Photosynthetic Adjustments of Amaranthus Varieties In

Total Page:16

File Type:pdf, Size:1020Kb

Photosynthetic Adjustments of Amaranthus Varieties In PHOTOSYNTHETIC ADJUSTMENTS OF AMARANTHUS VARIETIES IN RESPONSE TO GROWTH IRRADIANCE A Thesis Submitted to the College of Graduate and Postdoctoral Studies In Partial Fulfillment of the Requirements For the Degree of Master of Science In the Department of Plant Sciences University of Saskatchewan Saskatoon By Elena Benic © Copyright Elena Benic, August 2018. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication on use of this thesis or parts thereof for financial gain shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of materials in this thesis in whole or in part should be addressed to: Head of the Department of Plant Sciences University of Saskatchewan Saskatoon, Saskatchewan S7N 5A8 Canada OR Dean College of Graduate and Postdoctoral Studies University of Saskatchewan 107 Admission Place Saskatoon, Saskatchewan S7N 5A2 Canada i ABSTRACT Increased concern of food security has created a demand for crops that exhibit high yields under conditions that require a minimal input of resources, such as light. Amaranthus is a C4 plant that has multiple uses, including that of a food source in many parts of the world. The objective of this research was to evaluate the photosynthetic performance of red and green vegetable varieties of Amaranthus blitum grown under high light (HL; 500 µmol m-2 s-1) photosynthetic photon flux density (PPFD) and low light (LL; 70 µmol m-2 s-1 PPFD). Under HL growth irradiance, the red variety accumulated more biomass than the green variety before flowering. This was accompanied by a 1.2- fold increase of photosynthetic efficiency, a 1.5-fold increase of photosynthetic capacity (maximal rates of O2 evolution), a 1.5-fold increase of dark respiration rate, a 1.3- fold increase in light compensation point and a 1.7-fold increase of light saturation point. These values were supported by a 2.5- and 2.6-fold higher content of chlorophyll and carotenoids, respectively. A 4.7-fold greater betalain content was also observed. In addition, exposure to a photoinhibitory irradiance (1450 µmol m-2 s-1 PPFD) at 2°C for 4 hours demonstrated the red variety exhibited increased tolerance to photoinhibition in comparison to the green variety when measured at the level of maximal photochemical efficiency of photosystem II. Further, this may be a result of the screening of light and shielding of chloroplasts by betalains that accumulate predominantly in the abaxial mesophyll and supported by a 1.2-fold increase in the red variety lower mesophyll cells thickness than in the green variety, leading to a thicker leaf. The granal index in bundle sheath cells under high light irradiance in the red variety was 2.0-fold greater than in the green variety, supported by 3.1-fold greater ratio of the length of appressed/non- appressed thylakoids and a 2.0-fold increase in thylakoids/granum. These results suggest that under HL growth irradiance, the granal index and stackness (thylakoids/granum) enhances photosynthetic efficiency and capacity. In contrast, under LL growth irradiance both varieties performed photosynthetically similarly. Collectively, these results indicate that the red variety possesses a greater photoacclimatory capacity than the green variety under HL growth irradiance, whereas neither variety expressed an advantage under the LL growth irradiance in this study. ii ACKNOWLEDGEMENTS I would like to express my deepest gratitude and appreciation to Dr. Gordon R. Gray and Dr. Karen K. Tanino for their encouragement, scientific guidance, patience and financial support during my studies. I would also like to thank my graduate committee members: Dr. Rosalind A. Bueckert (chair), Dr. Robert H. Bors and Dr. Art Davis for providing their diverse backgrounds to support me during this project, as well as deep thanks to Dr. Simon D. X. Chuong for being the External Examiner and for his imput to the completion of this work. Special thanks to the staff of the Department of Plant Sciences, especially: Dr. Yuguang Bai (head), Carolyn Ouellet, Gloria Gingera and Marlene Freeman. Special thanks to the many members of Dr. Tanino’s Lab for their time, advices and support with specific note of Dr. Ian Willick, Kaila Hamilton, Eric Rae, Dr. Prakash Venglat, Pankaj Banik, Gowribai Valsala, Rensong Liu, Dr. Masoomeh Etehadnia, Dr. Tawhidur Rahman and Abdul Halim. Quality plant care was made possible by the phytotron team. Special thanks to Dr. Guosheng Liu from Department of Biology for advice and help in preparation of samples for TEM, to Larhonda Sobchishin from WCVM imaging center using TEM. Microscopy techniques were learned from the imaging team at NMBU with special recognition of Drs. YeonKyeong Lee, Hilde Kolstad, Lene Cecilie Hermansen and Jorunn Olsen. Special thanks also to Dr. Chris Ambrose for his advice and support. Without the numerous and generous funding sources this project would have not been possible: Special thanks to Saskatchewan Ministry of Agriculture, Natural Sciences and Engineering Research Council of Canada, Saskatchewan Innovation & Opportunity Scholarship, Rene Vandeveld Postgraduate Scholarship and Daniel Geddes Graduate Scholarship in Plant Sciences, as well as the Department of Plant Sciences. Finally, I would like to recognize my husband Kresimir Benic, and friends (especially Tatiana Mashkova) for their interest and unwavering support over the course of the project. iii DEDICATION This thesis is dedicated to my beloved husband Kresimir Benic, son Jakov, and daughters Azra and Judita for their love, support and incredible patience. iv TABLE OF CONTENTS Page PERMISSION TO USE ............................................................................................... i ABSTRACT ................................................................................................................. ii ACKNOWLEDGEMENTS ........................................................................................... iii DEDICATION .............................................................................................................. iv TABLE OF CONTENTS .............................................................................................. v LIST OF TABLES ........................................................................................................ viii LIST OF FIGURES ...................................................................................................... x LIST OF ABBREVIATIONS ......................................................................................... xii 1.0 INTRODUCTION ................................................................................................... 1 1.1 Hypothesis and Objectives ......................................................................... 3 1.1.1 Hypothesis .................................................................................... 3 1.1.2 Overall Objective ........................................................................... 3 1.1.3 Specific Objectives ........................................................................ 4 2.0 LITERATURE REVIEW ......................................................................................... 5 2.1 Photosynthesis ........................................................................................... 5 2.1.1 Leaf Structure and Anatomy .......................................................... 5 2.1.2 Stomata and Trichomes ................................................................ 6 2.1.3 Chloroplasts .................................................................................. 8 2.1.3.1 Peripheral Reticulum ......................................................... 8 2.1.3.2 Cytoplasmic Protrusions .................................................... 10 2.1.3.3 Crystalline Inclusions ......................................................... 10 2.1.4 Microbodies ................................................................................... 10 2.1.5 Light Dependent Reactions ........................................................... 11 2.1.6 Photosynthetic Measurements ...................................................... 13 2.1.6.1 Photosynthetic O2 Evolution .............................................. 14 2.1.6.2 Chlorophyll Fluorescence .................................................. 14 2.1.7 Photosynthetic Carbon Reduction ................................................. 14 2.1.8 Photorespiration ............................................................................ 20 2.2 Photostasis and Photoinhibition .................................................................. 21 2.2.1 Photostasis .................................................................................... 21 2.2.2 Photoinhibition ............................................................................... 22 2.3 Photoacclimation .......................................................................................
Recommended publications
  • Morphological Characters, Geographic Distribution and Ecology of Neophytic Amaranthusblitum L
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2004 Band/Volume: 105B Autor(en)/Author(s): Walter Johannes, Dobes Christoph Artikel/Article: Morphological characters, geographic distribution and ecology of neophytic Amaranthusblitum L. subsp. emarginatus in Austria 645-672 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 105 B 645 - 672 Wien, April 2004 Morphological characters, geographic distribution and ecology of neophytic Amaranth us blitum L. subsp. emarginatus in Austria J. Walter* & Ch. Dobes* Abstract Amaranthus blitum L. subsp. emarginatus (MOQ. ex ULINE & BRAY) CARRETERO, MUNOZ GARMENDIA & PEDROL. has been recently introduced to Austria. This neophyte occurs on banks of the rivers Thaya and March along the north-eastern border of Austria where it has been established. All further locations encountered were restricted to ruderal habitats. A revision based on herbarium material and the authors' collections as well as a geographic distribution map of subsp. blitum and subsp. emarginatus including morphologically problematic specimens are given. A first chromosomal record for latter subspecies from Austria is cited. The morphological characters are discussed in detail. Data on phytosociology of subsp. emarginatus from both natural and anthropogenic habitats are presented, and according to indigenous vegetation, the ecology of this neophyte is discussed. Keywords: alien species, Amaranthus, Amaranthaceae, Austria, chromosome number, ecology, geographic distribution, taxonomy, phytosociology Zusammenfassung Amaranthus blitum L. subsp. emarginatus (MOQ. ex ULINE & BRAY) CARRETERO, MUNOZ GARMENDIA & PEDROL. ist eine erst spät in Österreich eingeschleppte Art. Neben den zumeist noch sporadischen adventiven Vorkommen dieses Neophyten existieren an den Flussufern der Thaya und March etablierte Populationen.
    [Show full text]
  • EFFECTS of RED PITAYA FRUIT (Hylocereus Sp
    BORNEO SCIENCE 31: SEPTEMBER 2012 EFFECTS OF RED PITAYA FRUIT (HYLOCEREUS POLYRHIZUS) CONSUMPTION ON BLOOD GLUCOSE LEVEL AND LIPID PROFILE IN TYPE 2 DIABETIC SUBJECTS ¹Norhayati Abd Hadi, ¹Marhazlina Mohamad, ¹Mohd Adzim Khalili Rohin, & ²Rokiah Mohd Yusof ¹Faculty of Medicine and Health Sciences, Universiti Sultan Zainal Abidin, Kampus Kota, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia. ²Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. ABSTRACT. This study was conducted to determine the effects of red pitaya fruit consumption on blood glucose level, lipid profile, body weight and total body fat in type 2 diabetic subjects. A total of 28 subjects were randomly divided into four groups; Group 1 were given 400g of red pitaya per day, Group 2 were given 600 g of red pitaya per day, Group 3 negative control; were diabetic patients and given a normal diet and Group 4 positive control; were healthy subjects and given a normal diet. Subjects were assigned to a seven week study which consisted of three phases: phase 1: one week, phase 2: 4 weeks of treatment and phase 3: 2 weeks of wash-out. After four weeks of treatment, Group 1 showed a significant increase in HDL-cholesterol level and a significant decrease in blood glucose, LDL-cholesterol and triglyceride level. There was a significant increase in total cholesterol level on the seventh week of the study. Even though there was no significant difference in Group 2, there was still an increasing trend in HDL-cholesterol level and decreasing trend in blood glucose, total cholesterol, triglycerideand LDL-cholesterol levels, with a higher percent of changes than Group 1.
    [Show full text]
  • Viral Diseases of Pitaya and Other Cactaceae Plants
    Improving Pitaya Production and Marketing VIRAL DISEASES OF PITAYA AND OTHER CACTACEAE PLANTS Yong-Shi Li1, Ching-Hua Mao1, Ting-Yi Kuo2, and Ya-Chun Chang1 1 Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan 2 Master Program for Plant Medicine, National Taiwan University, Taipei, Taiwan E-mail: [email protected] ABSTRACT Pitaya (Hylocereus spp.), also called dragon fruit, pitahaya or pitajaya, native to the forests of Latin America, and the West Indies, belongs to the family of Cactaceae. Among the cactus fruit crops, pitaya is classified as the climbing epiphytic species and produces edible fruits which have sweet pulps with numerous small black seeds on the trailing cladode stems. Due to the progress in breeding and cultivation techniques in Taiwan, pitaya is becoming an important fruit crop in the domestic and foreign markets. During a disease survey of pitaya in Taiwan, some plants were found with systemic mild mottling on the stems, and these were found to be infected by a potexvirus, Cactus virus X (CVX). In addition, another two potexviruses Zygocactus virus X (ZyVX) and Pitaya virus X (PiVX), were identified later in Taiwan. Because of the similar features of Cactaceae plants, there is high possibility that cactus-infecting viruses will infect pitaya just like CVX and ZyVX did. The objective of this article is to provide information of viral diseases of pitaya and other Cactaceae plants so as to help further study of pitaya- infecting viruses and propose the control strategy. Keywords: pitaya, Hylocereus, Cactaceae, viral diseases INTRODUCTION Pitaya, also called dragon fruit, pitahaya or pitajaya, native to the forests of northern South America, Central America, Mexico, and the West Indies, belongs to the genus Hylocereus in the family of Cactaceae (Mizrahi et al.
    [Show full text]
  • Underutilization Versus Nutritional-Nutraceutical Potential of the Amaranthus Food Plant: a Mini-Review
    applied sciences Review Underutilization Versus Nutritional-Nutraceutical Potential of the Amaranthus Food Plant: A Mini-Review Olusanya N. Ruth 1,*, Kolanisi Unathi 1,2, Ngobese Nomali 3 and Mayashree Chinsamy 4 1 Disipline of Food Security, School of Agricultural, Earth and Environmental Science University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa; [email protected] 2 Department of Consumer Science, University of Zululand, 24 Main Road, KwaDlangezwa, Uthungulu 3886, South Africa 3 Department of Botany and Plant Biotectechnology, University of Johannesburg, Auckland Park, Johannesburg 2092, South Africa; [email protected] 4 DST-NRF-Center, Indiginous Knowledge System, University of KwaZulu-Natal, Westville 3629, South Africa; [email protected] * Correspondence: [email protected] Abstract: Amaranthus is a C4 plant tolerant to drought, and plant diseases and a suitable option for climate change. This plant could form part of every region’s cultural heritage and can be transferred to the next generation. Moreover, Amaranthus is a multipurpose plant that has been identified as a traditional edible vegetable endowed with nutritional value, besides its fodder, medicinal, nutraceutical, industrial, and ornamental potentials. In recent decade Amaranthus has received increased research interest. Despite its endowment, there is a dearth of awareness of its numerous potential benefits hence, it is being underutilized. Suitable cultivation systems, innovative Citation: Ruth, O.N.; Unathi, K.; processing, and value-adding techniques to promote its utilization are scarce. However, a food-based Nomali, N.; Chinsamy, M. approach has been suggested as a sustainable measure that tackles food-related problem, especially Underutilization Versus in harsh weather. Thus, in this review, a literature search for updated progress and potential Nutritional-Nutraceutical Potential of uses of Amaranthus from online databases of peer-reviewed articles and books was conducted.
    [Show full text]
  • What Pigments Are in Plants?
    BUILD YOUR FUTURE! ANYANG BEST COMPLETE MACHINERY ENGINEERING CO.,LTD WHAT PIGMENTS ARE IN PLANTS? Pigments Pigments are chemical compounds responsible for color in a range of living substances and in the inorganic world. Pigments absorb some of the light they receive, and so reflect only certain wavelengths of visible light. This makes them appear "colorful.” Cave paintings by early man show the early use of pigments, in a limited range from straw color to reddish brown and black. These colors occurred naturally in charcoals, and in mineral oxides such as chalk and ochre. The WebExhibit on Pigments has more information on these early painting palettes. Many early artists used natural pigments, but nowadays they have been replaced by cheaper and less toxic synthetic pigments. Biological Pigments Pigments are responsible for many of the beautiful colors we see in the plant world. Dyes have often been made from both animal sources and plant extracts . Some of the pigments found in animals have also recently been found in plants. Website: www.bestextractionmachine.com Email: [email protected] Tel: +86 372 5965148 Fax: +86 372 5951936 Mobile: ++86 8937276399 BUILD YOUR FUTURE! ANYANG BEST COMPLETE MACHINERY ENGINEERING CO.,LTD Major Plant Pigments White Bird Of Paradise Tree Bilirubin is responsible for the yellow color seen in jaundice sufferers and bruises, and is created when hemoglobin (the pigment that makes blood red) is broken down. Recently this pigment has also been found in plants, specifically in the orange fuzz on seeds of the white Bird of Paradise tree. The bilirubin in plants doesn’t come from breaking down hemoglobin.
    [Show full text]
  • RNA-Sequencing Analysis Reveals Betalains Metabolism in the Leaf of Amaranthus Tricolor L
    RESEARCH ARTICLE RNA-sequencing analysis reveals betalains metabolism in the leaf of Amaranthus tricolor L. Shengcai Liu1☯, Xueli Zheng1☯, Junfei Pan1, Liyun Peng1, Chunzhen Cheng1, Xiao Wang1, 1 1 1 1,2 1 Chunli Zhao , Zihao Zhang , Yuling Lin , Xu XuHan *, Zhongxiong LaiID * 1 Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China, 2 Institut de la Recherche Interdisciplinaire de Toulouse, Toulouse, France ☯ These authors contributed equally to this work. * [email protected](ZL); [email protected] (XXH) a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Amaranth plants contain large amounts of betalains, including betaxanthins and betacya- nins. Amaranthin is a betacyanin, and its molecular structure and associated metabolic pathway differ from those of betanin in beet plants. The chlorophyll, carotenoid, betalain, and flavonoid contents in amaranth leaves were analyzed. The abundance of betalain, beta- OPEN ACCESS cyanin, and betaxanthin was 2±5-fold higher in the red leaf sectors than in the green leaf Citation: Liu S, Zheng X, Pan J, Peng L, Cheng C, sectors. Moreover, a transcriptome database was constructed for the red and green sectors Wang X, et al. (2019) RNA-sequencing analysis of amaranth leaves harvested from 30-day-old seedlings. 22 unigenes were selected to ana- reveals betalains metabolism in the leaf of Amaranthus tricolor L.. PLoS ONE 14(4): lyze the expression profiles in the two leaf sectors. The RNA-sequencing data indicated that e0216001. https://doi.org/10.1371/journal. many unigenes are involved in betalain metabolic pathways. The potential relationships pone.0216001 between diverse metabolic pathways and betalain metabolism were analyzed.
    [Show full text]
  • Ethnobotanical Study on Wild Edible Plants Used by Three Trans-Boundary Ethnic Groups in Jiangcheng County, Pu’Er, Southwest China
    Ethnobotanical study on wild edible plants used by three trans-boundary ethnic groups in Jiangcheng County, Pu’er, Southwest China Yilin Cao Agriculture Service Center, Zhengdong Township, Pu'er City, Yunnan China ren li ( [email protected] ) Xishuangbanna Tropical Botanical Garden https://orcid.org/0000-0003-0810-0359 Shishun Zhou Shoutheast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Liang Song Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Intergrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Ruichang Quan Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Huabin Hu CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Research Keywords: wild edible plants, trans-boundary ethnic groups, traditional knowledge, conservation and sustainable use, Jiangcheng County Posted Date: September 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-40805/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on October 27th, 2020. See the published version at https://doi.org/10.1186/s13002-020-00420-1. Page 1/35 Abstract Background: Dai, Hani, and Yao people, in the trans-boundary region between China, Laos, and Vietnam, have gathered plentiful traditional knowledge about wild edible plants during their long history of understanding and using natural resources. The ecologically rich environment and the multi-ethnic integration provide a valuable foundation and driving force for high biodiversity and cultural diversity in this region.
    [Show full text]
  • EPRA International Journal of Research and Development (IJRD) Volume: 5 | Issue: 12 | December 2020 - Peer Reviewed Journal
    SJIF Impact Factor: 7.001| ISI I.F.Value:1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online) EPRA International Journal of Research and Development (IJRD) Volume: 5 | Issue: 12 | December 2020 - Peer Reviewed Journal CHEMICAL EVIDENCE SUPPORTING THE ICLUSION OF AMARANTHACEAE AND CHENOPODIACEAE INTO ONE FAMILY AMARANTHACEAE JUSS. (s.l.) Fatima Mubark1 1PhD Research Scholar, Medicinal and Aromatic Plants research Institute, National Council for Research, Khartom, Sudan Ikram Madani Ahmed2 2Associate Professor, Department of Botany, Faculty of Science, University of Khartoum, Sudan Corresponding author: Ikram Madani, Article DOI: https://doi.org/10.36713/epra6001 ABSTRACT In this study, separation of chemical compounds using Thin layer chromatography technique revealed close relationship between the studied members of the newly constructed family Amaranthaceae Juss. (s.l.). 68% of the calculated affinities between the studied species are above 50% which is an indication for close relationships. 90% is the chemical affinities reported between Chenopodium murale and three species of the genus Amaranthus despite of their great morphological diversity. Among the selected members of the chenopodiaceae, Chenopodium murale and Suaeda monoica are the most closely related species to all of the studied Amaranthaceae . 60%-88% and 54%-88% chemical affinities were reported for the two species with the Amaranthaceae members respectively. GC-Mass analysis of methanolic extracts of the studied species identified 20 compounds common between different species. 9,12- Octadecadienoic acid (Z,Z)-,2-hydroxy-1 and 7-Hexadecenal,(Z)- are the major components common between Amaranthus graecizans, Digera muricata Aerva javanica Gomphrena celosioides of the historical family Amaranthaceae and Suaeda monoica Salsola vermiculata Chenopodium murale Cornulaca monocantha of the historical family Chenopodiaceae, Most of the identified compounds are of pharmaceutical importance such as antioxidants, anti-inflammatory , and Anti-cancerous.
    [Show full text]
  • Natural Coloring Red Beetroot Under Effects of Gamma Radiation
    Horticulture International Journal Research Article Open Access Natural coloring red beetroot under effects of gamma radiation Abstract Volume 5 Issue 3 - 2021 As color is an important attribute related to the visual appeal and quality of food products, Marcia Nalesso Costa Harder,1,2 Ian Harder the reduction of pigment losses during food processing is a basic concern for the industry. Formaggio,2 Larissa Nalesso Costa Harder,1 Based on this, the objective of this work was to evaluate the resistance of betalain from Débora Cristina Maciel de Lemos Bovi,2 beet against the use of gamma radiation. Analyzes were carried out on pigments belonging 1 1,3 to the betalain class on beets exposed to different doses of gamma radiation (Co60) using Paula Bergamin Arthur, Valter Arthur 1 doses of 5, 10 and 15 kGy on beets, in addition to anon-irradiated sample for control. Nuclear and Energy Research Institute, São Paulo, Brazil 2 Color parameters were evaluated using the CIE L, a*, b * methodology, as well as the Technology College of Piracicaba, Piracicaba, São Paulo, Brazil 3Radiobiology and Environment, Center of Nuclear Energy in quantification of betalain in the samples. By of results the color parameters were affected in Agriculture, Piracicaba, São Paulo, Brazil until 50% in relation the control. And the quantity betalain activity in the sample irradiated with doses of gamma radiation was more less 65% in relation the control. Therefore, it Correspondence: Valter Arthur, Center of Nuclear Energy in can be concluded that there is a potential resistance of the betalain pigment in the face of Agriculture, Av.
    [Show full text]
  • Fruits of the Pitahaya Hylocereus Undatus and H. Ocamponis
    Journal of Applied Botany and Food Quality 93, 197 - 203 (2020), DOI:10.5073/JABFQ.2020.093.024 1Instituto de Horticultura, Departamento de Fitotecnia. Universidad Autónoma Chapingo, Estado de Mexico 2Instituto de Alimentos, Departmento de Ingenieria Agroindustrial. Universidad Autónoma Chapingo, Estado de Mexico Fruits of the pitahaya Hylocereus undatus and H. ocamponis: nutritional components and antioxidants Lyzbeth Hernández-Ramos1, María del Rosario García-Mateos1*, Ana María Castillo-González1, Carmen Ybarra-Moncada2, Raúl Nieto-Ángel1 (Submitted: May 2, 2020; Accepted: September 15, 2020) Summary epicarp of bracts. In addition, it is important to point out that “pitaya” The pitahaya (Hylocereus spp.) is a cactus native to America. and “pitahaya” have been used incorrectly as synonyms (IBRAHIM Despite the great diversity of species located in Mexico, there are et al., 2018; LE BELLEC et al., 2006). “Pitaya” corresponds to the few studies on the nutritional and nutraceutical value of its exotic genus Stenocereus (QUIROZ-GONZÁLEZ et al., 2018), while “pitahaya” fruits, ancestrally consumed in the Mayan culture. An evaluation was corresponds to the genus Hylocereus (WU et al., 2006). Research on made regarding the physical-chemical characteristics, the nutritional pitahaya was done in this study. components and the antioxidants of the fruits of H. ocamponis The fruit of H. ocamponis (Salm-Dyck) Britton & Rose, known as (mesocarp or red pulp) and H. undatus (white pulp), species of great pitahaya solferina (red epicarp, red, pink or purple mesocarp) is a native commercial importance. The pulp of the fruits presented nutritional species of Mexico (GARCÍA-RUBIO et al., 2015), little documented, and nutraceutical differences between both species.
    [Show full text]
  • Natural Colour Book
    THE COLOUR BOOK Sensient Food Colors Europe INDEX NATURAL COLOURS AND COLOURING FOODS INDEX 46 Lycopene 4 We Brighten Your World 47 Antho Blends – Pink Shade 6 Naturally Different 48 Red Cabbage 8 The Colour of Innovation 49 Beetroot – with reduced bluish tone 10 Natural Colours, Colouring Foods 50 Beetroot 11 Cardea™, Pure-S™ 51 Black Carrot 12 YELLOW 52 Grape 14 Colourful Impulses 53 Enocianin 15 Carthamus 54 Red Blends 16 Curcumin 56 VIOLET & BLUE 17 Riboflavin 59 Violet Blends 18 Lutein 61 Spirulina 19 Carrot 62 GREEN 20 Natural Carotene 65 Green Blends 22 Beta-Carotene 66 Copper-Chlorophyllin 24 Annatto 67 Copper-Chlorophyll 25 Yellow/ Orange Blends 68 Chlorophyll/-in 26 ORANGE 69 Spinach 29 Natural Carotene 70 BROWN 30 Paprika Extract 73 Burnt Sugar 32 Carrot 74 Apple 33 Apocarotenal 75 Caramel 34 Carminic Acid 76 BLACK & WHITE 35 Beta-Carotene 79 Vegetable Carbon 36 RED 80 Titanium Dioxide 39 Antho Blends – Strawberry Shade 81 Natural White 40 Aronia 41 Elderberry 83 Regulatory Information 42 Black Carrot 84 Disclaimer 43 Hibiscus 85 Contact Address 44 Carmine 3 INDEX NATURAL COLOURS AND COLOURING FOODS WE BRIGHTEN YOUR WORLD Sensient is as colourful as the world around us. Whatever you are looking for, across the whole spectrum of colour use, we can deliver colouring solutions to best meet your needs in your market. Operating in the global market place for over 100 years Sensient both promises and delivers proven international experience, expertise and capabilities in product development, supply chain management, manufacture, quality management and application excellence of innovative colours for food and beverages.
    [Show full text]
  • Studies on Betalain Phytochemistry by Means of Ion-Pair Countercurrent Chromatography
    STUDIES ON BETALAIN PHYTOCHEMISTRY BY MEANS OF ION-PAIR COUNTERCURRENT CHROMATOGRAPHY Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Thu Tran Thi Minh aus Vietnam 1. Referent: Prof. Dr. Peter Winterhalter 2. Referent: apl. Prof. Dr. Ulrich Engelhardt eingereicht am: 28.02.2018 mündliche Prüfung (Disputation) am: 28.05.2018 Druckjahr 2018 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Tagungsbeiträge T. Tran, G. Jerz, T.E. Moussa-Ayoub, S.K.EI-Samahy, S. Rohn und P. Winterhalter: Metabolite screening and fractionation of betalains and flavonoids from Opuntia stricta var. dillenii by means of High Performance Countercurrent chromatography (HPCCC) and sequential off-line injection to ESI-MS/MS. (Poster) 44. Deutscher Lebensmittelchemikertag, Karlsruhe (2015). Thu Minh Thi Tran, Tamer E. Moussa-Ayoub, Salah K. El-Samahy, Sascha Rohn, Peter Winterhalter und Gerold Jerz: Metabolite profile of betalains and flavonoids from Opuntia stricta var. dilleni by HPCCC and offline ESI-MS/MS. (Poster) 9. Countercurrent Chromatography Conference, Chicago (2016). Thu Tran Thi Minh, Binh Nguyen, Peter Winterhalter und Gerold Jerz: Recovery of the betacyanin celosianin II and flavonoid glycosides from Atriplex hortensis var. rubra by HPCCC and off-line ESI-MS/MS monitoring. (Poster) 9. Countercurrent Chromatography Conference, Chicago (2016). ACKNOWLEDGEMENT This PhD would not be done without the supports of my mentor, my supervisor and my family.
    [Show full text]