An Assessment of the Prospects for Inertial Fusion Energy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Application of the Theory of Laser to Nitrogen Laser Pumped Dye Laser
SD9900039 AN APPLICATION OF THE THEORY OF LASER TO NITROGEN LASER PUMPED DYE LASER FATIMA AHMED OSMAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics. UNIVERSITY OF KHARTOUM FACULTY OF SCIENCE DEPARTMENT OF PHYSICS MARCH 1998 \ 3 0-44 In this thesis we gave a general discussion on lasers, reviewing some of are properties, types and applications. We also conducted an experiment where we obtained a dye laser pumped by nitrogen laser with a wave length of 337.1 nm and a power of 5 Mw. It was noticed that the produced radiation possesses ^ characteristic^ different from those of other types of laser. This' characteristics determine^ the tunability i.e. the possibility of choosing the appropriately required wave-length of radiation for various applications. DEDICATION TO MY BELOVED PARENTS AND MY SISTER NADI A ACKNOWLEDGEMENTS I would like to express my deep gratitude to my supervisor Dr. AH El Tahir Sharaf El-Din, for his continuous support and guidance. I am also grateful to Dr. Maui Hammed Shaded, for encouragement, and advice in using the computer. Thanks also go to Ustaz Akram Yousif Ibrahim for helping me while conducting the experimental part of the thesis, and to Ustaz Abaker Ali Abdalla, for advising me in several respects. I also thank my teachers in the Physics Department, of the Faculty of Science, University of Khartoum and my colleagues and co- workers at laser laboratory whose support and encouragement me created the right atmosphere of research for me. Finally I would like to thank my brother Salah Ahmed Osman, Mr. -
Progress Towards Polar-Drive Ignition for the NIF
Home Search Collections Journals About Contact us My IOPscience Progress towards polar-drive ignition for the NIF This content has been downloaded from IOPscience. Please scroll down to see the full text. 2013 Nucl. Fusion 53 113021 (http://iopscience.iop.org/0029-5515/53/11/113021) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 198.125.179.18 This content was downloaded on 06/11/2013 at 22:08 Please note that terms and conditions apply. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 113021 (5pp) doi:10.1088/0029-5515/53/11/113021 Progress towards polar-drive ignition for the NIF R.L. McCrory1,a, R. Betti1,a, T.R. Boehly1, D.T. Casey2, T.J.B. Collins1, R.S. Craxton1, J.A. Delettrez1, D.H. Edgell1, R. Epstein1, J.A. Frenje2, D.H. Froula1, M. Gatu-Johnson2, V.Yu. Glebov1, V.N. Goncharov1, D.R. Harding1, M. Hohenberger1, S.X. Hu1, I.V. Igumenshchev1, T.J. Kessler1, J.P. Knauer1, C.K. Li2, J.A. Marozas1, F.J. Marshall1, P.W. McKenty1, D.D. Meyerhofer1,a, D.T. Michel1, J.F. Myatt1, P.M. Nilson1, S.J. Padalino3, R.D. Petrasso2, P.B. Radha1, S.P. Regan1, T.C. Sangster1, F.H. Seguin´ 2, W. Seka1, R.W. Short1, A. Shvydky1, S. Skupsky1, J.M. Soures1, C. Stoeckl1, W. Theobald1, B. Yaakobi1 and J.D. Zuegel1 1 Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, NY 14623-1299, USA 2 Plasma Science Fusion Center, 173 Albany Street, Massachusetts Institute of Technology, Cambridge MA 02139, USA 3 Department of Physics, State University of New York at Geneseo, 1 College Circle, Geneseo NY 14454, USA E-mail: [email protected] Received 31 December 2012, accepted for publication 4 September 2013 Published 27 September 2013 Online at stacks.iop.org/NF/53/113021 Abstract The University of Rochester’s Laboratory for Laser Energetics (LLE) performs direct-drive inertial confinement fusion (ICF) research. -
HD DVD: Manufacturing Was Developed.This Recorder Is Equipped with a 257Nm Gas Laser (Frequency Doubled Ar+ Laser)
paper r& white d Six years ago, the LDM 3692 DUV recorder HD DVD: Manufacturing was developed.This recorder is equipped with a 257nm gas laser (frequency doubled Ar+ laser). All options with regards to future for- mats were still open at that time.The recorder features two recording spots, with a wobble The New Format option on both. This recorder is an adequate R&D tool to record HD DVD. BY DR. DICK VERHAART, from 740nm to 400nm. To read these smaller For HD DVD stamper manufacturing, a Singulus Mastering information structures, it is necessary to use recorder with a 266nm solid state laser was PETER KNIPS, blue diode lasers with a wavelength of 405nm developed. This system contains a stable and Singulus EMould instead of the 650nm red lasers used for CD easy to operate solid state laser, with a much DIETER WAGNER, and DVD. longer lifetime than the gas laser. As all pro- Singulus Technologies AG An advanced copy protection system will posed next-generation formats require only The third generation of optical disc formats is give better protection than what was avail- one spot, the system has a single recording set to arrive on the market by the end of this able for CD and DVD with mandatory serializ- spot. Spot deflection, required to create the year.As with Blu-ray Disc, the HD DVD format ing of each single HD DVD. The serialization groove wobble in the recordable and was developed to tremendously increase the will take place on the aluminum covered layer rewritable formats, is available as an option. -
Argon-Ion and Helium-Neon Lasers
Argon-Ion and Helium- Neon Lasers The one source for gas lasers What makes Lumentum the choice for argon-ion and helium-neon (HeNe) lasers? Whether you are involved in medical research, semiconductor manufacturing, high-speed printing, or Your Source for another demanding application, we have the expertise, commitment, and technology to ensure you get the best solution for your need. With more than 35 years of experience, we have an unmatched Successful gas laser production requires extraordinary care understanding of the gas laser market. That understanding has during the manufacturing process. Every individual throughout led us to devote extensive resources to help establish a premier, each production stage, from engineering and procurement to Gas Lasers high-volume manufacturing facility. Located in Thailand, the manufacturing and quality control, is attuned to the highly facility produces lasers of the highest standard. And we maintain sensitive nature of the applications for which these products are that standard through regional quality management, on-site used. Consequently, we can assure the steady supply of quality supplier quality engineering, and regular quality audits. products to our customers around the globe. Our products are being used in customers’ new systems and as replacement components in the large installed base of existing systems. 2 3 Key Gas Laser Applications Known for their longevity and predictable electrical and optical performance characteristics, our lasers are being used in a wide variety of applications. Medical Research University, medical, and government laboratories on the cusp of new discoveries rely on instruments designed with Lumentum argon-ion and HeNe lasers for cell mapping, genome analysis, and DNA sequencing. -
Europe for Inertial Confinement Fusion
EuropeEurope forfor InertialInertial ConfinementConfinement FusionFusion Technology Watch Workshop on IFE-KIT Madrid March 22, 2010 Jiri Ullschmied Association EURATOM IPP.CR PALS Research Centre, a joint laboratory of the Institute of Physics and Institute of Plasma Physics, Academy of Sciences of the Czech Republic www.pals.cas.cz Paper Layout State of the art - where are we now Lasers on the path to fusion National Ignition Facility Indirect drive / direct drive European lasers, LMJ Coordinated European effort in the laser research Various ignition scenarios - EU KIT contributions SWOT Summary State of the art - where are we now Steadily increasing progress in laser technology since 1960, lasers becoming the most dynamic field of physical research in the last decade. Megajoule and multi-PW lasers have become reality, laser beam focused intensity has been increased up to 1022 W/cm2 (Astra, UK). Last-generation high-power lasers - an unmatched tool for high-energy density physical research and potential fusion drivers. High-energy lasers worldwide Lasers on the path to Fusion Max output energy of single beam systems (Nd-glass, iodine, KrF) in the 1-10 kJ range, while EL > 1 MJ is needed for central ignition => multi-beam laser systems. Various fast ignition schemes are have been proposed, which should decrease the required energy by an order of magnitude. History and future of IFE lasers HiPER Three main tasks demonstrate ignition and burn demonstrate high energy gain develop technology for an IFE power plant Ignition to be demonstrated at NIF (2010?) and LMJ lasers. The natural next step: HiPER. National Ignition Facility NIF is a culmination of long line of US Nd-glass laser systems Nova, OMEGA and NIF shot rates measured in shots/day. -
Inertial Fusion Power Development:Path for Global Warming Suppression
Inertial Fusion Power Development:Path for Global Warming Suppression EU:France, UK,etc. US: LLNL, SNL, U. Rochester East Asia: Japan, China,etc. Kunioki Mima Institute of Laser Engineering, Osaka University IAEA- FC 2008, 50 years’ Ann. of Fusion Res. , Oct.15, 2008, Geneva, SW Outline • Brief introduction and history of IFE research • Frontier of IFE researches Indirect driven ignition by NIF/LMJ Ignition equivalent experiments for fast ignition • IF reactor concept and road map toward power plant IFE concepts Several concepts have been explored in IFE. Driver Irradiation Ignition Laser Direct Central hot spark Ignition HIB Indirect Fast ignition Impact ignition Pulse power Shock ignition The key issue of IFE is implosion physics which has progressed for more than 30 years Producing 1000times solid density and 108 degree temperature plasmas Plasma instabilities R Irradiation non-uniformities Thermal transport and ablation surface of fuel pellet ΔR R-M Instability ΔR0 R-T instability R0 R Feed through R-M and R-T Instabilities in deceleration phase Turbulent Mixing Canter of fuel pellet t Major Laser Fusion Facilities in the World NIF, LLNL, US. LMJ, CESTA, Bordeaux, France SG-III, Menyang,CAEP, China GXII-FIREX, ILE, Osaka, Japan OMEGA-EP, LLE, Rochester, US HiPER, RAL, UK Heavy Ion Beam Fusion: The advanced T-lean fusion fuel reactor Test Stand at LBNL NDCX-I US HIF Science Virtual National Lab.(LBNL, LLNL,PPPL) has been established in 1990. (Directed by G Logan) • Implosion physics by HIB • HIB accelerator technology for 1kA, 1GeV, 1mm2 beam: Beam brightness, Neutralization, NDCX II Collective effects of high current beam, Stripping.(R.Davidson etal) • Reactor concept with Flibe liquid jet wall (R.Moir: HYLIF for HIF Reactor) History of IFE Research 1960: Laser innovation (Maiman) 1972: Implosion concept (J. -
Direct-Drive Shock-Ignition for the Laser Megajoule
Direct-Drive Shock-Ignition for the Laser Megajoule. B. Canaud∗, S. Laffite, V. Brandon CEA, DAM, DIF, F-91297 Arpajon, France M. Temporal, R. Ramis ETSIA, Universidad Politecnica de Madrid, Spain (Dated: October 13, 2011) We present a review of direct-drive shock ignition studies done as alternative for the Laser Mega- Joule to achieve high thermonuclear gain. One-dimensional analysis of HiPER-like Shock-ignited target designs is presented. It is shown that high gain can be achieved with shock ignition for designs which do not ignite only from the laser compression. Shock ignition is achieved for different targets of the fast ignition family which are driven by an absorbed energy between 100 kJ and 850 kJ and deliver thermonuclear energies between 10-130 MJ. Shock-Ignition of Direct-Drive Double- Shell non-cryogenic target is also addressed. 2D results concerning the LMJ irradiation geometry are presented. Few systematic analyses are performed for the fuel assembly irradiation uniformity using the whole LMJ configuration or a part of the facility, and for the ignitor spike uniformity. Solutions for fuel assembly and shock ignition on LMJ using 2D calculations are presented. It is shown that high-gain shock-ignition is possible with intensity of each quad less than 1e15 W/cm2 but low modes asymmetries displace the ignitor power in the spike towards higher powers.. PACS numbers: 52.57.Bc, 52.57.-z,52.35.Tc,52.57.Kk I. INTRODUCTION Direct drive inertial fusion is an alternative to achieve inertial confinement fusion for the laser Megajoule (LMJ) for a decade [1{7]. -
ITER • NCSX • HEDLP Joint Program • Issues and Plans
U.S. Department of Energy’s Office of Science Fusion Energy Sciences Program Update Fusion Energy Sciences Advisory Committee Gaithersburg, MD October 23-24, 2007 Raymond J. Fonck Associate Director for Fusion Energy Sciences www.ofes.fusion.doe.gov FESAC 102307-rjf 1 Topics • Budget status • ITER • NCSX • HEDLP Joint Program • Issues and Plans Note: Thank You to all who worked so hard on the three reports presented at this meeting! FESAC 102307-rjf 2 FY 2008 Fusion Energy Sciences Congressional Budget Request ($ Millions) FY 2006 FY 2007 FY 2008 Actual Sept AFP CONG Science 148.7 144.6 159.6 Facility Operations 104.2 146.3 247.5 Enabling R&D 27.8 20.8 20.8 OFES Total 280.7 311.7 427.9 DIII-D 55.1 56.7 59.7 C-Mod 21.5 22.3 23.5 NSTX 34.2 33.5 36.1 NCSX 17.8 16.6 16.6 ITER 24.6 60.0 160.0 Non-ITER 256.1 251.7 267.9 FESAC 102307-rjf 3 FY 2008 Appropriations • House Mark – The Committee recommendation for fusion energy sciences is $427,850,000, the same as the budget request, and reflecting the $100,000,000 growth in the budget for ITER. – The Committee does not support funding for a new program in High Energy Density Physics (HEDP) and provides no funds for this research area. (Resources for HEDP should be redirected to other programs). – The Committee notes that major growth in support for ITER … is affecting the overall funding picture for Fusion Energy Sciences and for the Office of Science as a whole. -
Experimental Results on Advanced Inertial Fusion Schemes Obtained
NUKLEONIKA 2012;57(1):3−10 ORIGINAL PAPER Experimental results Dimitri Batani, Leonida A. Gizzi, Petra Koester, Luca Labate, on advanced inertial fusion Javier Honrubia, Luca Antonelli, Alessio Morace, Luca Volpe, Jorge J. Santos, Guy Schurtz, schemes obtained Sebastien Hulin, Xavier Ribeyre, Philippe Nicolai, Benjamin Vauzour, within the HiPER project Fabien Dorchies, Wiger Nazarov, John Pasley, Maria Richetta, Kate Lancaster, Christopher Spindloe, Martin Tolley, David Neely, Michaela Kozlová, Jaroslav Nejdl, Bedrich Rus, Jerzy Wołowski, Jan Badziak Abstract. This paper presents the results of experiments conducted within the Work Package 10 (fusion experimental programme) of the HiPER project. The aim of these experiments was to study the physics relevant for advanced ignition schemes for inertial confinement fusion, i.e. the fast ignition and the shock ignition. Such schemes allow to achieve a higher fusion gain compared to the indirect drive approach adopted in the National Ignition Facility in United States, which is important for the future inertial fusion energy reactors and for realising the inertial fusion with smaller facilities. Key words: advanced ignition schemes • fast ignition • shock ignition • inertial fusion • propagation of fast electrons • short-pulse ultra-high-intensity laser • shock compressed matter • cylindrical implosions Introduction D. Batani , J. J. Santos, G. Schurtz, S. Hulin, In 2006 the European Strategy Forum on Research X. Ribeyre, P. Nicolai, B. Vauzour, F. Dorchies Infrastructures (ESFRI) included the HiPER Project CELIA, Université de Bordeaux/CNRS/CEA, (European High Power Laser Energy Research Facility) Talence, 33405, France, in the European roadmap for Research Infrastructures. Tel.: +33 0 5 4000 3753, Fax: + 33 0 5 4000 2580, The goals of the HiPER project are to perform a feasi- E-mail: [email protected] bility study, choose a design and then construct a high- -energy laser facility for research on the production of L. -
Fusion Ignition Via a Magnetically-Assisted Fast Ignition Approach
Fusion ignition via a magnetically-assisted fast ignition approach W.-M. Wang1,3*, P. Gibbon2,4†, Z.-M. Sheng3,5,6‡, Y. T. Li1,3, and J. Zhang3,6 1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, China 2Forschungszentrum Jülich GmbH, Institute for Advanced Simulation, Jülich Supercomputing Centre, D-52425 Jülich, Germany 3Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China 4Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium 5SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom 6Key Laboratory for Laser Plasmas (MoE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China * E-mail: [email protected] † E-mail: [email protected] ‡ E-mail: [email protected] 1 Significant progress has been made towards laser-driven fusion ignition via different schemes, including direct and indirect central ignition, fast ignition, shock ignition, and impact ignition schemes. However, to reach ignition conditions, there are still various technical and physical challenges to be solved for all these schemes. Here, our multi-dimensional integrated simulation shows that the fast-ignition conditions could be achieved when two 2.8 petawatt heating laser pulses counter-propagate along a 3.5 kilotesla external magnetic field. Within a period of 5 picoseconds, the laser pulses heat a nuclear fuel to reach the ignition conditions. Furthermore, we present the parameter windows of lasers and magnetic fields required for ignition for experimental test. To achieve controlled nuclear fusion energy, the central ignition concept of inertial confinement fusion (ICF) was proposed in 1970s [1-4]. -
General Fusion
General Fusion Fusion Power Associates, 2011 Annual Meeting 1 General Fusion Making commercially viable fusion power a reality. • Founded in 2002, based in Vancouver, Canada • Plan to demonstrate a fusion system capable of “net gain” within 3 years • Industrial and institutional partners including Los Alamos National Lab and the Canadian Government • $32.5M in venture capital, $4.5M in government support Fusion Power Associates, 2011 Annual Meeting 2 General Fusion’s Acoustically Driven MTF Fusion Power Associates, 2011 Annual Meeting 3 Commercialization Advantages Fusion Challenge General Fusion Solution 1.5 m of liquid lead lithium greatly lowers the neutron energy spectrum Neutron activation and embrittlement of structure Low neutron load at the metal wall Low activation Low radiation damage n,2n reaction in lead 4π coverage Tritium breeding Thick blanket High tritium breeding ratio of 1.6 Heat extraction Heat extraction by the working fluid Pb -Li Solubility of tritium in Pb -Li is low Tritium safety 100 M W plant size Low tritium inventory (2g) Pneumatic energy storage >100X lower System cost cost than capacitors Cost of targets in pulsed Liquid metal compression systems - “kopeck” problem No consumables Fusion Power Associates, 2011 Annual Meeting 4 Development Plan 4 years PHASE I Proof of principle Completed 2009 PHASE IIa Construct key components at full scale 2.5 years Prove system can be built $30M Progress to Date Plasma compression tests PHASE II 2012 PHASE IIb 2 years Demonstration of Net Gain Build net gain prototype $35M -
James Clerk Maxwell Prize for Plasma Physics Salt
Salt Lake City, Utah A Division of The American Physical Society November 14-18, 2011 James Clerk Maxwell Prize He is the recipient of a number of stationed at CERN full-time since 2001. Fajans has been a Miller Fellow at for Plasma Physics important prizes and awards including He is a founding member of the ATHENA Berkeley, a National Science Foundation the Patten Prize, Bavarian Innovation antihydrogen collaboration and was the Presidential Young Investigator, and "For Pioneering, and seminal contributions Prize, Wissenschaftpreis of the German Physics Coordinator of the experiment that an Office of Naval Research Young to, the field of dusty plasmas, including “Stifterverband”, ERC research grant, produced the first cold antihydrogen atoms Investigator. He is a fellow of the work leading to the discovery of Gagarin Medal, Ziolkowski Medal, NASA at the CERN Antiproton Decelerator in American Physical Society, and served on plasma crystals, to an explanation for achievement awards, URGO Foundation 2002. He is the founder and Spokesperson the Executive Committee of the Division of the complicated structure of Saturn's for Advances in Dermatology Award of the ALPHA collaboration, which Plasma Physics. rings, and to microgravity dusty plasma (plasma treatment of chronic wounds). demonstrated trapping of antihydrogen experiments conducted first on parabolic- atoms in 2010 (the work which is being trajectory flights and then on the honored here). Hangst was elected to Mike Charlton International Space Station." Salt Lake Fun Facts: fellowship of the APS, Division of Plasma Swansea University, United Kingdom Gregor Morfill The people of Salt Lake City consume Physics, in 2005. Max-Planck Institute für more Jell-O per capita than any other city Mike Charlton Extraterrestrische Physik in the United States.