Technologies for the Stabilization of Mercury

Total Page:16

File Type:pdf, Size:1020Kb

Technologies for the Stabilization of Mercury Technical and Economic Criteria for Processing Mercury- Containing Tailings Final Report United Nations Environment Programme Division of Division of Technology, Industry, and Economics Chemicals Branch April 2010 The work being presented in this report has been funded by the United Nations Environment Programme (UNEP) under the Project Account No: NF 4030-08-44 and coordinated by Dr. Heidelore Fiedler, UNEP’s Division of Technology, Industry and Economics (DTIE), Chemicals Branch The work has been conducted by the Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH. All responsibility for the content of this publication lies with the authors alone. The designation employed and the presentation of material in this report do not imply any expression of any opinion whatsoever on the part of the United Nations or UNEP concerning the legal status of any country, territory, city or area or any of its authorities, or concerning any delimitation of its frontiers or boundaries. Any views expressed in the document do not necessarily reflect the views of UNEP. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by UNEP, nor preferred compared to others of a similar nature that are not mentioned. The use of information from this publication concerning proprietary products for publicity or advertising is not permitted. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen co-operation and increase international co-ordination in the field of chemical safety. The participating organisations are FAO, ILO, OECD, UNEP, UNIDO, UNITAR and WHO. The World Bank and UNDP are observers. The purpose of the IOMC is to promote co-ordination of the policies and activities pursued by the Participating Organisations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. The electronic version of this document is available from http://www.chem.unep.ch. Contact: [email protected] UNEP Chemicals is part of UNEP’s Division of Technology, Industry and Economics (DTIE) April 2010 Technical and Economic Criteria for Processing Mercury-Containing Tailings Final Report United Nations Environment Programme Division of Division of Technology, Industry, and Economics Chemicals Branch April 2010 Acknowledgements This report has been prepared by Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH Sven Hageman, Dagmar Schönwiese Theodor-Heuss Str. 4 D-38122 Braunschweig Germany webpage: WWW.GRS.DE in close co-operation with the following partners: IMC - Montan Consulting GmbH (feasibility analysis) Florian Beier, Clemens Mieth, Michael Loss Am Technologiepark 1, 45307 Essen, Germany webpage: http://www.imcgcl.com; www.dmt.de Prof. Dr. Christoph Heubeck (case study on Andacollo) Freie Universität Berlin Institut für Geologische Wissenschaften Malteserstr. 74-10, 12249 Berlin GERMANY webpage: http://userpage.fu-berlin.de/~cheubeck For the case study on Andacollo, Chile the author (Christoph Heubeck) would like to thank all those who spent their time and knowledge to share their insights and resources (listed in the references). Special thanks are due to I. Honorato (FundacionChile), Andrew Tonmlinson (SERNAGEOMIN), Paul Cordy (UBC, Canada), Daniel Moraga (UCN Coquimbo) and Katja Radon (Univ. München, Germany) all of whom provided essential data. Table of contents 1 Summary and conclusion ....................................................................... 1 2 Introduction .............................................................................................. 3 2.1 Mercury containing tailings as a threat to human health and the environment ............................................................................................... 3 2.2 Reprocessing of tailings – a viable approach to reduce the risk of mercury releases? ..................................................................................... 4 2.3 Objective of this study ................................................................................ 5 3 Toxicity of mercury and its compounds ................................................ 7 3.1 Overview ................................................................................................... 7 3.2 Elemental mercury (Hg0) ............................................................................ 7 + 2+ 3.3 Oxidized mercury (Hg and Hg ) ............................................................... 7 + 3.4 Methylmercury (CH3-Hg ) .......................................................................... 8 4 Occurrence of mercury in mineral ores ................................................. 9 4.1 Overview ................................................................................................... 9 4.2 Mercury ore deposits and mineral deposits enriched in mercury ................ 9 4.3 Mercury associated with other minerals ................................................... 15 5 Historical and present usage of mercury in processing metal ores .. 19 5.1 Historical usage of mercury ..................................................................... 19 5.2 Present use of mercury in small scale gold and silver ore processing ...... 20 6 Fate of mercury during the metal ore processing ............................... 23 6.1 Introduction .............................................................................................. 23 6.2 Speciation of mercury in metal ores ......................................................... 23 6.3 Unit operations in ore processing ............................................................. 23 6.4 Releases of mercury during ore extraction, crushing and grinding ........... 24 6.5 Releases of mercury during ore concentration ......................................... 24 6.6 Releases of mercury during roasting and autoclaving .............................. 24 6.7 Releases of mercury during metal extraction ........................................... 25 i 6.8 Releases of mercury during recovery operations ..................................... 25 7 Release of mercury from tailings ......................................................... 27 7.1 General characterization of tailings and potential release paths for mercury ................................................................................................... 27 7.2 Classification of tailings............................................................................ 28 7.3 Chemical speciation of mercury in tailings ............................................... 33 7.4 Human exposure ..................................................................................... 37 8 Reprocessing of tailings ....................................................................... 39 8.1 Potential economic incentives .................................................................. 39 8.2 Environmental and social benefits ........................................................... 39 8.3 Public involvement ................................................................................... 40 8.4 Examples for recent, planned or proposed reprocessing projects ............ 40 9 Criteria for analyzing the feasibility of processing mercury- containing tailings ................................................................................. 43 9.1 Introduction .............................................................................................. 43 9.2 Remediation of mercury containing tailings as an alternative ................... 43 9.3 Evaluation phases ................................................................................... 44 9.4 Elemental evaluation parameters ............................................................. 49 9.5 Literature ................................................................................................. 78 9.6 Concluding remarks ................................................................................. 78 10 Case Study: Options for tailings reclamation in Andacollo, Chile: .... 79 10.1 Summary ................................................................................................. 79 10.2 Introduction .............................................................................................. 80 10.3 Site Description ....................................................................................... 81 10.4 Hg in the Environment at Andacollo ......................................................... 96 10.5 Technical description of mine tailings..................................................... 100 10.6 Societal Aspects .................................................................................... 107 10.7 Discussion ............................................................................................. 109 10.8 Outline of Technical Options .................................................................. 111 10.9 Conclusions ........................................................................................... 113 ii 10.10 Recommendations ................................................................................. 113 11 References ..........................................................................................
Recommended publications
  • A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite)
    minerals Review A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite) Darius G. Wonyen 1,†, Varney Kromah 1,†, Borbor Gibson 1,† ID , Solomon Nah 1,† and Saeed Chehreh Chelgani 1,2,* ID 1 Department of Geology and Mining Engineering, Faculty of Engineering, University of Liberia, P.O. Box 9020 Monrovia, Liberia; [email protected] (D.G.W.); [email protected] (Y.K.); [email protected] (B.G.); [email protected] (S.N.) 2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA * Correspondence: [email protected]; Tel.: +1-41-6830-9356 † These authors contributed equally to the study. Received: 24 July 2018; Accepted: 13 August 2018; Published: 15 August 2018 Abstract: It is well documented that flotation has high economic viability for the beneficiation of valuable minerals when their main ore bodies contain magnesium (Mg) carbonates such as dolomite and magnesite. Flotation separation of Mg carbonates from their associated valuable minerals (AVMs) presents several challenges, and Mg carbonates have high levels of adverse effects on separation efficiency. These complexities can be attributed to various reasons: Mg carbonates are naturally hydrophilic, soluble, and exhibit similar surface characteristics as their AVMs. This study presents a compilation of various parameters, including zeta potential, pH, particle size, reagents (collectors, depressant, and modifiers), and bio-flotation, which were examined in several investigations into separating Mg carbonates from their AVMs by froth flotation. Keywords: dolomite; magnesite; flotation; bio-flotation 1. Introduction Magnesium (Mg) carbonates (salt-type minerals) are typical gangue phases associated with several valuable minerals, and have complicated processing [1,2].
    [Show full text]
  • Effects of Varied Process Parameters on Froth Flotation Efficiency: a Case Study of Itakpe Iron Ore
    Nigerian Journal of Technology (NIJOTECH) Vol. 39, No. 3, July 2020, pp. 807 – 815 Copyright© Faculty of Engineering, University of Nigeria, Nsukka, Print ISSN: 0331-8443, Electronic ISSN: 2467-8821 www.nijotech.com http://dx.doi.org/10.4314/njt.v39i3.21 EFFECTS OF VARIED PROCESS PARAMETERS ON FROTH FLOTATION EFFICIENCY: A CASE STUDY OF ITAKPE IRON ORE S. Akande1, E. O. Ajaka2, O. O. Alabi3 and T. A. Olatunji4,* 1, 2, DEPARTMENT OF MINING ENGINEERING, FEDERAL UNIV. OF TECHNOLOGY, AKURE, ONDO STATE, NIGERIA 3, 4, DEPT. OF MET. & MATERIALS ENGINEERING, FEDERAL UNIV. OF TECHNOLOGY, AKURE, ONDO STATE, NIGERIA Email addresses: 1 [email protected], 2 [email protected], 3 [email protected], 4 [email protected] ABSTRACT The dire need for Itakpe iron ore concentrates of appreciable iron content meets for smelting operation necessitated this study. Core samples of the iron ore sourced from Itakpe, Kogi State, Nigeria were prepared for petrological analysis followed by chemical and particle size analyses. Froth flotation was done using different collectors at varying particle sizes and pH values. Characterization studies carried out revealed that Itakpe iron ore is a lean ore assaying 36.18% Fe2O3 and contains predominantly quartz, sillimanite, and haematite. Its liberation size lies favourably at 75 µm. Processing the ore by froth flotation yielded appreciable enrichment. Optimal recovery (~92%) was achieved using potassium amyl xanthate (PAX) at pH 11 for fine feed sizes (<125 µm) yielding iron concentrate assaying 67.66% Fe2O3. Thus, processing at this set-of- conditions is recommended for the industrial production of more enriched Itakpe iron ore concentrates.
    [Show full text]
  • Holocene Relative Sea-Level Change Along the Tectonically Active Chilean Coast
    This is a repository copy of Holocene relative sea-level change along the tectonically active Chilean coast. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/161478/ Version: Accepted Version Article: Garrett, Ed, Melnick, Daniel, Dura, Tina et al. (5 more authors) (2020) Holocene relative sea-level change along the tectonically active Chilean coast. Quaternary Science Reviews. 106281. ISSN 0277-3791 https://doi.org/10.1016/j.quascirev.2020.106281 Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Holocene relative sea-level change along the tectonically active Chilean coast 2 3 Ed Garrett1*, Daniel Melnick2, Tina Dura3, Marco Cisternas4, Lisa L. Ely5, Robert L. Wesson6, Julius 4 Jara-Muñoz7 and Pippa L. Whitehouse8 5 6 1 Department of Environment and Geography, University of York, York, UK 7 2 Instituto de Ciencias de la Tierra, TAQUACh, Universidad Austral de Chile, Valdivia, Chile 8 3 Department of Geosciences, Virginia Tech, Blacksburg, VA, USA 9 4 Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile 10 5 Department of Geological Sciences, Central Washington University, Ellensburg, WA, USA 11 6 U.S.
    [Show full text]
  • HISTORY of LEAD POISONING in the WORLD Dr. Herbert L. Needleman Introduction the Center for Disease Control Classified the Cause
    HISTORY OF LEAD POISONING IN THE WORLD Dr. Herbert L. Needleman Introduction The Center for Disease Control classified the causes of disease and death as follows: 50 % due to unhealthy life styles 25 % due to environment 25% due to innate biology and 25% due to inadequate health care. Lead poisoning is an environmental disease, but it is also a disease of life style. Lead is one of the best-studied toxic substances, and as a result we know more about the adverse health effects of lead than virtually any other chemical. The health problems caused by lead have been well documented over a wide range of exposures on every continent. The advancements in technology have made it possible to research lead exposure down to very low levels approaching the limits of detection. We clearly know how it gets into the body and the harm it causes once it is ingested, and most importantly, how to prevent it! Using advanced technology, we can trace the evolution of lead into our environment and discover the health damage resulting from its exposure. Early History Lead is a normal constituent of the earth’s crust, with trace amounts found naturally in soil, plants, and water. If left undisturbed, lead is practically immobile. However, once mined and transformed into man-made products, which are dispersed throughout the environment, lead becomes highly toxic. Solely as a result of man’s actions, lead has become the most widely scattered toxic metal in the world. Unfortunately for people, lead has a long environmental persistence and never looses its toxic potential, if ingested.
    [Show full text]
  • La Desertificación En La Comuna De Punitaqui : Jerarquización De Espacios De Intervención Desde Un Enfoque Antrópico
    Universidad de Chile Facultad de Arquitectura y Urbanismo Escuela de Geografía La desertificación en la comuna de Punitaqui : jerarquización de espacios de Intervención desde un enfoque antrópico. Memoria para optar al título de Geógrafo Autor : Juan Eduardo Carrasco Millán Profesor Guía : Claudio Meneses Bustos Santiago-Chile 2006 INDICE INDICE...................................................................................................................................0 INTRODUCCION..................................................................................................................6 PLANTAMIENTO DEL PROBLEMA ...............................................................................10 HIPOTESIS ..........................................................................................................................19 MARCO REFERENCIAL DISCIPLINARIO .....................................................................20 OBJETIVOS.........................................................................................................................30 METODOLOGÍA.................................................................................................................31 Descripción Metodológica................................................................................................33 RESULTADOS ....................................................................................................................37 1. Unidades Territoriales Homogéneas en la Comuna de Punitaqui. ...............................37
    [Show full text]
  • Principles of Extractive Metallurgy Lectures Note
    PRINCIPLES OF EXTRACTIVE METALLURGY B.TECH, 3RD SEMESTER LECTURES NOTE BY SAGAR NAYAK DR. KALI CHARAN SABAT DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING PARALA MAHARAJA ENGINEERING COLLEGE, BERHAMPUR DISCLAIMER This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the author for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available material from internet were consulted for preparing this document. The ownership of the information lies with the respective author or institutions. Further, this document is not intended to be used for commercial purpose and the faculty is not accountable for any issues, legal or otherwise, arising out of use of this document. The committee faculty members make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. BPUT SYLLABUS PRINCIPLES OF EXTRACTIVE METALLURGY (3-1-0) MODULE I (14 HOURS) Unit processes in Pyro metallurgy: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction, Metallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Zone refining, Liquation and Cupellation. Small problems related to pyro metallurgy. MODULE II (14 HOURS) Unit processes in Hydrometallurgy: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bio- leaching: Recovery of metals from Leach liquor by Solvent Extraction, Ion exchange , Precipitation and Cementation process.
    [Show full text]
  • ESTIMATION of FISSION-PRODUCT GAS PRESSURE in URANIUM DIOXIDE CERAMIC FUEL ELEMENTS by Wuzter A
    NASA TECHNICAL NOTE NASA TN D-4823 - - .- j (2. -1 "-0 -5 M 0-- N t+=$j oo w- P LOAN COPY: RET rm 3 d z c 4 c/) 4 z ESTIMATION OF FISSION-PRODUCT GAS PRESSURE IN URANIUM DIOXIDE CERAMIC FUEL ELEMENTS by WuZter A. PuuZson una Roy H. Springborn Lewis Reseurcb Center Clevelund, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. NOVEMBER 1968 i 1 TECH LIBRARY KAFB, NM I 111111 lllll IllH llll lilll1111111111111 Ill1 01317Lb NASA TN D-4823 ESTIMATION OF FISSION-PRODUCT GAS PRESSURE IN URANIUM DIOXIDE CERAMIC FUEL ELEMENTS By Walter A. Paulson and Roy H. Springborn Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTl price $3.00 ABSTRACl Fission-product gas pressure in macroscopic voids was calculated over the tempera- ture range of 1000 to 2500 K for clad uranium dioxide fuel elements operating in a fast neutron spectrum. The calculated fission-product yields for uranium-233 and uranium- 235 used in the pressure calculations were based on experimental data compiled from various sources. The contributions of cesium, rubidium, and other condensible fission products are included with those of the gases xenon and krypton. At low temperatures, xenon and krypton are the major contributors to the total pressure. At high tempera- tures, however, cesium and rubidium can make a considerable contribution to the total pressure. ii ESTIMATION OF FISSION-PRODUCT GAS PRESSURE IN URANIUM DIOXIDE CERAMIC FUEL ELEMENTS by Walter A. Paulson and Roy H.
    [Show full text]
  • Positive PFS Results for Razorback High Grade Iron Ore Concentrate Project
    ASX Announcement 5 July 2021 Positive PFS Results for Razorback High Grade Iron Ore Concentrate Project Highlights: • Pre Feasibility Study completed and scope defined for Definitive Feasibility Study • PFS supports declaration of a maiden ore reserve of 473mt based on a 12.8Mtpa plant throughput, backed by PFS level or AACE Class 4 capital cost estimates and/or third-party service proposals1 • Optimisation of the processing plant configuration with a nominal 15.5Mtpa feed plant utilising three grinding stages, three stage magnetic separation and flotation to generate a premium grade magnetite concentrate with 67.5 - 68.5% Fe content • Non-process infrastructure and transport studies confirm preferred scope for operating inputs and initial route selection to load annual production of between 2 and 3 Mtpa of high grade concentrate on to Cape size vessels • Initial capital investment of US$429-$506M (A$572-$675M) resulting in optimised case results of NPV of A$669M and 20% IRR for selected go-forward case at long run average prices (post tax, ungeared) • Preparation for a prompt commencement of Definitive Feasibility Study is well advanced with further drilling, testwork, metallurgical investigation and engineering workplans in progress Magnetite Mines Limited (Magnetite Mines or the Company) today announced the results of the Pre Feasibility Study (PFS) for development of its 100% owned Razorback High Grade Iron Ore Concentrate Project (the Project or Razorback) and is now proceeding with the Definitive Feasibility Study (DFS). The PFS has confirmed the opportunity for a high return, long life, initial development of the large scale Razorback resource which leverages the advantages of resource scale, low stripping ratio, available infrastructure, low cost sustainable power and leading product quality.
    [Show full text]
  • Actualización Pladeco Punitaqui 2018-2023
    ACTUALIZACIÓN PLADECO PUNITAQUI 2018-2023 2018 ÍNDICE PRESENTACION 1 CO*CONSTRUCCION DEL PLAN DE DESARROLLO COMUNAL (PLADECO) 3 2 PRESENTACION DE PUNITAQUI, CARCATERISACION GENERAL DE LA COMUNA 4 2.1 Antecedentes generales comunales 4 2.2 Descripción del sistema territorial comunal y su estructura 8 2.3 Síntesis comunal Punitaqui 17 3 PUNITAQUI 2018, UN ANALISIS ESTRATEGICO 18 3.1 Desarrollo Social 19 3.1.1 Lecciones del pasado 19 3.1.2 Escenarios de desarrollo 20 3.1.3 Situación actual 22 3.2 Desarrollo Territorial 26 3.2.1 Lecciones del pasado 26 3.2.2 Escenarios de desarrollo 27 3.2.3 Situación actual 33 3.3 Desarrollo económico 35 3.3.1 Lecciones del pasado 35 3.3.2 Escenarios de desarrollo 35 3.3.3 Situación actual 37 3.4 Desarrollo y Gestión 40 3.4.1 Gestión Municipal en Educación 40 3.4.1.1 Lecciones del pasado 40 3.4.1.2 Escenarios de desarrollo 40 3.4.1.3 Situación actual 41 3.4.2 Gestión Municipal en Salud 42 3.4.2.1 Lecciones del pasado 42 3.4.2.2 Escenarios de desarrollo 42 3.4.2.3 Situación actual 43 3.4.3 Gestión Municipal 43 3.4.3.1 Lecciones del pasado 43 3.4.3.2 Escenarios de desarrollo 44 3.4.3.3 Situación actual 43 4 CAMINO AL 2023 46 4.1 Visión 46 4.2 Misión Municipal 46 4.3 Valores 47 4.4 Políticas y principios que sustentan la ejecución de la estrategia de desarrollo 47 4.5 Sistema de Desarrollo Comunal 49 4.6 Lineamientos de desarrollo y objetivos estratégicos 53 4.6.1 Lineamiento 1 53 4.6.2 Lineamiento 2 54 4.6.3 Lineamiento 3 55 4.6.4 Lineamiento 4 56 4.6.5 Lineamiento 5 57 4.6.6 Lineamiento 6 58 5 ARQUITECTURA
    [Show full text]
  • Recovery of Magnetite-Hematite Concentrate from Iron Ore Tailings
    E3S Web of Conferences 247, 01042 (2021) https://doi.org/10.1051/e3sconf/202124701042 ICEPP-2021 Recovery of magnetite-hematite concentrate from iron ore tailings Mikhail Khokhulya1,*, Alexander Fomin1, and Svetlana Alekseeva1 1Mining Institute of Kola Science Center of Russian Academy of Sciences, Apatity, 184209, Russia Abstract. The research is aimed at study of the probable recovery of iron from the tailings of the Olcon mining company located in the north-western Arctic zone of Russia. Material composition of a sample from a tailings dump was analysed. The authors have developed a separation production technology to recover magnetite-hematite concentrate from the tailings. A processing flowsheet includes magnetic separation, milling and gravity concentration methods. The separation technology provides for production of iron ore concentrate with total iron content of 65.9% and recovers 91.0% of magnetite and 80.5% of hematite from the tailings containing 20.4% of total iron. The proposed technology will increase production of the concentrate at a dressing plant and reduce environmental impact. 1 Introduction The mineral processing plant of the Olcon JSC, located at the Murmansk region, produces magnetite- At present, there is an important problem worldwide in hematite concentrate. The processing technology the disposal of waste generated during the mineral includes several magnetic separation stages to produce production and processing. Tailings dumps occupy huge magnetite concentrate and two jigging stages to produce areas and pollute the environment. However, waste hematite concentrate from a non-magnetic fraction of material contains some valuable components that can be magnetic separation [13]. used in various industries. In the initial period of plant operation (since 1955) In Russia, mining-induced waste occupies more than iron ore tailings were stored in the Southern Bay of 300 thousand hectares of lands.
    [Show full text]
  • Evaluation of Scale-Up Model for Flotation with Kristineberg Ore
    Evaluation of Scale-up Model for Flotation with Kristineberg Ore Adam Isaksson Chemical Engineering, master's level 2018 Luleå University of Technology Department of Civil, Environmental and Natural Resources Engineering Evaluation of Scale-up Model for Flotation with Kristineberg Ore Adam Isaksson 2018 For degree of MASTER OF SCIENCE Luleå University of Technology Department of Civil, Environmental and Natural Resources Engineering Division of Minerals and Metallurgical Engineering Printed by Luleå University of Technology, Graphic Production 2018 Luleå 2018 www.ltu.se Preface As you may have figured out by now, this thesis is all about mineral processing and the extraction of metals. It was written as part of my studies at Luleå University of Technology, for a master’s degree in Chemical Engineering with specialisation Mineral and Metal Winning. There are many people I would like to thank for helping me out during all these years. First of all, my thanks go to supervisors Bertil Pålsson and Lisa Malm for the guidance in this project. Iris Wunderlich had a paramount role during sampling and has kindly delivered me data to this report, which would not have been finished without her support. I would also like to thank Boliden Mineral AB as a company. Partly for giving me the chance to write this thesis in the first place, but also for supporting us students during our years at LTU. Speaking of which, thanks to Olle Bertilsson for reading the report and giving me feedback. The people at the TMP laboratory deserves another mention. I am also very grateful for the financial support and generous scholarships from Jernkontoret these five years.
    [Show full text]
  • Supergene Mineralisation of the Boyongan Porphyry Copper-Gold Deposit, Surigao Del Norte, Philippines
    Supergene Mineralisation of the Boyongan Porphyry Copper-Gold Deposit, Surigao del Norte, Philippines by Allan Maglaya Ignacio B.Sc. Geology, National Institute of Geological Sciences University of the Philippines Thesis submitted in partial fulfilment of the requirements of the Masters of Economic Geology Degree Centre for Ore Deposit Research, University of Tasmania December, 2005 DECLARATION OF ORIGINALITY This thesis contains no material which has been accepted for a degree of diploma by the University of Tasmania or any other institution, except by way of background information and duly acknowledged in the thesis, and contains no previous material previously pub- lished or written by another person except where due acknowledgement is given. Allan Maglaya Ignacio 01 December 2005 _________________________ STATEMENT OF AUTHORITY OF ACCESS This thesis may not to be made available for loan or copying for 1.5 years following the date this statement was signed. Following that time, the thesis may be available for loan and lim- ited copying in accordance with Copyright Act 1968. Allan Maglaya Ignacio 01 December 2005 _________________________ TABLE OF CONTENTS Page (s) LIST OF FIGURES …………………………………………………….. i - iii LIST OF APPENDICES ………………………………………………… iv ACKNOWLEDGMENTS ………………………………………………. v ABSTRACT ……………………………………………………………... vi - vii 1.0 INTRODUCTION ………………………………………………………. 1 - 8 1.1 Introduction …………………………………………………………. 1 1.2 Aims and Objectives ……………………………………………….. 1 1.3 Methods Employed …………………………………………………. 2 1.4 Location and Accessibility …………………………………………. 3 1.5 Climate ……………………………………………………………... 5 1.6 Previous Work ……………………………………………………… 5 2.0 GEOLOGICAL SETTING ………………………………………………. 9 - 37 2.1 Introduction ………………………………………………………. 9 2.2 Regional Tectonics …………….…………………………………. 9 2.3 Regional and Local Stratigraphy ………………………………... 11 2.3.1 Basement (Cretaceous-Paleogene) ………………………. 11 2.3.2 Bacuag Formation (Oliogocene-Miocene) .……………..
    [Show full text]