of California, Davis) Organizing Committee Scott Adkins (United States Department of Agriculture-Agricultural Research Service) Robert Kemerait (University of Georgia) Martha Mutschler (Cornell University) Naidu Rayapati (Washington State University) Dorith Rotenberg (Kansas State University) John Sherwood (University of Georgia) Anna Whitfield (Kansas State University) Scientific Advisory Committee Adriano Cavalleri (Universidade Federal do Rio Grande do Sul Porto Alegre, Brasil) Kleber del Claro (Universidade Federal de Uberlândia, Brazil) Thomas German (University of Wisconsin) Robert Gilbertson (University of California, Davis) Elliot Watanabe Kitajima (Universidade de São Paulo, Brasil) Richard Kormelink (Wageningen University) Gerald Moritz (Martin-Luther-University Halle-Wittenberg) Tatsuya Nagata (Universidade de Brasília, Brazil) Hanu Pappu (Washington State University) Denis Persley (Queensland Primary Industries and Fisheries, Australia) Dick Peters (Wageningen University) Stuart Reitz (Oregon State University) Renato de Oliveira Resende (Universidade de Brasília) Desley Tree (Queensland Primary Industries Insect Collection, Australia) Massimo Turina (Institute of Plant Virology, Italy) Shyi-dong Yeh (National Chung Hsing University, Taiwan) Encouraging New Scholars of Thysanoptera and Tospoviruses Laurence Mound Fellows: The Laurence Mound Endowment for International Research on Thysanoptera and Tospoviruses was founded in September, 2005 and presented to Laurence Mound on the occasion of his Plenary Address at the VIIIth International Symposium on Thysanoptera and Tospoviruses. The goal of the endowment is to foster research and interaction between scientists studying Thysanoptera and Tospoviruses with special attention on encouraging new scholars. Through a competitive application process, we selected eleven Laurence Mound Fellows to receive a scholarship to attend the Xth International Symposium on Thysanoptera and Tospoviruses, May 16th through May 20th, 2015 in Asilomar. Luciana Ferrand Universidad Nacional de La Plata, Argentina Shirani Gamage The University of Queensland, Australia Romana Iftikhar Pakistan Institute of Engineering and Applied Sciences Stephanie Krueger Martin-Luther-University Halle- Wittenberg, Germany Elison Lima Universidade de São Paulo, Brazil Mariana Lindner Universidade Federal do Rio Grande do Sul, Brazil Alexander Muvea Leibniz Universität Hannover, Germany Duong Nguyen University of Western Sydney, Australia Pamella Ogada Gottfried Wilhelm Leibniz Universität Hannover, Germany Jonathan Oliver Kansas State University, United States Athos Silva de Oliveira Wageningen University, The Netherlands Thrips Tospovirus Educational Network (TTEN) Fellows: The Thrips Tospovirus Educational Network (TTEN) provides robust mentor training and experience to graduate students who, in partnership with their faculty mentors, provide undergraduate mentees with engaging and challenging research experiences cementing their interest in the sciences and preparing them professionally. For two years students from 7 institutions have participated in the program as mentors and mentees, conducting independent research projects and attending interactive sessions in a cyber-classroom through Adobe Connect. Through a competitive application process, twelve TTEN mentors and mentees were selected as TTEN Fellows, each receiving a scholarship to attend the Xth International Symposium on Thysanoptera and Tospoviruses, May 16th through May 20th, 2015 in Asilomar. The TTEN is funded by AFRI NIFA Coordinated Agricultural Project 2012-01785. Raphael Adegbola Washington State University Ismael Badillo-Vargas Kansas State University and ARS-USDA Candice Stafford-Banks University of California, Davis Ozgur Batuman University of California, Davis Li-Feng Chen University of California, Davis Kory Herrington Abraham Baldwin Agricultural College Michelle Kwok University of California, Davis Spencer Marshall Washington State University Norma Ordaz University of California, Davis Derek Schneweis Kansas State University Anita Shrestha University of Georgia John Smeda Cornell University Blake Williams University of Georgia Special Thanks to the Following Individuals and Groups for Their Generous Contributions • Agdia, Inc. • American Floral Endowment • California Cut Flower Commission • Citrus Research Board • DuPont Crop Protection • Georgia Tobacco Commission • Kee Kitayama Research Foundation • The Los Angeles Flower Market • Mellano & Company • Mike Mellano Sr • The Peanut Foundation, Inc. • Syngenta • United States Department of Agriculture, National Institute of Food and Agriculture Conference Award 2015-67013-23171 • AFRI NIFA Coordinated Agricultural Project 2012-01785 • University of California Davis, College of Agricultural and Environmental Sciences • The University of Georgia, Plant Pathology Department TABLE OF CONTENTS I Week at a Glance 1 II Program Saturday Registration and Hospitality Welcome 4 Saturday Opening Session and Reception 4 Sunday Plenary Session I: Looking to the Future 5 State of the Art Session I: Thrips Biology and Systematics 5 State of the Art Session II: Developing Host Plant Resistance 6 Against Tospoviruses and Thrips As Vectors State of the Art Session III: Integrated Management of 7 Tospoviruses and Thrips As Vectors State of the Art Session IV: Tospovirus Biology, Genetics, 7 and Diversity Poster Presentations, Informal Discussions and Reception 8 Monday Plenary Session II: Virus-Vector-Host Interactions 10 Field Trip 10 Facilitated Discussions and Reception 11 Tuesday Plenary Session III: Virus/Vector Biology and Emergence of 12 Diversity State of the Art Session V: Thrips/Tospovirus Ecology and 12 Management State of the Art Session VI: Virus Epidemiology and 13 Integrated Management Strategies State of the Art Session VII: Thrips Ecology and Behavior 14 State of the Art Session VIII: Thrips and Tospovirus 15 Management Banquet at the Monterey Bay Aquarium 15 Wednesday Final Plenary Session 16 III Abstracts Opening Conference Speaker 20 Plenary Session I: Looking to the Future 21 State of the Art Session 1: Thrips Biology and Systematics 25 State of the Art Session II: Developing Host Plant Resistance 36 and Integrated Management of Tospoviruses and Thrips As Vectors State of the Art Session III: Integrated Management of 45 Tospoviruses and Thrips As Vectors State of the Art Session IV: Tospovirus Biology, Genetics, 52 and Diversity Plenary Session II: Virus-Vector-Host Interactions 60 Plenary Session III: Virus/Vector Biology and Emergence of 65 Diversity State of the Art Session V: Thrips/Tospovirus Ecology and 71 Management State of the Art Session VI: Virus Epidemiology and 81 Integrated Management Strategies State of the Art Session VII: Thrips Ecology and Behavior 87 State of the Art Session VIII: Thrips and Tospovirus 95 Management Final Plenary Session 102 Poster Presentations, Informal Discussions, and Reception 103 WEEK AT A GLANCE Saturday Sunday Monday Tuesday Wednesday 16-May-15 17-May-15 18-May-15 19-May-15 20-May-15 Registration and Breakfast Breakfast Breakfast Breakfast Hospitality 7:30-8:30 7:30-8:30 7:30-8:30 7:30-8:30 Welcome 15:30-18:00 Dinner Plenary Plenary Plenary Final Plenary 18:00-19:00 Session I Session II Session III Session 8:30-12:00 8:30-11:45 8:30-12:00 9:00-12:00 Opening Session Lunch Field Trip Lunch Lunch and Reception 12:00-13:00 11:45-17:00 12:00-13:00 12:00-13:00 19:30-22:00 State of the Art Dinner State of the Art Sessions I/II 18:00-19:00 Session V/VI 13:00-15:45 13:00-16:00 State of the Art Facilitated State of the Art Sessions III/IV Discussions and Session VII/VIII 15:45-18:00 Reception 16:00-18:00 19:30-21:00 Dinner Monterey Bay 18:00-19:00 Aquarium Banquet 18:45-22:30 Poster Presentations, Informal Discussions and Reception 19:30-22:00 1 The Growing Standard Testing for Tospoviruses doesn’t have to be complicated ImmunoStrip® ➢ Fast results ➢ Easy-to-use ➢ One year shelf life ➢ Can be used anywhere ➢ No experience required Additional testing options ➢ ELISA ➢ Testing Services ➢ Tospo Group PCR 52642 County Road 1 • Elkhart, IN 46514 USA • 800-622-4342 or 574-264-2615 • www.agdia.com 2 Since 1961, AFE has funded more than $15 million in research, scholarships, internships and grants. AFE Research Supports: AFE Scholarships Provide: n Insect and Disease Management of Floral n Hands-on training for the next generation Crops of floriculture industry leaders n Biocontrol Practices n Opportunities for students to n Production Management learn tools of the trade from industry professionals n Postharvest, transport and retail handling practices, including control of n Knowledgeable students ready to join insects and diseases the industry workforce n Marketing Practices and Consumer Purchase Practices Support the floriculture industry by making a donation at www.endowment.org/donate. By making a tax-deductible donation to the Endowment, you invest in the future of the industry—making it stronger and more sustainable for years to come. Proud Supporter of the Xth International Symposium on Thysanoptera and Tospoviruses www.endowment.org (703) 838-5211 | [email protected] 3 Program for the Xth International Symposium on Thysanoptera and Tospoviruses 16th May – 20th May, 2015; Asilomar Conference Grounds, Pacific Grove, California SATURDAY 16 May-2015 Registration and Hospitality Welcome Room Title Time Chapel Registration and Hospitality Welcome 15:30-18:00 Crocker
Recommended publications
  • Plant Health Карантин Растений
    КАРАНТИН РАСТЕНИЙ МАРТ НАУКА И ПРАКТИКА 1| 11| 2015 РУССКО-АНГЛИЙСКИЙ ЖУРНАЛ ТРИПСЫ — КАНДИДАТЫ НА ВКЛЮЧЕНИЕ В ПЕРЕЧЕНЬ КАРАНТИННЫХ ОБЪЕКТОВ ТАМОЖЕННОГО СОЮЗА, ОБНАРУЖИВАЕМЫЕ В ПОДКАРАНТИННОЙ ПРОДУКЦИИ, ПОСТУПАЮЩЕЙ В КАЛИНИНГРАДСКУЮ ОБЛАСТЬ стр. 4 КОЛЬЧАТЫЕ КОКОНОПРЯДЫ РОДА MALACOSOMA — НОВЫЕ ОБЪЕКТЫ КАРАНТИННОГО ПЕРЕЧНЯ РФ стр. 20 ПОИСК МОЛЕКУЛЯРНЫХ МАРКЕРОВ ДЛЯ ИДЕНТИФИКАЦИИ СОРНЫХ РАСТЕНИЙ стр. 32 THRIPS INTERCEPTED IN REGULATED ARTICLES IMPORTED INTO KALININGRAD REGION AS CANDIDATES FOR INCLUSION INTO THE PEST LIST OF THE CUSTOMS UNION page 9 TENT CATERPILLARS OF THE GENUS MALACOSOMA — NEW PESTS IN THE RUSSIAN QUARANTINE LIST page 24 SEARCH FOR MOLECULAR MARKERS FOR IDENTIFICATION OF WEEDS page 36 RUSSIAN-ENGLISH JOURNAL PLANT HEALTH MARCH ISSN 2306-9767 ISSN RESEARCH AND PRACTICE 1| 11| 2015 КАРАНТИН РАСТЕНИЙ 1| 11| 2015 1 СОДЕРЖАНИЕ CONTENT НАУЧНЫЕ ИССЛЕДОВАНИЯ RESEARCH STUDIES «КАРАНТИН РАСТЕНИЙ. НАУКА И ПРАКТИКА» В ОБЛАСТИ КАРАНТИНА РАСТЕНИЙ IN PLANT QUARANTINE ДВУЯЗЫЧНЫЙ НАУЧНЫЙ ЖУРНАЛ №1 (11) 2015 Г. В.И. Рожина, ведущий биолог ФГБУ «Калининградская МВЛ» Viktoria I. Rozhina, Leading Biologist Трипсы — кандидаты на включение в перечень карантинных объектов at the Kaliningrad Interregional Veterinary Laboratory Таможенного союза, обнаруживаемые в подкарантинной продукции, Thrips Intercepted in Regulated Articles Imported into Kaliningrad Region as поступающей в Калининградскую область Candidates for Inclusion into the Pest List of the Customs Union Главный редактор: Санин С.С. — академик РАН, РЕДАКЦИЯ: 4 9 У.Ш. Магомедов, кандидат директор Всероссийского НИИ Волкова Е.М. — заведующая сельскохозяйственных наук, фитопатологии В.Н. Жимерикин, ведущий научный сотрудник ФГБУ «ВНИИКР» Vladimir N. Zhimerikin, FGBU VNIIKR’s Leading Researcher лабораторией сорных растений директор ФГБУ «ВНИИКР» Ю.В. Смирнов, заместитель начальника Yury V. Smirnov, Deputy Head of FGBU VNIIKR’s научно-методического отдела энтомологии ФГБУ «ВНИИКР» Entomological Research and Methodology Department Мартин Уорд — Волков О.Г.
    [Show full text]
  • Thysanoptera: Phlaeothripidae): Redefinition and Key to Species
    The southern Palaearctic genus Neoheegeria (Thysanoptera: Phlaeothripidae): redefinition and key to species Kambiz Minaei, Parvaneh Azemayeshfard & Laurence A. Mound Problems in character state definition and interpretation in the Haplothrips-group are discussed, together with their implications for species identification and systematics. As a result, Neoheegeria Schmutz, 1909 is redefined to include only those species in this group that have three sensoria on the third antennal segment. The subgenus Haplothrips (Gigaplothrips) Priesner, 1949 is synonymised with Neoheegeria, and four species are recognized as valid; N. dalmatica Schmutz, 1909, N. gigantea (Priesner, 1934) comb.n., N. persica Priesner, 1954, and N. sinaitica Priesner, 1934. Three new synonyms are recognized under N. dalmatica; N. ballotae Priesner, 1951, N. hamanni Priesner, 1961 and N. nevskyi Moulton, 1946, and this species is widely distributed in the southern Palearctic. In contrast, N. persica and N. sinaitica are known only from Iran and Egypt respectively, and N. gigantea from Egypt to Morocco. The following six new combinations involve species with less than three sensoria on the third antennal segment: Haplothrips biroi (Priesner, 1928), H. faurei (Zur Strassen, 1966), H. hrasvamukha (Ramakrishna, 1928), H. johni (Priesner, 1925), H. lederi (Priesner, 1924), and H. verbasci (Osborn, 1897). One new combination involves an unrelated species from India, Xylaplothrips montanus (Ananthakrishnan & Jagadish, 1970). The available biological data suggest that species of Neoheegeria are associated particularly with the flowers of Lamiaceae. K. Minaei * & P. Azemayeshfard, ����������������Plant Protection D����������epartment, F���������aculty of Horticultural Science and Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Iran, [email protected] L.A.
    [Show full text]
  • Haplothrips Leucanthemi Distinguishing Features Both Sexes Fully Winged
    Haplothrips leucanthemi Distinguishing features Both sexes fully winged. Body brown to dark brown, fore tarsi and base of antennal segment III yellow; fore wing pale with base extensively shaded. Head slightly longer than wide; maxillary stylets one third of head width apart, retracted to postocular setae, maxillary bridge complete; postocular setae short and acute, usually not reaching posterior margin of compound eyes. Antennae 8-segmented, segment III with 2 sense cones, IV with 4 sense cones; VIII short and broad at base. Pronotal setae small and acute, anteromarginal and midlateral setae no longer than discal setae; prosternal basantra and ferna present, mesopresternum eroded to paired lateral triangles. Fore tarsal tooth minute in female. Fore wing constricted medially, with 7–12 duplicated cilia, sub-basal setae acute or blunt. Tergite Antenna IX setae S1 bluntly pointed, much shorter than tube, S2 acute. Male with large fore tarsal tooth; tergite IX setae S2 short and stout; pseudovirga of aedeagus slender. Related species The genus Haplothrips comprises 240 described species worldwide, of which only four are recorded from New Zealand, and none of these seems to be endemic. H. leucanthemi is a European species that is particularly associated with the flowers of Chrysanthemum leucanthemum. A form of this species is associated with red clover flowers and has been known as H. niger, but this is considered to be a parthenogenetic strain of H. leucanthemi. This thrips is remarkable among Haplothrips species in Head & pronotum having unusually short setae on the head and pronotum. Biological data Breeding and pupating within flowers, particularly Chrysanthemum leucanthemum (Asteraceae), but also Trifolium sp.
    [Show full text]
  • Numbers and Types of Arthropods Overwintering on Common Mullein, Verbascum Thapsus L
    J. ENTOMOL. SOC. BRIT. COLUMBIA 100, DECEMBER 2003 79 Numbers and types of arthropods overwintering on common mullein, Verbascum thapsus L. (Scrophulariaceae), in a central Washington fruit-growing region DAVID R. HORTON and TAMERA M. LEWIS USDA-ARS, 5230 KONNOWAC PASS Rd., WAPATO, WA, UNITED STATES 98951 ABSTRACT Densities and types of arthropods overwintering on common mullein, Verbascum thapsus L., in a fruit-growing region of Central Washington were determined. Over 45,000 arthropods were collected from 55 plants (5 plants from each of 11 sites), dominated numerically by Acari and Thysanoptera. Insects representing 8 orders and 29 families were identified, distributed both in the basal leaf rosettes and in the stalk material of the plants. One specialist insect herbivore of mullein, the mullein thrips, Haplothrips verbasci (Osborn), was abundant at all sites. Several pest and predatory taxa that commonly occur in orchards were also collected, suggesting that mullein may be a source of overwintered pests or predators moving into orchards in early spring. Pest taxa included primarily western flower thrips (Frankliniella occidentalis (Pergande)), Lygus spp., and tetranychid spider mites. Common predators included phytoseiid mites and minute pirate bugs (Orius tristicolor (White)). Sites that were geographically close to one another were not more similar (in taxonomic composition of overwintering arthropods) than more distantly separated sites. Key words: common mullein, overwintering, orchard pests, predatory arthropods, mullein thrips, western flower thrips, Orius tristicolor, mites INTRODUCTION Common mullein, Verbascum thapsus L. (Scrophulariaceae), is a biennial herb native to Eurasia (Munz 1959) but now common throughout North America. The species occurs in open waste areas, along fence lines, in overgrazed pastures, and along river bottoms, often found growing in large single-species stands.
    [Show full text]
  • Abundance of Frankliniella Schultzei (Thysanoptera: Thripidae) in Flowers on Major Vegetable Crops of South Florida Author(S): Garima Kakkar, Dakshina R
    Abundance of Frankliniella schultzei (Thysanoptera: Thripidae) in Flowers on Major Vegetable Crops of South Florida Author(s): Garima Kakkar, Dakshina R. Seal, Philip A. Stansly, Oscar E. Liburd and Vivek Kumar Source: Florida Entomologist, 95(2):468-475. 2012. Published By: Florida Entomological Society DOI: http://dx.doi.org/10.1653/024.095.0231 URL: http://www.bioone.org/doi/full/10.1653/024.095.0231 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 468 Florida Entomologist 95(2) June 2012 ABUNDANCE OF FRANKLINIELLA SCHULTZEI (THYSANOPTERA: THRIPIDAE) IN FLOWERS ON MAJOR VEGETABLE CROPS OF SOUTH FLORIDA GARIMA KAKKAR1,*, DAKSHINA R. SEAL1, PHILIP A.
    [Show full text]
  • Haplothrips Aliakbarii Sp. Nov. (Thysanoptera: Phlaeothripidae): a New Thrips on Oak Trees from Ilam Province (Western Iran)
    Turkish Journal of Zoology Turk J Zool (2018) 42: 608-613 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Short Communication doi:10.3906/zoo-1805-27 Haplothrips aliakbarii sp. nov. (Thysanoptera: Phlaeothripidae): a new thrips on oak trees from Ilam Province (western Iran) Majid MIRAB-BALOU*, Behzad MIRI Department of Plant Protection, College of Agriculture, Ilam University, Ilam, Iran Received: 18.05.2018 Accepted/Published Online: 12.08.2018 Final Version: 17.09.2018 Abstract: Haplothrips aliakbarii sp. nov. (Phlaeothripidae: Phlaeothripinae) is described and illustrated from Ilam Province, western Iran. This new species was collected on the leaves of oak trees (Quercus brantii). An identification key for Iranian species of Haplothrips is presented. Key words: Haplothrips, new species, oak, key, Iran Species of the large genus Haplothrips Amyot & Serville Bagnall, H. kurdjumovi Karny, H. longipes Bagnall, H. (Phlaeothripinae: Haplothripini) are found worldwide, maroccanus Priesner, H. minutes Uzel, H. phyllophilus with 242 extant species (Mound and Matsunaga, 2017). Priesner, H. rabinovitchi Priesner, and H. subtilissimus This genus is divided into two subgenera, Haplothrips and (Haliday). Trybomiella, which are distinguished by the presence or In this paper, we describe a new species of Haplothrips absence of fore wings with duplicated cilia (Minaei and that was collected on the leaves of oak trees in Ilam Mound, 2008). Species of this genus are usually brown and Province, western Iran. An identification key is also are readily recognized from the head gradually narrowed provided for 21 species of Haplothrips from Iran (Minaei towards base, postocular setae pointed, blunt or expanded; and Mound, 2008), and an updated key is provided for antennae 8-segmented, segment III with one or two sense Iranian species of this genus.
    [Show full text]
  • Identified Difficulties and Conditions for Field Success of Biocontrol
    Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco To cite this version: Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco. Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook. Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success, IOBC - International Organisation for Biological and Integrated Controlof Noxious Animals and Plants, 2011, 978-92-9067-243-2. hal-02809583 HAL Id: hal-02809583 https://hal.inrae.fr/hal-02809583 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. WPRS International Organisation for Biological and Integrated Control of Noxious IOBC Animals and Plants: West Palaearctic Regional Section SROP Organisation Internationale de Lutte Biologique et Integrée contre les Animaux et les OILB Plantes Nuisibles:
    [Show full text]
  • Lepidoptera: Geometridae: Larentiinae)
    Blackwell Science, LtdOxford, UKAENAustralian Journal of Entomology1326-67562005 Australian Entomological Society 200544257278Original ArticleRevision of ScotocymaO Schmidt Australian Journal of Entomology (2005) 44, 257–278 Revision of Scotocyma Turner (Lepidoptera: Geometridae: Larentiinae) Olga Schmidt Zoologische Staatssammlung München, Münchhausenstraße 21, D-81247, München, Germany. Abstract The Australasian genus Scotocyma Turner is revised, containing the species S. albinotata (Walker), S. legalis (Warren), S. asiatica Holloway, S. scotopepla Prout, stat. n., S. manusensis Prout, stat. n., S. mimula (Warren), stat. n. and S. miscix Prout. Scotocyma euryochra Turner, syn. n., S. idioschema Turner, syn. n., S. ischnophrica Turner, syn. n. and S. transfixa Turner, syn. n. are regarded as synonyms of S. albinotata. Four species are described as new: S. samoensis, sp. n., S. sumatrensis, sp. n., S. rutilimixta, sp. n. and S. longiuncus, sp. n. Lectotypes are designated for S. scotopepla, S. manusensis and S. miscix. All species are illustrated, and keys to species and distribution maps are provided. A phylogenetic analysis was performed to test the monophyly of the genus and to examine distribution patterns of the species. A biogeographical discussion is included. The tribal position of the genus is clarified and relationships to closely related genera are discussed. Key words Australasian region, biogeography, distribution patterns, geometrid moths, Melanesian island arcs, phylogenetics, taxonomy, Xanthorhoini. INTRODUCTION Since Turner (1922), there have been few reviews of the Australasian genera of Larentiinae. Craw (1986, 1987) revised The genus Scotocyma Turner (1904) belongs to the large sub- the New Zealand species of the genera Notoreas Meyrick and family Larentiinae (Lepidoptera: Geometridae). The larentiine Helastia (Guenée). The Australian Anachloris Meyrick and moths have a worldwide distribution, with the highest species Australasian Chaetolopha Warren have been revised recently diversity in temperate regions.
    [Show full text]
  • Managing Thrips and Tospoviruses in Tomato1
    ENY859 Managing Thrips and Tospoviruses in Tomato1 Joe Funderburk, Scott Adkins, Josh Freeman, Sam Hutton, Phil Stansly, Hugh Smith, Gene McAvoy, Crystal Snodgrass, Mathews Paret, and Norm Leppla2 Several invasive species of thrips have established in Florida review information on the situation in Florida (Funderburk and are causing serious economic losses to vegetable, 2009; Frantz and Mellinger 2009; Weiss et al. 2009). ornamental, and agronomic crops. Damage to crops results from thrips feeding and egg-laying injury, by the thrips The western flower thrips is the most efficient vector of vectoring of plant diseases, the cost of using control tactics, Tomato spotted wilt virus (TSWV). This virus is one of and the loss of pesticides due to resistance. Western flower about twenty known species of tospoviruses (Sherwood thrips (Frankliniella occidentalis), which was introduced et al. 2001a, b). Epidemics of tomato spotted wilt (TSW) and became established in north Florida in the early 1980s, occur frequently in numerous crops in north Florida. Until is the major thrips pest of tomatoes. The western flower recently, it was thought that TSW occurred sporadically in thrips did not become an economic problem in central central and south Florida. Most infections were confined to and south Florida until 2005 (Frantz and Mellinger 2009). a few isolated plants in a field, transplants, mainly pepper, Two other invasive species, melon thrips, Thrips palmi, and which originated from planthouses in Georgia. Secondary chilli thrips, Scirtothrips dorsalis, are not damaging pests of spread (i.e., within the field) away from the initial site of tomato. infection was rarely, if ever, seen.
    [Show full text]
  • Immature Development and Survival of Neoseiulus Cucumeris (Oudemans
    Immature development and survival of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) on eggs of Tyrophagus curvipenis (Fain & Fauvel) (Acari: Acaridae) Guang-Yun Li, Nick Pattison, Zhi-Qiang Zhang To cite this version: Guang-Yun Li, Nick Pattison, Zhi-Qiang Zhang. Immature development and survival of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) on eggs of Tyrophagus curvipenis (Fain & Fauvel) (Acari: Acaridae). Acarologia, Acarologia, 2021, 61 (1), pp.84-93. 10.24349/acarologia/20214415. hal- 03118398 HAL Id: hal-03118398 https://hal.archives-ouvertes.fr/hal-03118398 Submitted on 22 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Acarologia A quarterly journal of acarology, since 1959 Publishing on all aspects of the Acari All information: http://www1.montpellier.inra.fr/CBGP/acarologia/ [email protected] Acarologia is proudly non-profit, with no page charges and free open access Please help us maintain this system by encouraging your institutes
    [Show full text]
  • Evaluation of Neoseiulus Cucumeris and Amblyseius Swirskii (Acari
    Biological Control 49 (2009) 91–96 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Evaluation of Neoseiulus cucumeris and Amblyseius swirskii (Acari: Phytoseiidae) as biological control agents of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) on pepper Steven Arthurs a,*, Cindy L. McKenzie b, Jianjun Chen a, Mahmut Dogramaci a, Mary Brennan a, Katherine Houben a, Lance Osborne a a Mid-Florida Research and Education Center and Department of Entomology and Nematology, University of Florida, IFAS, 2725 Binion Road, Apopka, FL 32703-8504, United States b US Horticultural Research Laboratory, ARS-USDA, 2001 South Rock Road, Fort Pierce, FL 34945, United States article info abstract Article history: The invasive chilli thrips, Scirtothrips dorsalis Hood poses a significant risk to many food and ornamental Received 20 November 2008 crops in the Caribbean, Florida and Texas. We evaluated two species of phytoseiid mites as predators of S. Accepted 6 January 2009 dorsalis. In leaf disc assays, gravid females of Neoseiulus cucumeris and Amblyseius swirskii both fed on S. Available online 20 January 2009 dorsalis at statistically similar rates. Larvae were the preferred prey for both species, consuming on aver- age 2.7/day, compared with 1.1–1.7 adults/day in no choice tests. Adult thrips were rarely consumed in Keywords: subsequent choice tests when larvae were also present. Mite fecundity was statistically similar for both Chilli thrips species feeding on thrips larvae (1.3 eggs/day) but significantly less for A. swirskii restricted to a diet of Predatory mite adult thrips (0.5 eggs/day).
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND ET MEDITERRANEENNE MEDITERRANEAN POUR LA PROTECTION DES PLANTES PLANT PROTECTION ORGANIZATION EPPO Reporting Service NO. 4 PARIS, 2018-04 General 2018/068 New data on quarantine pests and pests of the EPPO Alert List 2018/069 Quarantine lists of Kazakhstan (2017) 2018/070 EPPO report on notifications of non-compliance 2018/071 EPPO communication kits: templates for pest-specific posters and leaflets 2018/072 Useful publications on Spodoptera frugiperda Pests 2018/073 First report of Tuta absoluta in Tajikistan 2018/074 First report of Tuta absoluta in Lesotho 2018/075 First reports of Grapholita packardi and G. prunivora in Mexico 2018/076 First report of Scaphoideus titanus in Ukraine 2018/077 First report of Epitrix hirtipennis in France 2018/078 First report of Lema bilineata in Italy 2018/079 Eradication of Anoplophora glabripennis in Brünisried, Switzerland 2018/080 Update on the situation of Anoplophora glabripennis in Austria Diseases 2018/081 First report of Ceratocystis platani in Turkey 2018/082 Huanglongbing and citrus canker are absent from Egypt 2018/083 Xylella fastidiosa eradicated from Switzerland 2018/084 Update on the situation of Ralstonia solanacearum on roses in Switzerland 2018/085 First report of ‘Candidatus Phytoplasma fragariae’ in Slovenia Invasive plants 2018/086 Ambrosia artemisiifolia control in agricultural areas in North-west Italy 2018/087 Optimising physiochemical control of invasive Japanese knotweed 2018/088 Update on LIFE project IAP-RISK 2018/089 Conference: Management and sharing of invasive alien species data to support knowledge-based decision making at regional level (2018-09-26/28, Bucharest, Romania) 21 Bld Richard Lenoir Tel: 33 1 45 20 77 94 E-mail: [email protected] 75011 Paris Fax: 33 1 70 76 65 47 Web: www.eppo.int EPPO Reporting Service 2018 no.
    [Show full text]